Strategic Engineering for Enhancing Efficiency and Effectiveness of Water Management Systems 

  • Agostino G. Bruzzone 
  • Antonio Giovannetti,  
  • Hazal Hatip 
  • a,b,c ,Simulation Team, via Magliotto 2, 17100 Savona, Italy 
  • SIM4Future, via Trento 34, Genova, 16145, Italy 
Cite as
Bruzzone A.G., Giovannetti A. (2022).,Strategic engineering for enhancing efficiency and effectiveness of water management systems. Proceedings of the 10th International Workshop on Simulation for Energy, Sustainable Development & Environment (SESDE 2022). , 009 . DOI: https://doi.org/10.46354/i3m.2022.sesde.009

Abstract

The paper proposes the creation of an innovative strategic water management system based on Strategic Engineering approach through the combined use of Artificial Intelligence, Modeling and Simulation, Data Analytics in closed loop with data from the field in order to be able to reduce water waste on the entire water distribution network. In fact, despite the progress made in the field of sensors and data analysis, as well as the greater awareness from the users on the importance of reducing resources and water waste, losses on the water distribution network are still very high in many countries. Therefore, to turn be crucial to identify a new holistic approach based on trans-disciplinary technologies in order to identify most promising strategies for water management. 

References

  1. Alegre H., Hirner W., Baptista J.M. and Parena R. (2000) Performance Indicators for Water Supply Services. IWA Manual of Best Practice. ISBN 900222272 
  2. Alegre H., Hirner W., Baptista J.M. and Parena R. (2000) Performance Indicators for Water Supply Services. IWA Manual of Best Practice. ISBN 900222272 
  3. Bruzzone A.G., Sinelshchikov K., Tarone F. & Grosso F. (2021a). Risk Analysis by Monte Carlo Simulation over Large Offshore Projects. Proc. SESDE, pp. 70-74 
  4. Bruzzone A.G., Leto A., Massei M., Pernas-Álvarez J., di Bella P. & Turi M. (2021b). Serious Game for Project Management applied to Large Constructions Plants in Africa. Proceedings of the 9th SESDE 2021, pp. 75- 79. 
  5. Bruzzone, A.G., Sinelshchikov, K., Massei, M., Fabbrini, G. & Gotelli, M. (2020) Extended reality technologies for industrial innovation In Proceedings of 32nd European Modeling and Simulation Symposium, EMSS 2020, pp. 435-443. 
  6. Bruzzone, A. G., Cianci, R., Sciomachen, A., Sinelshchikov, K., & Agresta, M. (2019a). A digital twin approach to develop a new autonomous system able to operate in high temperature environments within industrial plants. Proc. SCSC, Berlin, Germany, July, pp. 22-24 
  7. Bruzzone A. G., Massei, M., Sinelshchikov, K., Fabbrini, G., Gotelli, M. & Molinari., A (2019b). Machine learning to support industrial digitalization and business transformation. Proc. EMSS, pp. 390-393. 
  8. Bruzzone, A.G., Massei, M., Sinelshchikov, K. & Di Matteo, R. (2018). Population behavior, social networks, transportations, infrastructures, industrial and urban simulation. EMSS, c, 401–404. 
  9. Bruzzone, A. G., Massei, M., & Poggi, S. (2016). Infrastructures protection based on heterogeneous networks. International Journal of Simulation and Process Modelling, 11(1), 24-35. 
  10. Bruzzone, A G, Massei, M., Tremori, A., Longo, F., Nicoletti, L., et al. (2014). MS2G: simulation as a service for data mining and crowd sourcing in vulnerability reduction. Proceedings of WAMS 
  11. Bruzzone, A. G., Massei, M., Poggi, S., Dallorto, M., Franzinetti, G., & Barbarino, A. (2013a). Quantitative simulation of comprehensive sustainability models as game based experience for education in Decision Making. Proc. of I3M, Athens 
  12. Bruzzone, A. G., Merani, D., Massei, M., Tremori, A., Bartolucci, C., & Ferrando, A. (2013b). Modeling cyber warfare in heterogeneous networks for protection of infrastructures and operations. Proc. of I3M. 
  13. Bruzzone, A. G. & Bocca, E. (2012). Innovative solutions based on simulation combined with optimization techniques for maintenance service management within complex systems. International Journal of Modeling, Simulation, and Scientific Computing, 3(02)
