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Abstract
Due to the apparent effects of climate change on the Earth’s ecosystems, it is more important than ever to monitor flora and fauna inaffected regions, e.g. mountain areas above the tree line. In the alpine ecosystem, and not just there, Vegetation plays a fundamentalrole and is the subject of this study. The work aims to develop algorithms for recognising small stature alpine plants from close rangetop view images. Ideally, automated assessment algorithms of the plant cover should objectively help scientists observe and interpretthe state of the plant ecosystem over a long time series. Therefore, the aim in this respect was to derive visualisations that accuratelydescribe plant growth and displacement (translocation). Additionally, recording changes in biodiversity was an intent. This work usesmulti-temporal data comprising RGB images and multi-label masks to accomplish the aforementioned task. The evaluated methodsinvolve mask comparison, optical flow estimation, detection of individual plants, and descriptive statistical analysis of image featureproperties. Tests on the given data set show that all methods but the optical flow estimation have great potential. The mask comparisonmethod captured plant growth and translocation most satisfactory. Individual plant detection and statistical analysis further helped toevaluate changes in biodiversity. When combined, the proposed methods give an immediate overview about relevant changes in themulti-temporal transects, which has not been done before for close-distance images of alpine plants.
Keywords: Visual Change Monitoring; Alpine Plants; Optical Flow; Structural Plant Analysis; Change Localization and Visualization

1. Introduction

Concerning the already impending climate catastrophe,as reported by the Intergovernmental Panel on ClimateChange (IPCC, cp. Masson-Delmotte et al. 2021; Shukla

et al. 2019), the integrity of natural habitats such as forests,seas, meadows, mountains, and so on is increasingly af-fected. For assumed effects in the alpine belt see Körnerand Hiltbrunner (2021). Balanced ecosystems are the foun-dation of life on our planet and are, among other factors,
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based on the biodiversity within habitats (Sandifer et al.,2015).The hypothesised process of shrinking certain habi-tat types of the alpine flora concerns local populations andmay alter complex interrelationships with their habitats.The conservation of this biodiversity requires seamlessmonitoring of the individual species across habitats. Suchmonitoring can be done by detecting visual changes asdescribed by Rensink (2002) using three partial tasks: (I)the detection that something has changed, (II) the iden-tification of what has changed, and (III) the localization,where the change happened. Based on these definitions,the present work introduces visual methods for changedetection within multi-temporal, geo-referenced imagesshowing plants of alpine habitats. This represents a novelapproach for this area of application.
2. Related Work
Remote sensing images taken from satellites nowadaysprovide means for visual change detection. Consequently,this field witnessed significant research, e.g. in the de-tection of changes after disaster events such as flooding(Schlaffer et al., 2015; Dellepiane and Angiati, 2012; To-mowski et al., 2010). Likewise, the evaluation of landcover changes (Partsinevelos et al., 2015), but also gen-eral saliency detection (Feng et al., 2018; Du et al., 2013),has been of interest. The present application differs signif-icantly from the previous research mainly regarding theimage modalities used – close range RGB images capturedby consumer cameras instead of hyperspectral satelliterecordings. Also, the size of the area of interest (the scaleof the scene) is different; e.g. a tree crown (10 m diam-eter) corresponds roughly to a rosette of a small statureherbaceous plant (1 – 5 cm). Nevertheless, the mentionedpublications partially use methods comparable with thiswork to visualise changes using colour overlays and differ-ence masks.Yu et al. (2013) presents a methodology for change de-tection of growth stages of maise. Like in the present work,the authors visualise temporal differences of plants in geo-referenced sections and also use skeleton-based graphrepresentations to identify and cluster leaves to form, e.g.a plant rosette.In evaluating geometric changes in segmented spatio-temporal frames, different strategies from the field of ob-ject tracking are attractive. A very general way is the ap-plication of optical flow to the intensity or colour profilesof image pairs, as presented, e.g. by Farnebäck (2003).Furthermore, SIFT-based object detection allows trackingregions by their edges using multi-resolution scale-spaces(see Zhou et al., 2009).With pre-fragmented regions available from instancesegmentation, conventional shape-interpolation strate-gies such as the Poisson shape interpolation elucidated byXu et al. (2005) are applicable if regions overlap partially.Shape interpolation can also be established based on AI-powered interpolation of intermediate frames as doablewith DAIN (cp. Bao et al., 2019). Familiar shape interpo-

