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Abstract
We approach the problem of designing an automated trading strategy that can consistently profit by adapting to changing marketconditions. This challenge can be framed as a Nonstationary Continuum-Armed Bandit (NCAB) problem. To solve the NCAB problem,we propose PRBO, a novel trading algorithm that uses Bayesian optimization and a “bandit-over-bandit” framework to dynamicallyadjust strategy parameters in response to market conditions. We use Bristol Stock Exchange (BSE) to simulate financial marketscontaining heterogeneous populations of automated trading agents and compare PRBO with PRSH, a reference trading strategy thatadapts strategy parameters through stochastic hill-climbing. Results show that PRBO generates significantly more profit than PRSH,despite having fewer hyperparameters to tune. The code for PRBO and performing experiments is available online open-source(https://github.com/HarmoniaLeo/PRZI-Bayesian-Optimisation).
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1. Introduction

Automation now pervades most aspects of trading in fi-nancial markets (SEC, 2020). In equity markets, there isa proliferation of electronic, order-driven trading venuesthat operate at (or close to) nanosecond timescales; whilethe majority of orders sent to exchanges are generated byautomated execution algorithms that trade autonomouslyon behalf of investors. This interconnected network ofelectronic trading venues populated by automated tradingalgorithms has resulted in contemporary financial mar-kets that move at lightning-fast speeds and present newforms of systemic risks such as ultra-fast price swings andflash crashes (Cartlidge and Cliff, 2018).
Simulation can be used to model and better under-stand the complex dynamics of financial markets andthere is a long history of agent-based computational eco-nomics, where “zero-intelligence” (ZI) agents – simple

rule-based strategies – are used to model interacting pop-ulations of financial traders competing for profit (Ladley,2012). Recently, Cliff (2021) introduced Parameterised-Response Zero Intelligence (PRZI; pronounced “prezzy”),a ZI agent with a single strategy parameter s ∈ [-1, 1]that controls the behaviour of PRZI and enables it to actlike several other reference ZI strategies, or some hybridmix. By altering s, it is possible to adapt PRZI to changingmarket conditions, which emulates the continuous com-petition for profits that we observe in real markets. To thisend, Cliff (2022) introduced PRZI-Stochastic-Hillclimber(PRSH; pronounced “purr-sh”), an adaptive trading agentthat uses stochastic hillclimbing to autonomously adjustparameter s during a simulated trading session in an at-tempt to maximise profit generation. It has been shownthat PRSH is more profitable than PRZI with some fixedstrategy value s, and simulated markets containing popu-lations of PRSH agents produce competitive co-adaptive

https://creativecommons.org/licenses/by-nc-nd/4.0/.
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dynamics reminiscent of the real world (Cliff, 2022).In this paper, we attempt to introduce an improved al-gorithm for adapting PRZI strategy s. Since s is a con-tinuous value (i.e., we have a continuum) and the distri-bution of its performance metric changes over time (i.e.,payoff is nonstationary), we frame the online tuning pro-cess as a Nonstationary Continuum-Armed Bandit (NCAB)problem. To solve this problem, we propose a new adap-tive trading algorithm, which we name PRZI-BayesianOptimisation (PRBO; pronounced “purr-boh”). PRBO de-composes the NCAB problem into two, and solves the Con-tinuum Armed-Bandit (CAB) sub-problem by Bayesianoptimization, and the Nonstationary Multi-Armed Bandit(NMAB) sub-problem by utilising an adapted version ofthe “bandit-over-bandit” framework, first introduced byCheung et al. (2022).To evaluate PRBO, we use the Bristol Stock Exchange(BSE; Cliff, 2018), a minimal simulation of a centralizedfinancial market based on a continuous double auctionrunning via a limit order book (LOB). We populate mar-kets with a variety of heterogeneous trading agents, anddirectly compare the performance of PRBO against PRSHin markets with, and without, trends. Results show thatPRBO generates significantly more profit than PRSH underall market conditions, whilst also benefiting from havingfewer tunable hyperparameters.
Summary of contributions:

1. We propose PRBO, a new adaptive trading algorithmthat has fewer hyperparameters than PRSH.2. We perform empirical evaluations of PRBO and PRSHin simulated financial markets with varying dynamics.3. We demonstrate that the PRBO generates significantlymore profit than PRSH.
2. Related Works

