2D Simulations of Water Treatment with Upscaled Capacitive Deionization

  • Johan Nordstrand 
  • Joydeep Dutta 
  • a ,Functional Materials, Applied Physics Department, School of Engineering Sciences, KTH Royal Institute of
  • Technology, AlbaNova universitetscentrum 106 91 Stockholm, Sweden
Cite as
Nordstrand J., and Dutta J. (2022).,2D Simulations of Water Treatment with Upscaled Capacitive Deionization. Proceedings of the 10th International Workshop on Simulation for Energy, Sustainable Development & Environment (SESDE 2022). , 004 . DOI: https://doi.org/10.46354/i3m.2022.sesde.004

Abstract

Clean water is a major global challenge. Meanwhile, capacitive deionization (CDI) is an emerging desalination technology that could help produce and reuse water. As the technology develops, the modeling of upscaled systems is becoming increasingly relevant. However, the inherent complexities in the CDI process have historically made such simulations unfeasible. In this work, we leverage the newly published electrolytic-capacitor (ECL) model to efficiently simulate parallel/serial flow modes in CDI stacks. The simulations are based on finite-element methods (FEM) that couple differential equations for describing local charging and ionic transport inside the device. The results show that both parallel and serial connections scale incredibly well with the system size. Still, parallel connections have the advantage of requiring lower pumping energy. Overall, we find that the relationship between adsorption capacity, flowrate, and compartment size is a good indicator of performance. In conclusion, the ELC model is promising for simulating upscaled CDI.

References

  1. Alghoul, M. A., Poovanaesvaran, P., Sopian, K., & Sulaiman, M. Y. (2009). Review of brackish water reverse osmosis ( BWRO ) system designs. Renewable and Sustainable Energy Reviews, 13, 2661–2667. https://doi.org/10.1016/j.rser.2009.03.013
  2. Anderson, M. A., Cudero, A. L., & Palma, J. (2010). Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochimica Acta, 55(12), 3845–3856. https://doi.org/10.1016/j.electacta.2010.02.012
  3. Andres, G. L., & Yoshihara, Y. (2016). A capacitive deionization system with high energy recovery and effective re-use. Energy, 103, 605–617. https://doi.org/10.1016/j.energy.2016.03.021
  4. Biesheuvel, P. M. (2015). Activated carbon is an electron-conducting amphoteric ion adsorbent. ArXiv. http://arxiv.org/abs/1509.06354
  5. Biesheuvel, P. M., & Bazant, M. Z. (2010). Nonlinear dynamics of capacitive charging and desalination by porous electrodes. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 81(3), 1–12. https://doi.org/10.1103/PhysRevE.81.031502
  6. Biesheuvel, P. M., Fu, Y., & Bazant, M. Z. (2011). Diffuse charge and Faradaic reactions in porous electrodes. Physical Review E, 83(6). https://doi.org/10.1103/PhysRevE.83.061507
  7. Biesheuvel, P. M., Limpt, B. Van, & Wal, a Van Der. (2009). Dynamic Adsorption / Desorption Process Model for Capacitive Deionization. Journal of Physical Chemistry C, 113(March), 5636–5640. https://doi.org/10.1021/jp809644s
  8. Biesheuvel, P. M., Porada, S., Levi, M., & Bazant, M. Z. (2014). Attractive forces in microporous carbon electrodes for capacitive deionization. Journal of Solid State Electrochemistry, 18(5), 1365–1376. https://doi.org/10.1007/s10008-014-2383-5
  9. Biesheuvel, P. M., Zhao, R., Porada, S., & van der Wal, A. (2011). Theory of membrane capacitive deionization including the effect of the electrode pore space. In Journal of Colloid and Interface Science (Vol. 360, Issue 1, pp. 239–248). https://doi.org/10.1016/j.jcis.2011.04.049
  10. Demirer, O. N., Naylor, R. M., Rios Perez, C. A., Wilkes, E., & Hidrovo, C. (2013). Energetic performance optimization of a capacitive deionization system operating with transient cycles and brackish water. Desalination, 314, 130–138. https://doi.org/10.1016/j.desal.2013.01.014