lation strategies tend to fail whenever the neighbouringsegmentation masks are fragile, and the spatio-temporaldistances get large. In this case, which is highly relevantin the medical domain (cf. brain MRI in axial view withthin gyrus and sulcus courses), the correct identificationof congruent regions is not trivial. However, the methoddeveloped by Rajagopalan et al. (2003) might solve it.Finally, Varghese et al. (2018) presented a methodol-ogy based on convolutional neural networks for changedetection. The advocated model can detect changes ofadded/removed objects in scenarios with partially devi-ating camera positions. In contrast, the present work fo-cuses on visual changes of individuals in multi-temporaland statically geo-referenced views, focusing not on theappearance/absence of objects but their transformations.
3. Material
The methodology introduced in this work is based onmulti-temporal images of 14 geo-referenced image mo-saics (image tiles arranged along a transect) obtained fromthe National Park Hohe Tauern (Austria, for details seeKörner et al. 2022). A single image tile depicts an orthogo-nal (nadir) view to the ground of a 50×50 cm (3000×3000px) section of the floor surface. Images are taken standard-ised along a sampling raster 1 m wide and 8 m long. Intotal a transect is made up of 32 images tiles; 1 m2 equalsfour 50 cm image tiles (cp. Eberl and Kaiser, 2019). Inthe image acquisition task, the transect is split using geo-referenced markers. Every single image is taken using ashading curtain in combination with two diffused flashes;colour charts and grey cards guarantee the colourfastnessof the images. Altogether this technique ensures uniformillumination of the motif that can then be analysed in amulti-temporal manner without external influences, likethe prevailing weather condition at the shooting. The anal-ysed data set consists of a random sample of image cut-outs of the 14 transects showing an area of 10 × 10 cm(600 × 600 px) in 2017 and 2021.For the comparison of the transformation of the plants,multi-class labels have been created for the following set of11 plant species: Euphrasia minima, Gnaphalium supinum*,
Leucanthemopsis alpina*, Potentilla aurea* Primula gluti-
nosa*, Primula minima*, Salix herbacea*, Scorzoneroides
helvetica, Soldanella pusilla*, Vaccinium gaultheroides, and
Polytrichum sexangulare. Many of the mentioned speciesshow clonal growth (marked with an asterisk) throughrhizomes (cp. Klimeš et al., 1997). For this reason, the po-sition of renewal buds can change from year to year dueto directional growth of the rhizome. One species has anannual life cycle, one is a prostrate shrub, and one speciesof moss is included.
4. Methodology
This work aims to assist in the automated image-basedchange detection regarding the growth, translocation, andbiodiversity of selected alpine plants over long periods.
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(a) (b)

(c) (d)

Figure 1. A sample geo-referenced image cut-out (10 × 10 cm) is shown in(a) for 2017 and in (c) for 2021. Next to the source images, the associatedmulti-label masks are shown in (b) again for 2017 and (d) for 2021. Themasks depict two sample plant species with green for Gnaphalium supinumand red for Soldanella pusilla.

The reference images and the multi-label masks men-tioned in the previous section form the data basis for thispaper. An additional file encodes the labels and the specificcolours attributed to a segmented species.
In order to solve the presented problem, we considerseveral methods: (I) raw mask comparison, (II) opticalflow, (III) detection of individual plants, and (IV) descrip-tive statistics. An overview of all applied image-basedmethods is offered in Figure 2 and 3. After elaboratingon basic requirements and preprocessing, the four meth-ods above get described in further detail in subsequentsections.