In this section, we present existing research related to thiswork, including existing research on the MAB problemand financial market simulation.
2.1. MAB Problem: Contextual Background

In the Multi-Armed Bandit (MAB) problem (Slivkins et al.,2019), a gambler makes a series of attempts to pull differ-ent arms of a multi-armed bandit. The payoff for pullingeach arm has a different unknown probability distribution.Given that only a finite number of attempts can be made,the gambler’s objective is to find a sequence of arm pullsthat maximizes reward. A lightweight online learning al-gorithm can be used to adjust the arm selection strategy,using the payoff received from each arm pull as feedback.Under the basic MAB problem setting, there are a fi-nite number N arms to pull and the payoff distribution forpulling each arm remains constant. Many studies haveconsidered the basic MAB problem (e.g., Slivkins et al.,2019; Berry and Fristedt, 1985; Russo et al., 2018). Classi-

cal algorithms for solving the basic MAB problem includeUniform Exploration and its improvements Epsilon-Greedyand Softmax Epsilon-Greedy. Later developments includethe Upper Confidence Bound (UCB) algorithm, which makesuse of payoff confidence intervals, and Thompson sam-pling (Russo et al., 2018), which uses a Bayesian generativemodel.There exist more complex variants of the MAB problem.For example, the Continuum-Armed Bandit (CAB) problemconsiders cases where there are an infinite number of arms(Agrawal, 1995). The CAB problem is often approachedby using a disretization algorithm to divide the domaininto subintervals such that CAB is effectively convertedto MAB with finite N (e.g., Auer et al., 2002; Kleinberg,2004; Auer et al., 2007), and can include a zooming algo-rithm to focus exploration on areas near apparent maxima(Kleinberg et al., 2008). A related variant of MAB is theFinite Continuum-Armed Bandit (F-CAB) problem, wherean agent is presented with N arms in a continuous space(Gaucher, 2020).If the probability distribution of payoff by pulling eacharm changes over time, it is considered a NonstationaryMulti-Armed Bandit (NMAB) problem. NMAB problemsare usually approached by passive adaptive strategies (e.g.,Kocsis and Szepesvári, 2006; Gonçalves et al., 2015; Bes-bes et al., 2014), active adaptive strategies (e.g., Hartlandet al., 2007; Mellor and Shapiro, 2013), or a mixture of both(Allesiardo and Féraud, 2015). However, a recent studyby Cheung et al. (2022) introduced a novel “bandit-over-bandit” framework that adapts to latent changes in payoffdistributions and can discover near-optimal solutions toNMAB problems in a surprisingly parameter-free manner.
2.2. Financial Market Simulation

Multi-agent simulations are commonly used to simu-late financial markets (e.g., Lux and Marchesi, 1999;LeBaron, 2001; Samanidou et al., 2007) and have beenused to investigate various phenomena, such as marketmicrostructure (Muranaga and Shimizu, 1999), marketregulation (Mizuta, 2016), market fragmentation (Duf-fin and Cartlidge, 2018), and market dynamics (Shi andCartlidge, 2023), etc.In this paper, we perform market simulations using theBristol Stock Exchange (BSE) (Cliff, 2018). BSE is a min-imal simulation of a centralized financial market basedon a continuous double auction running via a limit orderbook (LOB). It can be populated by automatic trader agentsentering the market at a different time with their limitprices, placing quotes on the LOB, and making orders exe-cuted as much as possible at a better price to make a profit.BSE includes a selection of reference trading algorithmsfrom the literature, and is available online open-source(https://github.com/davecliff/BristolStockExchange).BSE contains a selection of reference trading algo-rithms from the literature, including: Giveaway (GVWY;Cliff, 2018), Zero-Intelligence Constrained (ZIC; Gode
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and Sunder, 1993), Shaver (SHVR; Cliff, 2018), Sniper(SNPR; Rust et al., 1993), Zero-Intelligence Plus (ZIP; Cliff,1997), Parameterised-Response Zero Intelligence (PRZI;Cliff, 2021), and PRZI-Stochastic-Hillclimber (PRSH; Cliff,2022).In this work, we focus attention on PRZI, which has asingle strategy parameter s ∈ [-1, 1] that controls whetherPRZI behaves as a pure SHVR, ZIC, or GVWY strategy, orsome hybrid mixture. We aim to introduce a novel algo-rithm for automatically adapting s that can outperformPRSH (see Section 3.3 for a detailed introduction).
3. Technical Background
Here, we present necessary technical foundations.
3.1. MAB Problem: Technical Formulation