  11. Dykstra, J. E., Zhao, R., Biesheuvel, P. M., & Wal, A. Van Der. (2016). Resistance identification and rational process design in Capacitive Deionization. Water Research, 88, 358–370. https://doi.org/10.1016/j.watres.2015.10.006
  12. Fahmida, P., & Sultana, A. (2018). Desalination Technologies for Developing Countries : A Review. Journal of Scientific Research, 10(January), 77–97. https://doi.org/10.3329/jsr.v10i1.33179
  13. Gao, X., Omosebi, A., Holubowitch, N., Landon, J., & Liu, K. (2017). Capacitive Deionization Using Alternating Polarization: Effect of Surface Charge on Salt Removal. Electrochimica Acta, 233, 249–255. https://doi.org/10.1016/j.electacta.2017.03.021
  14. Gao, X., Omosebi, A., Landon, J., & Liu, K. (2014). Enhancement of charge efficiency for a capacitive deionization cell using carbon xerogel with modified potential of zero charge. Electrochemistry Communications, 39, 22–25. https://doi.org/10.1016/j.elecom.2013.12.004
  15. Ghaffour, N., Missimer, T. M., & Amy, G. L. (2015). Technical review and evaluation of the economics of water desalination : Current and future challenges for better water supply sustainability. DES, 309(2013), 197–207. https://doi.org/10.1016/j.desal.2012.10.015
  16. Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B., Moulin, P., & Ce, P. (2009). Reverse osmosis desalination : Water sources , technology , and today ’ s challenges. Water Research, 43(9), 2317–2348. https://doi.org/10.1016/j.watres.2009.03.010
  17. Guyes, E. N., Shocron, A. N., Simanovski, A., Biesheuvel, P. M., & Suss, M. E. (2017). A one-dimensional model for water desalination by flow-through electrode capacitive deionization. Desalination, 415, 8–13. https://doi.org/10.1016/j.desal.2017.03.013
  18. Hassanvand, A., Chen, G. Q., Webley, P. A., & Kentish, S. E. (2018). A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization. Water Research, 131, 100–109. https://doi.org/10.1016/j.watres.2017.12.015
  19. Hemmatifar, A., Stadermann, M., & Santiago, J. G. (2015). Two-Dimensional Porous Electrode Model for Capacitive Deionization. Journal of Physical Chemistry C, 119(44), 24681–24694. https://doi.org/10.1021/acs.jpcc.5b05847
  20. Kim, T., Gorski, C. A., & Logan, B. E. (2017). Low Energy Desalination Using Battery Electrode Deionization [Rapid-communication]. Environmental Science and Technology Letters, 4(10), 444–449. https://doi.org/10.1021/acs.estlett.7b00392
  21. Kocera, J. (2014). Desalination - Water to water. John Wiley & Sons.
  22. Kunjali, K. L. (2022). Stockholm Water. https://stockholmwater.com/
  23. Laxman, K., Husain, A., Nasser, A., Al, M., & Dutta, J. (2019). Tailoring the pressure drop and fluid distribution of a capacitive deionization device. Desalination, 449(July 2018), 111–117. https://doi.org/10.1016/j.desal.2018.10.021
  24. Lee, J. K., Kim, Y. E., Kim, J., Chung, S., Ji, D., & Lee, J. (2012). Comparable mono and bipolar connection of capacitive deionization stack in NaCl treatment. Journal of Industrial and Engineering Chemistry, 18(2), 763–766. https://doi.org/10.1016/j.jiec.2011.11.119
  25. Lee, K. P., Arnot, T. C., & Mattia, D. (2011). A review of reverse osmosis membrane materials for desalination — Development to date and future potential. Journal of Membrane Science, 370(1–2), 1–22. https://doi.org/10.1016/j.memsci.2010.12.036
  26. Li, H., Zou, L., Pan, L., & Sun, Z. (2010). Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization. Separation and Purification Technology, 75(1), 8–14. https://doi.org/10.1016/j.seppur.2010.07.003