4.1. Basic Requirements

Temporal data is needed to visualise changes in plantgrowth and position. This work conducts a pairwise com-parison of time-separated images and their correspondingmulti-label masks. Therefore, every proposed method re-quires five different kinds of input data, namely:
1. Base image imgbase: showing the initial image cut-out2. Reference image imgref : showing the same image detailas the base image, but with a temporal offset3. Multi-label mask of base image4. Multi-label mask of reference image5. Label file

Based on these files, the following reprocessing oper-ations are evaluated. All changes made to create suitablevisualisations are directly applied to the base image.
4.2. Preprocessing

In order to create easy to follow visualisations, the multi-label masks are split up by plant species at the start ofan algorithm. The splitting is done by extracting the pix-els with the relevant colours stated in the label file andcreating new temporary binary masks for each species.Additionally, the background of the base image, whichdoes not contain relevant plant species, is darkened andconverted to grayscale to highlight plants of interest. Thisstep ensures that visual clutter in result images is kept ata minimum.
4.3. Raw mask comparison

One first attempt to compare plant growth and transloca-tion is to compare the masks for each plant species directly.This can be done using (I) contour overlay or (II) differ-ence overlay. The proposed approaches will be discussedin further detail below.
4.3.1. Contour overlayThis variant that can be seen in Figure 2a is based on edgedetection and image overlay. First, a Canny edge detectionalgorithm (c.f. Canny, 1986) is applied to the split maskso that only the edges of an object remain. After that, theresulting edge mask is morphologically dilated to thickenthe lines outward for increased visibility in the final image.This altered mask can then be used to set the correspond-ing pixels in the source image to a specific colour.The advantages of this method are that the contoursdo not obstruct the view of the masked areas while stillproviding information about which plants are affected andwhere they are located in the given images and time pe-riod. Since the changes are applied to the base image, itis immediately evident how a specific region has changedover time.
4.3.2. Difference overlaySimilar to the contour overlay, overlaying the entiremasked regions is possible. Instead of applying an edge de-tector, the difference between the two masks is calculated.Like the contour overlay variant, the mask is then used tocolour the corresponding regions in the reference imagewith the desired colour. These regions can be shaded in (I)static colours or (II) in a distance-based manner.While static colours give a basic idea about which ar-eas have changed between the two images, they do notgive information about how much growth or movementhas happened. This problem can be solved by calculatingdistance-maps of both masks, so that the intensities ofeach pixel match the distance to the nearest masked pixelin the other mask. By combining these newly generatedmasks with chosen colours, the distances directly corre-



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. A visual presentation of all implemented methods based on the example image cut-out depicted in Figure 1. Figures (a) to (e) are based on rawmask comparison. Starting from the upper left, the visualisations display the contour overlay (a), the difference overlay using static colours (b), blendedstatic colours (c), distance-based intensities (d), and blended distance-based intensities (e). Figures (f) to (h) show optical flow estimation of the givenimages in the order of sparse optical flow (f), dense optical flow in HSV representation (g), and dense optical flow using quiver plots (h).

(a) (b)

Figure 3. The separation of individual plants computed for the transectsvisible in Figure 1 using watershed segmentation (a) and graph-baseddifferentiation (b).

late with the pixel’s brightness, resulting in bright colourswhere significant growth or translocation has occurred,c.f. Figure 2b-2e.
Alternatively, the resulting overlay can be blended topreserve detail in plant texture while also applying thevisualisation technique. This task is achieved by morphingthe images using linear blending, as presented by Szeliski(2021) and shown in Equation 1,

I = α ∗ p1i,j + β ∗ p2i,j + γ, (1)

where pi,j represents a given pixel value at position (i,j),
α and β describe the weights for the pixel’s colour values,and γ is the gamma correction.
4.4. Optical flow

Instead of using the supplied masks directly, the opticalflow of the images can be calculated. As proposed by Fleetand Weiss (2006), optical flow is applied to display pat-terns of motion, an estimation of the direction and speedof movement also called the 2d motion field. Its estima-tion generally works by using time-varying image datato approximate said field. This property is relevant to thepresented problem since it might give a more detailed an-swer to where, how much and in which direction growthor translocation has occurred and acts as an alternative tothe distance-map based overlay approach. Both dense andsparse optical flow was considered; details are as follows.
4.4.1. Sparse optical flowSparse optical flow is based on detecting features in im-ages and calculating motion for all pixels in a small regionaround the features simultaneously (Spruyt et al., 2013).This visualisation technique is depicted in Figure 2f. Here,Shi-Tomasi corner detection (Shi and Tomasi, 1994) isexecuted to acquire image features which are then used bythe Pyramid Lucas & Kanade algorithm (Lucas and Kanade,1981) to calculate sparse optical flow (see Bouguet, 2000).
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4.4.2. Dense optical flowIn contrast to sparse optical flow, dense optical flow cal-culates the displacement vector for every pixel in the im-age and does not require feature detection or tracking. Tocompute dense optical flow, the polynomial expansion al-gorithm, proposed by Farnebäck (2003), is used.However, instead of using the default representation ofmapping colour to direction, the motion field is displayedas a quiver plot, in which a grid of directional arrows showsmotion. Each arrow indicates the predicted movement di-rection at the arrow’s position in the image. In addition,the arrows are colour-coded, similar to the standard ver-sion, to distinguish the different directions better. A com-parison between the two methods is shown in Figure 2gand 2h.
4.5. Detection of individual plants