Under the basic MAB problem setting, assume that A isthe set of arms, a ∈ A is the arm to pull, and pulling arm agives payoff r which conforms to a probability distributionD(a) with expectation µ(a), i.e.,:
r ∼ D(a), µ(a) = E(D(a)). (1)

We evaluate bandit algorithms by regret, which is thedifference between the current theoretical optimal re-ward and the current reward. Assume there is an op-timal arm a∗ to pull which gives best expected reward
µ∗ = max

α∈A µ(a) = µ(a∗), then the regret at time t is defined
as R(t) := µ∗t – t∑

s=1 µ(as). The objective of the MAB algo-
rithms is to minimize the regret over the process. To solvethe problem, MAB algorithms aim to balance exploitationand exploration (Slivkins et al., 2019).During the whole process, assume that at ∈ A, t ∈{1, ..., T}, where t ∈ {1, ..., T} are timestamps to pull thearms. In the Continuum-Armed Bandit problem (Agrawal,1995), all arms are considered forming an infinite set Asatisfying a ∈ [0, 1], ∀a ∈ A. Then the average rewardsatisfies the Lipschitz continuum:

|µ(x) – µ(y)| ≤ L|x – y|, ∀x, y ∈ A, (2)
On the other hand, in the Nonstationary Continuum-ArmedBandit problem, D(a) migrate slowly with time. Therefore,the payoff of pulling each arm R(a) conforms to a stochasticprocess Dt(a).
3.2. Trading Strategy Selection as a MAB Problem

PRZI contains a single parameter, s, which determinesstrategy behaviour. We can evaluate the performance ofa particular s value by profit-per-second (pps), which isdetermined by the profit made by a single transaction di-vided by the time that a specific value of s exists. Under acertain value of s, the greater the value of pps, the better

the s value. Since traders who receive limit orders at dif-ferent prices enter the market at random, pps is affectedby the uncertainties in the market, i.e., it is a stochasticprocess. At the same time, the market is often dynamic,with a changing demand and supply range, so the proba-bility distribution that pps conforms to is also changingwith time. Therefore, pps conforms to a stochastic processconsisting of a cluster of random variables related to s andt, denoted as Dt(s).In the whole transaction process, the value of s can bechanged at any time. Since each trader can execute trans-actions finite times, the chances to change the value of sare limited. Therefore, we can consider the online param-eter tuning problem of the PRZI algorithm by regardings as the arms of a bandit in the MAB problem, with ppsas the payoff. Furthermore, since s is a continuous value,and the distribution of pps changes over time, it is botha Continuum-Armed Bandit problem and a Nonstation-ary Bandit problem. Together, we call it a NonstationaryContinuum-Armed Bandit (NCAB) problem.We group the market ticks t ∈ {1, 2, ..., T} in BSE to a setof stages ρ ∈ {0, 1, ..., P}. The tuning of s will be performedat each stage.
3.3. PRSH Trading Agent

PRSH is an adaptive version of PRZI, which uses a k-pointstochastic hill climber to adapt its value of s over time.At the stage ρ, the PRSH algorithm creates a finite setSρ ∈ [–1, 1] of s. Each s is tried N times, from which the swith the highest average pps is selected and denoted as sρ.Next, the PRSH algorithm will generate Sρ+1 = M(sρ) by afunction M. Usually, M generates Sρ+1 by sampling from anormal distribution N(sρ,σ2) with sρ as expectation and aspecific variance σ2.Assuming µρ(x) := E(Dρ(x)) is continuous on s andvaries slowly with stage, satisfying Lipschitz continuum:
|µρ(x) – µρ+1(y)| ≤ L|x – y|, ∀x, y ∈ [–1, 1], (3)