  27. Mcginnis, R. L., & Elimelech, M. (2007). Energy requirements of ammonia – carbon dioxide forward osmosis desalination. Desalination, 207, 370–382. https://doi.org/10.1016/j.desal.2006.08.012
  28. Mekonnen, M. M., & Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science Advances, 2(February), 1–7. https://doi.org/DOI: 10.1126/sciadv.1500323
  29. Mossad, M., & Zou, L. (2013). Evaluation of the salt removal efficiency of capacitive deionisation: Kinetics, isotherms and thermodynamics. Chemical Engineering Journal, 223, 704–713. https://doi.org/10.1016/j.cej.2013.03.058
  30. Mutha, H. K., Cho, H. J., Hashempour, M., Wardle, B. L., Thompson, C. V., & Wang, E. N. (2018). Salt rejection in flow-between capacitive deionization devices. Desalination, 437(January), 154–163. https://doi.org/10.1016/j.desal.2018.03.008
  31. Nordstrand, J., & Dutta, J. (2019). Dynamic Langmuir Model: A Simpler Approach to Modeling Capacitive Deionization. Journal of Physical Chemistry C, 123(26), 16479–16485. https://doi.org/10.1021/acs.jpcc.9b04198
  32. Nordstrand, J., & Dutta, J. (2020a). Basis and Prospects of Combining Electroadsorption Modeling Approaches for Capacitive Deionization. Physics, 2(2), 309–324. https://doi.org/10.3390/physics2020016
  33. Nordstrand, J., & Dutta, J. (2020b). Predicting and Enhancing the Ion Selectivity in Multi-ion Capacitive Deionization. Langmuir, 36(29), 8476–8484. https://doi.org/10.1021/acs.langmuir.0c00982
  34. Nordstrand, J., & Dutta, J. (2020c). Simplified Prediction of Ion Removal in Capacitive Deionization of Multi-Ion Solutions. Langmuir, 36(5), 1338–1344. https://doi.org/10.1021/acs.langmuir.9b03571
  35. Nordstrand, J., & Dutta, J. (2020d). Design principles for enhanced up-scaling of flow-through capacitive deionization for water desalination. Desalination, 500, 114842. https://doi.org/10.1016/j.desal.2020.114842
  36. Nordstrand, J., & Dutta, J. (2021a). A new automated model brings stability to finite-element simulations of capacitive deionization. Nano Select, October, 1–15. https://doi.org/10.1002/nano.202100270
  37. Nordstrand, J., & Dutta, J. (2021b). Flexible Modeling and Control of Capacitive-deionization Processes through a Linear-state-space Dynamic-Langmuir Model. Npj Clean Water, 4(5), 1–7. https://doi.org/10.1038/s41545-020-00094-y
  38. Nordstrand, J., & Dutta, J. (2021c). Langmuir-Based Modeling Produces Steady Two- Dimensional Simulations of Capacitive Deionization via Relaxed Adsorption-Flow Coupling. Langmuir, 1–28. https://doi.org/https://doi.org/10.1021/acs.langmuir.1c02806
  39. Nordstrand, J., & Joydeep, D. (2020). An Extended Randles Circuit and a Systematic Model-Development Approach for Capacitive Deionization. Journal of the Electrochemical Society. https://doi.org/Communicated 2020
  40. Nordstrand, J., Laxman, K., Myint, M. T. Z., & Dutta, J. (2019). An Easy-to-Use Tool for Modeling the Dynamics of Capacitive Deionization. Journal of Physical Chemistry A, 123(30), 6628–6634. https://doi.org/10.1021/acs.jpca.9b05503
  41. Nordstrand, J., Toledo-Carrillo, E., Vafakhah, S., Guo, L., Yang, H. Y., Kloo, L., & Dutta, J. (2022). Ladder Mechanisms of Ion Transport in Prussian Blue Analogues. ACS Applied Materials and Interfaces, 14(1), 1102–1113. https://doi.org/10.1021/acsami.1c20910
  42. Nordstrand, J., Zuili, L., Alejandro, E., Carrillo, T., & Dutta, J. (2022). Predicting Capacitive Deionization Processes using an Electrolytic-Capacitor ( ELC ) Model. Desalination, 525, 115493. https://doi.org/https://doi.org/10.1016/j.desal.2021.115493
  43. Perez, C. A. R., Demirer, O. N., Clifton, R. L., Naylor, R. M., & Hidrovo, C. H. (2013). Macro Analysis of the Electro-Adsorption Process in Low Concentration NaCl Solutions for Water Desalination Applications. Journal of the Electrochemical Society, 160(3), E13–E21. https://doi.org/10.1149/2.025303jes