The given multi-label masks prove great when differenti-ating between plant types. However, when multiple plantsof the same type grow too close together, it is impossible todeduce the amount and location of individual plants fromthe mask alone since plants of the same species share thesame colour coding.Knowing how many individuals of a species exist andbeing able to monitor the change over the years wouldallow for a more sophisticated evaluation in this regard.Additional techniques are required to remedy this situa-tion. The problem can be solved by applying (I) watershedsegmentation or (II) graph-based clustering. The differ-ent implementations will be described in more detail inthe following two sections.
4.5.1. Watershed segmentationAs explained by Preim and Botha (2013), watershed seg-mentation interprets the entire image as a topographiclandscape comprised of valleys and mountains. The basicidea is that the intensity values of a grayscale image rep-resent elevations like a digital terrain model. Water willaccumulate in this ‘landscape’ at the local minima of thevirtual topography, the so-called catchment basins. Whentaking the path of the steepest descent, every point onthe topography that ends in a local minimum is assignedto a catchment basin. After completing this process forthe entire image, every pixel gets assigned to a specificcatchment basin. The ridges they are surrounded by thenrepresent the segmentation boundaries. Since the basealgorithm is highly susceptible to over-segmentation, re-sults usually need to be followed up by basin merging.Instead of relying solely on plain elevation data, amarker-based watershed estimation is an alternative. Inthis method, the user can actively supply markers fromwhich the flooding originates, rather than starting theflooding at the local minima. Usually, markers for the tar-get structure (foreground, include markers) and ones forthe background (exclude markers) are defined.The marker-based watershed algorithm aids to seg-

ment the individual plants in this work. The suppliedmarkers are determined by creating a distance map of theexisting segmentation masks and extracting local max-ima. A maximum filter is applied beforehand to combinespatially close local maxima to avoid problems due to noise.The process and its results can be seen in Figure 4.

(a) (b)

Figure 4. Usage of marker-based watershed segmentation for plant sep-aration. A distance-map (a) is being used to calculate the input markers(red), which are then used to compute the segmented image (b).

4.5.2. Graph-based differentiation
In addition to separating individual plants, detecting plantbud and stem locations proved to be of interest. Since mostplant species in question converge and grow from a singlevegetative point and form a star pattern when skeletonized(rosette plants), graph-based analysis is introduced to un-ravel the problem of finding a plant’s center point.

In order to disentangle the graph problem, the masksare first converted to graph networks. In this way, the in-dividual masks created during preprocessing are thinnedto a skeleton, as described by Zhang and Suen (1984) andsubsequently converted to a graph. This conversion is per-formed by implementing a line tracer which searches forgraph leaves in the thinned images and then recursivelyfollows the line and visits all branches until every con-nected pixel is visited. The coordinates of all graph leavesand bifurcations are saved during the process, and a dis-tance matrix representing the graph is created for eachconnected region.
After calculating the graph, clustering can be applied tosplit up plants that are spatially too close to each other andestimate bud and stem positions. For this purpose, severalmethods were investigated: (I) density-based clustering,(II) bifurcation-oriented weight thresholding, and (III)a novel leaf-oriented hierarchical clustering algorithm.The explanation of each method follows in the subsequentparagraphs.