When Dρ(s) is constant with stage, according to the idea ofzooming (Kleinberg et al., 2008), M should sample s from adistribution whose variance decreases with stage, to allowlim
ρ→∞P(s∗ ∈ Sρ) = 1. However, when Dρ(s) is changing with
stage, which means that s∗ is also changing with stage,the zooming idea will fail. P(s∗ρ ∈ Sρ) may be a quantitythat does not converge as ρ increases. In PRSH, M is a pre-determined function that is constant with time, whichmakes the PRSH algorithm unable to handle NCAB prob-lems and increases the cost of hyperparameter selection.There are also other hyperparameters in PRSH: k repre-sents the number of s in Sρ and N is the number of attemptsper s. Since the trader-agents will receive orders randomlyat intervals, the total number of quotes placed by a singletrader agent is uncertain throughout the trading process.Therefore, N is replaced by a time window W . Each stage
ρ ∈ {1, 2, ..., P} will contain k × W ticks t. The total number
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of phases will be P = ⌈ Tk×W ⌉. Strategy wait time, noted as v,
will determine W together with T and k, i.e. W = ⌊ vk⌋. Insummary, in the PRSH algorithm, we have three hyperpa-rameters k, v, and M that need to be determined.
4. PRZI-Bayesian-Optimization (PRBO)

To address the shortcomings of the existing PRSH al-gorithm, we propose the PRZI-Bayesian-Optimization(PRBO) algorithm, which uses a Bayesian optimizationapproach to solve the Continuum Bandits problem and the“bandit-over-bandit” framework to solve the nonstation-ary Bandits problem. In this section, PRBO is introducedin detail, and full pseudocode is presented in Algorithm 1.
4.1. Bayesian Optimization

The Bayesian optimization algorithm (Snoek et al., 2012;Brochu et al., 2010) is based on the Gaussian process. As-sume that pps is a black-box function f(s) with s as theindependent variable, that is a realization of a Gaussianprocess (GP) with mean function µ(s) and Gaussian kernelcovariance function k(s, s′), i.e., f(s) ∼ GP
(
µ(s), k(s, s′)).In each stage, at each tick when the agent is chosen fortrading, a GP regression model will be built based on theobserved data Dt = {(si, yi)}ni=1, where yi = f(si) + ϵi and ϵiis Gaussian noise with zero mean and variance σ2n. Assumethat S∗ = {s∗i }n∗i=1 refers to the set of possibly optimized un-explored s at which the function values is to be predictedusing the GP posterior distribution. In contrast, St = {si}ni=1refers to the set of explored s. Conditioned on the condi-tions mentioned above, the posterior distribution over thelatent function values f can be computed analytically usingBayes’ rule as follows:

p(f∗|S∗, St, Dt) = N (f∗|µ∗,Σ∗), (4)
where µ∗ = µ(S∗)+K(S∗, St)[K(St, St)+σ2nI]–1(y–µ(St)) and
Σ∗ = K(S∗, S∗) – K(S∗, St)[K(St, St) + σ2nI]–1K(St, S∗) are thepredictive mean and covariance matrix, respectively, andK(S, S′) = [k(s, s′)]s∈S,s′∈S′ is the Gram matrix of pairwisekernel evaluations between inputs.The expected improvement (EI) acquisition functionmeasures the utility or potential benefit of evaluating thefunction f at a new point st+1, defined as follows:
EI(s) =

{0 if σ∗(s) ≤ 0
(µ∗(s) – f(sbest))Φ(Z) + σ∗(s)ϕ(Z) otherwise,(5)where µ∗(s) and σ∗(s) are the predictive mean and stan-dard deviation at s, respectively, f(sbest) is the best ob-served function value so far, Φ and ϕ are the CDF andPDF of the standard normal distribution, respectively, andZ = (µ∗(x) – f(xbest))/σ∗(x) is the standardized improve-ment. Intuitively, this acquisition function balances ex-ploration (sampling uncertain regions) and exploitation(sampling promising regions) by favoring regions with