  14. Bruzzone, A.G., Gambardella, L.M., Giribone, P. and, & Merkuryev, Y. A. (2000). Proceedings of the International Workshop on Harbour, Maritime & Multimodal Logistics Modelling and Simulation. In SCS Europe 
  15. Caputo, A.C. and Pelagagge, P.M. 2003. Using neural networks to monitor piping systems. Process Safety Progress. 22(2): 119-127. 
  16. Costello S.B., D.N. Chapman, C.D.F. Rogers, N. Metje, Underground asset location and condition assessment technologies, Tunnelling and Underground Space Technology 22 (2007) 524–542. 
  17. CUES, Sonar Profiler System for Submerged and Semi Submerged Pipes, 2008, . 
  18. Doorn, N. (2021). Artificial intelligence in the water domain: Opportunities for responsible use. Science of the Total Environment, 755, 142561. 
  19. Ejah Umraei Salam, A., Tola, M., Selintung, M. & Maricar, F., 2014. on-line monitoring system of water leakage detection in pipe networks with artificial intelligence. ARPN Journal of Engineering and Applied Sciences. 
  20. Farley, M., Trow, S., Losses in Water Distribution, IWA Publishing, 2003 
  21. Hazelden G., G. Ragula, M. Roubal, The use of broadband electromagnetic technology for integrity inspection of a 760 mm (30 in.) cast iron and steel line, in: Proceedings of the 22nd World Gas Conference, Tokyo, Japan, 2003. 
  22. ISTAT (2020), Censimento delle acque per uso civile, Technical Report, Rome 
  23. Lambert A. and Hirner W. (2000): Losses from Water Supply Systems: Standard Terminology and Recommended Performance Measures. IW A Website, www.iwahq.org.uk/bluepages 
  24. Leto A. (2019) "From Sustainability to Responce Sustainability up to Resilience", P.Loffredo Editions, Naples 
  25. Marlow D., S. Heart, S. Burn, A. Urquhart, S. Gould, M. Anderson, S. Cook, M. Ambrose, B. Madin, A. Fitzgerald, Condition Assessment Strategies and Protocols for Water and Wastewater Utility Assets, Tech. Rep., Water Environment Research Foundation, 2007. 
  26. Mays, L. W., Koutsoyiannis, D., & Angelakis, A. N.  (2007). A brief history of urban water supply in  antiquity. Water Science and Technology: Water  Supply, 7(1), 1-12. 
  27. Metropolitan Consulting Group (2006). VEWA survey – Comparison of European water and wastewater  prices. 
  28. Ortloff, C. R. (2005). The water supply and distribution  system of the Nabataean city of Petra (Jordan), 300  BC–AD 300. Cambridge Archaeological Journal,  15(1), 93-109. 
  29. RajaniB., Y. Kleiner, Non-destructive inspection  techniques to determine structural distress  indicators in water mains, in: Evaluation and  Control of Water Loss in Urban Water Networks,  Valencia, Spain, 2004, pp. 1–20. 
  30. Rose, J.L., Mu, J., Cho, Y., Recent advances on guided  waves in pipe inspection, in: Proceedings of World  Conference on Nondestructive Testing, Shanghai,  China, 2008.  
  31. Schlosser, C. A., Strzepek, K., Gao, X., Fant, C., Blanc, É.,  Paltsev, S., et al. (2014). The future of global water  stress: An integrated assessment. Earth's Future,  2(8), 341-361. 
  32. Sack D.A., L.D. Olson, Impact echo testing of in situ  precast concrete cylinder pipe, in: Proceedings of  the 1998 Pipeline Division Conference: Pipelines in  the Constructed Environment, American Society of  Civil Engineers, San Diego, CA, USA, 1998, pp. 250– 259.  
  33. WHO, & Unicef. (2000). Global Water Supply and  Sanitation Assessment 2000 Report. Water Supply,  87.  
  34. Wilkinson, T. J. (2013). Hydraulic landscapes and  irrigation systems of Sumer. The Sumerian World,  33-54. 
  35. Xiang, X., Li, Q., Khan, S., & Khalaf, O. I. (2021). Urban  water resource management for sustainable  environment planning using artificial intelligence  techniques. Environmental Impact Assessment  Review, 86, 106515.
  36. Yasin, H. M., Zeebaree, S. R., Sadeeq, M. A., Ameen, S. Y.,  Ibrahim, I. M., Zebari, R. R., ... & Sallow, A. B. (2021).  IoT and ICT based smart water management,  monitoring and controlling system: A review. Asian  Journal of Research in Computer Science, 8(2), 42- 56.