General rules for location estimation. Finding bud or stemlocations does not always require clustering. If the initialgraph is small enough, no further processing is necessary.This condition is only fulfilled if the graph has one or no



branches. Hence, if the graph consists solely of leaves,their coordinates are averaged to estimate the plant’s cen-tre (vegetative bud or flowering stem origin). If the graphhas precisely one bifurcation, its coordinates are consid-ered the bud or stem location. Graphs with two or morebifurcations are handled by the means described below.
Density based clustering. Clustering using Density-BasedSpatial Clustering of Applications with Noise (DBSCAN)allows clustering of nodes based on their distance to eachother and their spatial density. DBSCAN is an algorithmproposed by Ester et al. (1996) allowing the computa-tion of clusters without defining a cluster number before-hand. The latter is especially important since the finalplant count (and therefore the number of clusters) is un-known at the beginning. This prerequisite is also the rea-son why other methods, like k-Means clustering (Mac-Queen, 1967), are unfeasible, as they require the user tosupply a cluster number.
Bifurcation-based weight thresholding. With an alternativeapproach, the problem can be solved without the need forclustering. In doing so the weight of each bifurcation nodeis calculated by adding up the distances from the nodeitself to all adjacent nodes in the graph and only keepingthe nodes that meet a certain weight threshold. Based onthe assumption that bud and stem locations are usuallylocated in the centre of individual plants, they are expectedto show a maximum number of links to other points in thegraph. The threshold needed by this method is defined as40% of the maximum node weight; thus, all bifurcationnodes with a weight above this threshold are consideredas bud locations.
Leaf-oriented hierarchical clustering. This algorithm usesa greedy hierarchical clustering approach to solve the pro-posed problem. To optimize results, clustering constraintshave been set so that clustering will always start at theleaves of the graph. Additionally, the growth of clustersis regulated so that after passing a certain cluster weightthreshold, it becomes harder to merge a cluster with oth-ers. Here, the sum of edge lengths (distances betweennodes in the sub-graphs) is used as cluster weight. Theformula applied to obtain a threshold value is deduced em-pirically. It is set to twice the average edge length usingthe formula Tw = ∑ di,j/N ∗ 2, where di,j is the edge lengthbetween nodes i and j, and N is the total amount of nodesin the cluster.When starting to merge clusters, of which at least oneexceeds the weight threshold, the single-linkage distancebetween the clusters is considered. The distance needs tobe below a given threshold to merge clusters successfully.The threshold is set to ten times the ratio between thegiven clusters during empirical analysis. The formula tocalculate a threshold value is Td = 10 ∗ weight(C1)/weight(C2),where C1 is the bigger cluster, and C2 is the smaller one.Therefore, merging clusters becomes easier the more

prominent the disparity between their size is. This setof rules is applied to receive clusters of similar size andprevent excessive merging.
In order to calculate a cluster-based region fragmen-tation, each node gets assigned to its own cluster at thebeginning. The first step of the algorithm is to clusterthe leaves by iterating through the distance matrix andsearching for the adjacent bifurcation nodes of the leavesto merge their clusters.
Following this initial clustering, the algorithm seen inFigure 5 attempts to merge clusters until a terminationcriterion is reached continuously. The algorithm meetsthe termination criteria if only one cluster remains or if nofurther merging of clusters is possible. The latter happensonly if the remaining clusters have exceeded the weightthreshold and are too far away from each other. The orderin which the algorithm starts to merge clusters is deter-mined by the distance so that closer clusters get evaluatedand merged first.
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Figure 5. The leaf-oriented hierarchical clustering algorithm implementedfor plant separation. The algorithm’s core revolves around continuouslysorting and merging clusters until no more changes are possible.

4.6. Statistical data

Another method for evaluating images of the given kindis to create descriptive statistics by calculating texture fea-tures and other numerical characteristics. In particular,computed feature properties included the following: (I)circularity, (II) vegetation density, (III) colour varianceand (IV) co-occurrence features. Their meaning and cal-culation is detailed below.
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(a) (b)

Figure 6. The procedure of graph construction followed by leaf-orientedhierarchical clustering. The skeleton of the binary mask is being traced toobtain all leaf- and bifurcation nodes (a). These nodes are then clusteredusing the algorithm in Figure 5 to obtain the bud points (c).