Algorithm 1 PRBO: PRZI-Bayesian-Optimization Strategy
1: Initialization:
2: Gρ := {gρ,i}, i = 1, 2, ..., k
3: t← 1
4: ρ← 1
5: Ri ← 0, i = 1, 2, ..., k
6: ni ← 0, i = 1, 2, ..., k
7: for ρ ∈ {1, 2, ..., P} do
8: for i ∈ {1, 2, ..., k} do
9: for t ∈ {(p–1)×k×W, (p–1)×k×W +1, ..., p×k×W}

do
10: if agent chosen to place an order then
11: Using gρ,i to sample a s
12: Using s to bid or ask
13: ni ← ni + 1
14: tbuf ← t
15: end if
16: if the order is executed then
17: Get reward r, i.e., profit
18: Ri ← Ri + r
19: for j ∈ {1, 2, ..., k} do
20: Update gρ,j with the pair s, r/(t – tbuf )
21: end for
22: end if
23: end for
24: end for
25: µ̄i = Ri/ni, i = 1, 2, ..., k
26: Sample k – 1 samples of g with p(gρ,i) =

eµ̄i / ∑
i∈{1,2,...,k} eµ̄i without replacement and discard

the remaining one g
27: Generate a new g, forming Gρ+1 together with the(k – 1) g, above
28: Ri ← 0, i = 1, 2, ..., k
29: ni ← 0, i = 1, 2, ..., k
30: end for

high predicted mean and/or high predictive uncertainty.The optimization problem then becomes searching thenext s to evaluate that maximizes the acquisition function,i.e., st+1 = arg maxs∈[–∞,∞] EI(s). The searching processwill continuously perform at each stage ρ ∈ {0, 1, ..., P}.
4.2. Bandit-Over-Bandit Framework

The “bandit-over-bandit” framework was recently intro-duced by Cheung et al. (2022) to adapt to latent changesin the environment. It works by dividing the time horizoninto multiple blocks and treating each block as a separatebandit problem, using a bandit algorithm (called the slavealgorithm) to solve it. Another bandit algorithm (called themeta-algorithm) is applied to tune the slave algorithm atthe end of each temporal block. It also uses a “forgettingprinciple” in the learning process, which gives less weightto older data as time goes on and is vital in changing envi-ronments. The framework allows the algorithm to enjoy
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nearly optimal dynamic regret bounds in a parameter-freemanner. We leverage the time horizon division and the“forgetting principle” proposed in the original work andadapt it to fit the BSE problem formulation. Algorithm 1presents our PRBO trading agent implementation of thebandit-over-bandit strategy. Lines 8-24 describe the slavealgorithm; lines 7 and 25-30 describe the meta-algorithm.We use the stages ρ ∈ {0, 1, . . . , P} as the time horizondivision. In the original work, Cheung et al. (2022) usethe sliding window-upper confidence bound algorithm asthe slave algorithm. In our work, to solve the Continuum-Armed Bandit problem, we use Bayesian optimization asthe slave algorithm (described in Section 4.1).In order to tune the slave Bayesian optimization algo-rithm, we propose a novel meta-algorithm (Algorithm 1;lines 7, 25-30). Note that st and yt respectfully record all ex-plored s and their corresponding payoffs. However, if theenvironment changes, the posterior distribution obtainedfrom the observations so far may become inaccurate. Inthis case, according to the “forgetting principle” (Cheunget al., 2022), rather than continuing to adjust the distri-bution on the current basis, it would be better to abandonall previous observations and start from scratch. Ideally,we would maintain several different Gaussian processes,each starting to observe s and making an adjustment at adifferent time, i.e., having different lengths of memory.To achieve this, we maintain k Gaussian processes si-multaneously and use the Softmax Epsilon-Greedy algo-rithm (Slivkins et al., 2019) to selectively drop the obser-vations of certain Gaussian processes at each stage. Leteach Gaussian process be gi, i = 1, 2, ..., k, and the set ofGaussian processes be G = {gi}i∈{1,2,...,k}. W, ρ determinedby means in Section 3.3. Then the flow of our algorithm isshown in Algorithm 1.Using the Softmax Epsilon-Greedy algorithm to ran-domly drop a Gaussian process at each stage, we can obtaink Gaussian processes with different memory lengths afterenough stages have been performed.Compared to PRSH, PRBO has only two hyperparam-eters, k and v, making its hyperparameter selection lesstime costly. In the subsequent experiments, we will com-pare PRBO with PRSH to determine which has the bestprofit-maximising performance.
5. Experiment Design

In this section, we present our experimental design. Wewill first introduce the setup of the market simulation,then introduce the method of hyperparameter selectionfor PRSH and PRBO, and finally introduce the experimentused to compare the performance of PRSH and PRBO.
5.1. Market Simulation Method

We use BSE to generate experimental data with 1000 sec-onds simulation. New orders arrive at intervals modeledwith a Poisson distribution, like a real market. We gener-

Figure 1. Supply and demand range of a trending market, etrend.