  44. Porada, S., Zhao, R., Van Der Wal, A., Presser, V., & Biesheuvel, P. M. (2013). Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science, 58(8), 1388–1442. https://doi.org/10.1016/j.pmatsci.2013.03.005
  45. Qin, M., Ren, W., Jiang, R., Li, Q., Yao, X., Wang, S., You, Y., & Mai, L. (2021). Highly Crystallized Prussian Blue with Enhanced Kinetics for Highly Efficient Sodium Storage. ACS Applied Materials and Interfaces, 13(3), 3999–4007. https://doi.org/10.1021/acsami.0c20067
  46. Qu, Y., Campbell, P. G., Hemmatifar, A., Knipe, J. M., Loeb, C. K., Reidy, J. J., Hubert, M. A., Stadermann, M., & Santiago, J. G. (2018). Charging and Transport Dynamics of a Flow-Through Electrode Capacitive Deionization System. Journal of Physical Chemistry B, 122(1), 240–249. https://doi.org/10.1021/acs.jpcb.7b09168
  47. Ramachandran, A., Hemmatifar, A., Hawks, S. A., Stadermann, M., & Santiago, J. G. (2018). Self similarities in desalination dynamics and performance using capacitive deionization. Water Research, 140, 323–334. https://doi.org/10.1016/j.watres.2018.04.042
  48. Rommerskirchen, A., Linnartz, C. J., Müller, D., Willenberg, L. K., & Wessling, M. (2018). Energy Recovery and Process Design in Continuous Flow − Electrode Capacitive Deionization Processes. Sustainable Chemistry and Engineering, 6, 13007–13015. https://doi.org/10.1021/acssuschemeng.8b02466
  49. Rommerskirchen, A., Ohs, B., Arturo, K., & Femmer, R. (2018). Modeling continuous flow-electrode capacitive deionization processes with ion-exchange membranes. Journal of Membrane Science, 546(October 2017), 188–196. https://doi.org/10.1016/j.memsci.2017.10.026
  50. Sadhwani, J. J., Veza, J. M., & Santana, C. (2005). Case studies on environmental impact of seawater desalination. Desalination, 185(May), 1–8. https://doi.org/10.1016/j.desal.2005.02.072
  51. Santos, C., Lado, J. J., Garcia-Quismondo, E., Soria, J., Palma, J., & Anderson, M. A. (2018). Maximizing Volumetric Removal Capacity in Capacitive Deionization by Adjusting Electrode Thickness and Charging Mode. Journal of the Electrochemical Society, 165(7), 294–302. https://doi.org/10.1149/2.1011807jes
  52. Singh, K., Qian, Z., Biesheuvel, P. M., Zuilhof, H., Porada, S., & de Smet, L. C. P. M. (2020). Nickel hexacyanoferrate electrodes for high mono/divalent ion-selectivity in capacitive deionization. Desalination, 481, 114346. https://doi.org/10.1016/J.DESAL.2020.114346
  53. Strathmann, H. (2010). Electrodialysis , a mature technology with a multitude of new applications. DES, 264(3), 268–288. https://doi.org/10.1016/j.desal.2010.04.069
  54. Suss, M. E., Baumann, T. F., Bourcier, W. L., Spadaccini, C. M., Rose, K. A., Santiago, J. G., & Stadermann, M. (2012). Capacitive desalination with flow-through electrodes. Energy & Environmental Science, 5(11), 9511. https://doi.org/10.1039/c2ee21498a
  55. Suss, M. E., Baumann, T. F., Worsley, M. A., Rose, K. A., Jaramillo, T. F., Stadermann, M., & Santiago, J. G. (2013). Impedance-based study of capacitive porous carbon electrodes with hierarchical and bimodal porosity. Journal of Power Sources, 241, 266–273. https://doi.org/10.1016/j.jpowsour.2013.03.178
  56. Suss, M. E., Biesheuvel, P. M., Baumann, T. F., Stadermann, M., & Santiago, J. G. (2014). In situ spatially and temporally resolved measurements of salt concentration between charging porous electrodes for desalination by capacitive deionization. Environmental Science and Technology, 48(3), 2008–2015. https://doi.org/10.1021/es403682n
  57. Suss, M. E., Porada, S., Sun, X., Biesheuvel, P. M., Yoon, J., & Presser, V. (2015). Water desalination via capacitive deionization: what is it and what can we expect from it? Energy Environ. Sci., 8(8), 2296–2319. https://doi.org/10.1039/C5EE00519A