4.6.1. Vegetation density
Vegetation density (d) is the ratio of how many pixels inthe target mask M are part of vegetation compared to howmany pixels the mask has in total. This process is doneseparately for each plant species and is calculated by count-ing all foreground pixels in the target mask and dividingthis amount by the total pixel count as in Equation 2.

d = A(M > 0)
A(M) (2)

4.6.2. Circularity
Circularity (c) is the ratio of a region’s area A(R) to itsperimeter P(R) and is calculated according to Equation 3.

c = 4π A(R)
P2(R) (3)

The area A(R) is calculated by counting the connectedpixels of the given region R in a specific mask. To computethe perimeter, a modified line tracer, similar to what ispresented in section 4.5.2, is implemented. As discussedin the named section, the mask is split further so thateach connected region of each plant species is evaluatedindividually. However, in this case, the outer edges of theregion R are traced instead and the individual euclideandistances between pixels are summed up.
4.6.3. Colour variance
Colour variance (C), or colourfulness, is a metric todescribe how colourful an image is (c.f. Hasler andSuesstrunk, 2003). As explained below, it is calculatedby determining the mean values and standard deviationsof specific colour channels. The first step consists of cal-culating the opponent colour space representation usingthe values of the initial red (R), green (G) and blue (B)channels. Based on these values, the red-green (rg) andyellow-blue (yb) channel are calculated using Equation 4and 5, respectively.

Feature Definition Description
Entropy – ∑m

i=1
∑n

j=1 pi,j ln pi,j Information content
Energy ∑m

i=1
∑n

j=1 p2
i,j Intensity

Variance ∑m
i=1

∑n
j=1(i – j)2pi,j Intensity level

Homogeneity ∑m
i=1

∑n
j=1

pi,j1+|i–j| Homogeneity
Table 1. The definitions and descriptions for common co-occurrence fea-tures, where pi,j represents the intensity value of a given pixel at the posi-tion (i,j) in an image of size n × m.

rg = R – G (4)
yb = 12 (R + G) – B (5)

Subsequently, using this colour representation, the col-lective mean value and standard deviation for both chan-nels is computed using the formulas given in Equation 6and 7.
µrgyb = √

µ2
rg + µ2

yb (6)
σrgyb = √

σ2
rg + σ2

yb (7)
Finally, using µ and σ values, the colour variance (C)can be calculated with Equation 8.

C = σrgyb + 0.3 ∗ µrgyb (8)
4.6.4. Co-occurrence featuresAdditional texture features can be calculated using a grey-level co-occurrence matrix (GLCM). This matrix can becalculated by converting a given image to grayscale, nar-rowing the intensity range through normalization andcounting how often a pair of co-occurring intensitiesexist within a given distance, as specified by Haralick(1990). In this case, a GLCM with a size of 64 × 64 isused, which is computed using foreground pixels only.The co-occurrence features, which are used in this work,are denoted in Table 1.

5. Results

In this section, the proposed methods are evaluated interms of suitability, robustness and usability.
5.1. Results of the contour overlay approach

The implemented contour overlay shows excellent resultsin all plant types in the tested data set (Figure 2a). However,it also yields the smallest information gain compared tothe other methods.



5.2. Results of the difference overlay approach

Like the contour overlay, the difference overlay does notface any strict requirements and can therefore be appliedto all images in the test data set. Interestingly, comparedto the contour overlay, difference overlay imposes an im-provement giving a better idea of the scale of how muchchange has happened, see Figure 2b-2e.
5.3. Results of the optical flow approach

Optical flow, while attractive in theory, does not adapt wellto the presented task in most cases because the changebetween images is often too big. The apparent transfor-mation is most likely due to plants being replaced by newones or new emerging shoots from the same clonal indi-vidual nearby when the base image (imgbase, as explainedin subsection 4.1) is taken. This is a burden since the pro-posed algorithms are based on the assumption that theintensity-structure of images stays constant between thecompared images. The required condition is usually onlyfulfilled for short periods (cp. Beauchemin and Barron,1995). Since the plants themselves might be different,the intensity values may change accordingly, which leadsto bad results when computing the motion field, as canbe seen in Figure 2f and 2h. If it were successful, the vi-sualisations would show movements from regions of thereference image (red) to regions of the base image (white).
5.4. Results of the watershed segmentation approach

Acceptable results could be achieved by applying marker-based watershed segmentation to the given masks. It be-came apparent that how well this method works dependson the initial mask. Judging by the evaluated transects,segmentation worked great for plants with short, wideleaves and circular masks and failed for plants with longand narrow leaves. This behaviour restricts the method tospecific plant architecture. Examples for the application ofthis method are shown in Figure 3a. Its results are shownin Table 2 and are further compared with the graph-basedapproaches in Table 3.
Merge ratioSplit ratioPlant species

1.361.58Gnaphalium supinum 1.411.14Salix herbacea 2.002.09Scorzoneroides helvetica 2.201.00Soldanella pusilla 1.003.22Leucanthemopsis alpina
Table 2. Evaluation of error in watershed segmentation by manually com-paring annotated plants with segmented plants. A split ratio of 5 indicatesthat watershed segmentation falsely splits a single plant into five on av-erage. The merge ratio does the opposite, where a value of 5 means that 5plants are merged and incorrectly treated as one on average.