Figure 2. Supply and demand range of a flat market, eflat.

ate symmetrical supply-demand curves, but supply anddemand ranges are changing over time. According to dif-ferent market dynamics, the ways of change are also differ-ent. For trending markets, our supply and demand rangeis [0.1× t + N(0, 5) + 100, 0.1× t + N(0, 5) + 300] as shown inFig. 1. For markets without trend, our supply and demandrange is [N(0, 20) + 100, N(0, 20) + 300] as shown in Fig. 2.In both figures, red (blue) lines represent the upper (lower)limits of the supply and demand ranges. The N(µ,σ) in-dicates a white Gaussian noise with mean µ and standarddeviation σ. Therefore, we simulate: (i) a trending marketin which the supply and demand range increases linearlywith time and has relatively low volatility; and (ii) a flatmarket in which the supply and demand range does notchange with time but has greater volatility. We representmarket dynamics as e ∈ {etrend, eflat}.
To emulate more realistic dynamics, we populate mar-kets with a heterogeneous variety of different tradingagent strategies. When performing hyperparameters se-lection, both buyers and sellers are 20 GVWY traders, 20ZIC traders, 20 ZIP traders, 20 SNPR traders, 20 SHVRtraders, and 20 traders with algorithms either PRSH orPRBO. When comparing the performance of the two algo-rithms, we include both traders using PRSH and PRBO,which means both buyers and sellers are 20 GVWY traders,20 ZIC traders, 20 ZIP traders, and 20 SNPR traders, 20SHVR traders, 20 PRSH traders, and 20 PRBO traders.
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5.2. Hyperparameters Exploration Method

For PRSH, we consider k ∈ {2, 4, 6, . . . , 16}, v ∈{32, 64, 128, 256}, and three mutation functions, m ∈{m1, m2, m3}:
m1: si = M(s) = s0 + N(0, 0.05), i = 1, 2, ..., k
m2: si = M(s) = s0 + N(0, 0.15), i = 1, 2, ..., k
m3: si = M(s, i) =

{s0 + U(0, 0.1), i = 1, 3, ..., k/2 – 1
s0 – U(0, 0.1), i = 2, 4, ..., k/2

We repeat 100 experiments in each market dynamic ewith each combination of parameters, and record the to-tal profit per PRSH trader per experiment as a samplexie,k,v,m, i = 1, 2, ..., 100. Note the i.i.d. samples as xe,k,v,m =
(x1e,k,v,m, x2e,k,v,m, ..., x100e,k,v,m), which are sampled from a dis-
tribution X(e, k, v, m). We will estimate E[X(e, k, v, m)] by
Ê[X(e, k, v, m)] = ¯xe,k,v,m, and observe the distribution of
xe,k,v,m for different k, v, m. Then we attempt to find thebest combination k∗, v∗, m∗ = arg maxk,v,m∗