  58. Tan, C., He, C., Tang, W., Kovalsky, P., Fletcher, J., & Waite, T. D. (2018). Integration of photovoltaic energy supply with membrane capacitive deionization (MCDI) for salt removal from brackish waters. Water Research, 147, 276–286. https://doi.org/10.1016/j.watres.2018.09.056
  59. Tang, W., Liang, J., He, D., Gong, J., Tang, L., Liu, Z., Wang, D., & Zeng, G. (2019). Various cell architectures of capacitive deionization: Recent advances and future trends. Water Research, 150, 225–251. https://doi.org/10.1016/j.watres.2018.11.064
  60. Toledo-Carrillo, E., Zhang, X., Laxman, K., & Dutta, J. (2020). Asymmetric electrode capacitive deionization for energy efficient desalination. Electrochimica Acta, 358(13), 136939. https://doi.org/10.1016/j.electacta.2020.136939
  61. UN. (2020). Ensure availability and sustainable management of water and sanitation for all. https://sdgs.un.org/goals/goal6
  62. Urtiaga, A. M., Iba, R., & Ortiz, I. (2012). State of the art and review on the treatment technologies of water reverse osmosis concentrates. Water Re, 46, 267–283. https://doi.org/10.1016/j.watres.2011.10.046
  63. Vafakhah, S., Guo, L., Sriramulu, D., Huang, S., Saeedikhani, M., & Yang, H. Y. (2019). Efficient Sodium-Ion Intercalation into the Freestanding Prussian Blue/Graphene Aerogel Anode in a Hybrid Capacitive Deionization System. ACS Applied Materials and Interfaces, 11(6), 5989–5998. https://doi.org/10.1021/acsami.8b18746
  64. Wang, C., Song, H., Zhang, Q., Wang, B., & Li, A. (2015). Parameter optimization based on capacitive deionization for highly efficient desalination of domestic wastewater biotreated effluent and the fouled electrode regeneration. Desalination, 365, 407–415. https://doi.org/10.1016/j.desal.2015.03.025
  65. Wang, G., Ling, Y., Qian, F., Yang, X., Liu, X. X., & Li, Y. (2011). Enhanced capacitance in partially exfoliated multi-walled carbon nanotubes. Journal of Power Sources, 196(11), 5209–5214. https://doi.org/10.1016/j.jpowsour.2011.02.019
  66. WWAP (United Nations World Water Assessment Programme)/UN-Water. (2018). The United Nations World Water Development Report 2018: Nature-Based Solutions for Water.
  67. Xiaobing, W., Jinqiu, L., Yang, L., Sen, L., Dong, L., Tingting, M., An, J., Yanshe, H., & Fengwei, G. (2021). Numerical Analysis of Capacitive Deionization Process Using Activated Carbon Electrodes. Water, Air, and Soil Pollution, 232(9), 1–10. https://doi.org/10.1007/s11270-021-05320-y
  68. Xing, W., Liang, J., Tang, W., Zeng, G., Wang, X., Li, X., Jiang, L., Luo, Y., Li, X., Tang, N., & Huang, M. (2019). Perchlorate removal from brackish water by capacitive deionization: Experimental and theoretical investigations. Chemical Engineering Journal, 361(October 2018), 209–218. https://doi.org/10.1016/j.cej.2018.12.074
  69. Xu, X., Li, J., Li, Y., Ni, B., Liu, X., & Pan, L. (2018). Selection of Carbon Electrode Materials. In Elsevier (Ed.), Interface Science and Technology (1st ed., Vol. 24, pp. 65–83). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-811370-7.00004-8
  70. Yu, T., Shiu, H., Lee, M., Chiueh, P., & Hou, C. (2016). Life cycle assessment of environmental impacts and energy demand for capacitive deionization technology. Desalination, 399, 53–60. https://doi.org/10.1016/j.desal.2016.08.007
  71. Zhang, C., Wang, X., Wang, H., Wu, X., & Shen, J. (2019). A positive-negative alternate adsorption effect for capacitive deionization in nano-porous carbon aerogel electrodes to enhance desalination capacity. Desalination, 458, 45–53. https://doi.org/10.1016/j.desal.2019.01.023
  72. Zhao, X., Wei, H., Zhao, H., Wang, Y., & Tang, N. (2020). Electrode materials for capacitive deionization: A review. Journal of Electroanalytical Chemistry, 873, 114416. https://doi.org/https://doi.org/10.1016/j.jelechem.2020.114416