(a) (b)

Figure 7. A example image cut-out containing plants of species Gnaphalium
supinum (a) and Soldanella pusilla (b) evaluated using the three proposedmethods. Each method is displayed in a different colour over a manuallysegmented mask. DBSCAN (yellow), bifurcation-oriented weight thresh-olding (pink), and leaf-oriented hierarchical clustering (blue).

5.5. Results of the graph-based differentiation ap-
proach

Three different graph-based methods were applied to sep-arate individual plants. A comparison of the applied meth-ods can be seen in Figure 7.
While the separation is not perfect, compared to the ini-tial mask it offers a better picture of how many individualsactually exist in the image and where their center is.

IVIIIIIIGTPlant species
20/2023/2523/2623/2526Gnaphalium supinum 13/138/811/117/725Soldanella pusilla

Table 3. Comparing ground truth plant count (GT) to the ones calculatedby the algorithms (I: DBSCAN, II: Bifurcation-oriented weight threshold-ing, III: leaf-based hierarchical clustering, IV: watershed segmentation).For each method, the true-positive and total amount of predictions (true-positive + false-positive) is denoted.
Judging by the results in Table 3, watershed segmenta-tion and bifurcation-oriented weight thresholding provedto be the most robust, detecting a total of 33 and 34 plants(sum of true-positives over both species), respectively,compared to 51 found in manual annotations. Contrary tothe other algorithms, the two best performing algorithmsare better at separating larger regions made up of severalsmaller plants while excelling for regions with few plants.

5.6. Results of the statistical data approach

Most of the statistics in question are evaluated for individ-ual plants, by cropping the region of interest, and calcu-lating them for this particular region only. Only selectedmeasures, like vegetation density and leaf count, are calcu-lated for the entire image. In order to compare the results,all features are calculated for all plant species present in aset of 100 images, as illustrated in Figure 8. These valuesare additionally normalized per feature and over all plantswith featurenorm = feature–min(feature)/max(feature)–min(feature).
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Figure 8. The proposed texture features circularity, entropy, variance, energy, homogeneity, colour variance, vegetation density, average region size andregion count calculated and normalized over a set of each 50 images in the years 2017 and 2021 for the plant species within the evaluated transect displayedas box-plots.

6. Conclusion and Outlook

This work aimed to present methods that assist in auto-matic change detection in multi-temporal images of alpinevegetation and its constituent plant species. The main fo-cus was visualising the change in individual plant growthand translocation. In order to achieve this goal, severalmethods were tested and compared to available manu-ally annotated data of select alpine plants. The colouredoverlays offered a good impression of the plant size andlocation change in testing. By comparing each plant in-dividual separately, assumptions on plant performancecan be drawn more effectively. The latter statement getsenriched by adopting statistical data, like vegetation den-sity or plant count. The presented plant separation tech-niques are helpful in order to obtain accurate figures ofplant count (population density), which is a fundamentalproperty in population biology. In addition, the proposedmethods may be applied in tandem in order to achieve thebest results.In the future, the presented methods could be beneficialin post-processing images for which there are automati-cally generated plant segmentation masks, e.g. as a resultof machine learning algorithms such as neural networks.Instead of manually labelling and separating the plants,the user could predict the labels using the given plant sep-aration algorithms. Fortunately, the results of the manuallabels mimic the results of the watershed segmentation.As a refinement, advanced image registration methodsshould be applied to align the images more accurately, asslight deviations are still possible. This alignment couldbe performed by finding time-invariant landmarks likestones embedded in the ground and using them to super-impose the images.Finally, the proposed methods need to be evaluated byexperts in the field in order to obtain qualitative feedback

on whether the implemented methods bring an easementto the daily work routine.
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