Ê[X(e, k, v, m)],
which is the possible optimal parameter obtained from thesample by estimating E[X(e, k∗, v∗, m∗)].For PRBO, We explore k ∈ {2, 3, 4} and v ∈{32, 64, 128, 256}. We repeated 100 experiments in eachmarket dynamic e with each combination of parameters,and record the total profit per PRBO trader made in eachexperiment as a sample yie,k,v, i = 1, 2, ..., 100. Note the
i.i.d. samples as ye,k,v = (y1e,k,v, y2e,k,v, ..., y100e,k,v), which are
sampled from a distribution Y(e, k, v). We will estimate
E[Y(e, k, v)] by Ê[Y(e, k, v)] = ¯ye,k,v, and observe the distri-bution of ye,k,v for different k, v. Then we are going to find
the best combination k∗, v∗ = arg maxk,v Ê[Y(e, k, v)], this is
the possible optimal parameter obtained from the sampleby estimating E[Y(e, k∗, v∗)].To prove the optimality of the parameters we ob-tained, we need to perform hypothesis testing. Wefirst test the normality of X(e, k, v, m) and Y(e, k, v)using the Kolmogorov–Smirnov test (K-S test). IfX(e, k, v, m) and Y(e, k, v) conform to the normal dis-tribution we can then perform Z-test to test whether
E[X(e, k∗, v∗, m∗)] > E[X(e, k, v, m)], ∀k, v, m and
E[Y(e, k∗, v∗)] > E[Y(e, k, v)],∀k, v. We will perform Z-teston every xe,k,v,m and ye,k,v that we have obtained one-by-one with xe,k∗,v∗,m∗ and ye,k∗,v∗ respectively. We recordall combinations of parameters that do not significantlymake less profit than the best combinations. Eventually,all recorded parameter combinations, together with thebest combinations, will form {K∗X(e), V∗X(e), M∗X(e)} (forPRSH) and {K∗Y (e), V∗Y (e)} (for PRBO).
5.3. PRBO vs PRSH: Comparison Experiment Design

To compare the performance of PRSH traders and PRBOtraders, we put both traders into the market. Since{KX(e)∗, VX(e)∗, MX(e)∗} and {KY (e)∗, VY (e)∗} contain thepossibly optimal hyperparameter combinations for the

PRSH and PRBO respectively, each PRSH trader willrandomly choose {k, v, m} from {KX(e)∗, VX(e)∗, MX(e)∗}and each PRBO trader will randomly choose {k, v} from{KY (e)∗, VY (e)∗}.We repeated 100 experiments in each market dynamice. In each experiment, we record the difference betweenthe total profit per PRBO trader and the total profit perPRSH trader as a sample die, i = 1, 2, ..., 100. Note the i.i.d.samples as de = (d1e, d2e , ..., d100e ), which are sampled from adistribution D(e). We will estimate E[D(e)] by Ê[D(e)] = d̄e.What we will be interested in is whether E[D(e)] > 0. If wecan show by hypothesis testing that E[D(e)] > 0, then wehave good reason to believe that PRBO outperforms PRSH.In this case, we test the normality of D(e) using the K-Stest and then perform Z-test to test whether E[D(e)] > 0.All hypothesis tests in our work will take the signifi-cance level α = 0.05. A detailed description of all hypothe-sis tests and results are presented in the Appendix.
6. Experiment Results
In this section, we analyze the experimental results. Wewill show the results of hyperparameter selection, to de-termine the set of hyperparameters to be used for the com-parison experiments. Then we will show the results of thecomparison experiments, which demonstrate the superi-ority of PRBO over PRSH in terms of profit generation.
6.1. Results of Hyperparameter Selection

6.1.1. Optimal PRSH HyperparametersWe first perform a K-S test, which demonstrates thatX(e, k, v, m), ∀e, k, v, m conforms to the normal distribu-tion (see Appendix for full details). This enables us to useZ-test for statistical comparison of profits.Table 1 and Table 2 shows the mean profit(i.e. Ê[X(e, k, v, m)]) made by PRSH traders un-der trending market and flat market, respectively.All the Ê[X(e, k, v, m)] are divided by 1,000 forclarity. The parameters combination with thehighest mean profit in the trending market is(k∗, v∗, m∗) = arg maxk,v Ê[X(etrend, k, v, m)] = (6, 128, m3)
with Ê[X(etrend, k∗, v∗, m∗)] = 1277.68, while the combi-nation with the highest mean profit under flat marketis (k∗, v∗, m∗) = arg maxk,v Ê[X(eflat, k, v, m)] = (6, 128, m3)
with Ê[X(eflat, k∗, v∗, m∗)] = 1274.51. The combinationswith the highest mean profit are displayed in bold in thetable.Under etrend, of the full 96 combinations of k, v, m,23 combinations could not reject the null hypothesisin Z-test at the significant level of α = 0.05 (in-cluding k∗, v∗, m∗ itself), while 37 combinations undereflat. All the combinations are underlined in the ta-ble, and the p-values of the Z-test are displayed inthe subscript. We will use those combinations of pa-rameters to create KX(etrend)∗, VX(etrend)∗, MX(etrend)∗ and
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Table 1. Mean profit of PRSH traders in trending markets. The highest profit is shown in parentheses. Profits with no underlining are significantly lowerthan the maximum (Z-test; p < 0.05). Profits underlined are not significantly lower than the maximum profit (Z-test; p values shown in subscript).
M m1 m2 m3

K V 32 64 128 256 32 64 128 256 32 64 128 256
2 1.15 1.17 1.19 1.240.10 1.16 1.2 1.2 1.240.14 1.2 1.18 1.2 1.230.114 1.22 1.270.39 1.230.08 1.17 1.2 1.18 1.22 1.220.06 1.21 1.19 1.21 1.230.096 1.260.28 1.21 1.17 1.19 1.16 1.2 1.18 1.22 1.19 1.21 (1.28) 1.198 1.22 1.19 1.17 1.2 1.2 1.22 1.2 1.17 1.17 1.18 1.21 1.1910 1.230.12 1.15 1.19 1.2 1.18 1.2 1.19 1.17 1.18 1.2 1.21 1.230.0812 1.21 1.22 1.21 1.270.38 1.2 1.18 1.260.36 1.250.20 1.19 1.18 1.19 1.240.1214 1.2 1.2 1.17 1.250.19 1.16 1.240.15 1.19 1.2 1.18 1.220.05 1.230.07 1.2

16 1.2 1.250.19 1.2 1.270.48 1.17 1.18 1.18 1.2 1.240.14 1.2 1.18 1.230.10

Table 2. Mean profit of PRSH traders in flat markets. The highest profit is shown in parentheses. Profits with no underlining are significantly lower thanthe maximum (Z-test; p < 0.05). Profits underlined are not significantly lower than the maximum profit (Z-test; p values shown in subscript).
M m1 m2 m3

K V 32 64 128 256 32 64 128 256 32 64 128 256
2 1.18 1.230.09 1.19 1.230.08 1.16 1.230.06 1.19 1.270.46 1.230.11 1.18 1.21 1.230.064 1.240.11 1.21 1.250.19 1.270.38 1.17 1.19 1.22 1.270.37 1.22 1.21 1.260.31 1.21
6 1.230.10 1.21 1.22 1.22 1.2 1.22 1.260.37 1.240.09 1.230.10 1.250.16 (1.27) 1.240.108 1.250.21 1.260.30 1.2 1.21 1.16 1.21 1.21 1.19 1.19 1.250.23 1.22 1.19
10 1.240.12 1.220.05 1.19 1.240.13 1.250.18 1.21 1.220.06 1.22 1.17 1.22 1.240.17 1.240.1512 1.19 1.250.19 1.21 1.230.10 1.14 1.2 1.17 1.22 1.2 1.21 1.21 1.22
14 1.21 1.21 1.2 1.19 1.230.10 1.16 1.270.48 1.240.13 1.19 1.21 1.240.17 1.260.3516 1.22 1.21 1.18 1.230.06 1.22 1.21 1.18 1.240.15 1.2 1.22 1.2 1.21

Table 3. Mean profit of PRBO traders in trending markets.
K V 32 64 128 256

2 2.200.08 2.210.09 2.19 2.230.183 2.190.06 2.270.46 2.220.15 2.230.214 (2.28) 2.210.11 2.19 2.270.48

Table 4. Mean profit of PRBO traders in flat markets.
K V 32 64 128 256

2 (2.35) 2.230.18 2.260.33 2.320.193 2.310.29 2.300.36 2.320.19 2.280.484 2.270.41 2.320.20 2.320.23 2.300.30

KX(eflat)∗, VX(eflat)∗, MX(eflat)∗ respectively.
6.1.2. Optimal PRBO HyperparametersWe first perform a K-S test, which demonstrates thatY(e, k, v), ∀e, k, v conforms to the normal distribution (seeAppendix for full details). This enables us to use Z-test forstatistical comparison of profits.Table 3 and Table 4 show the mean profit (i.e.
Ê[Y(e, k, v)]) made by PRBO traders under trending mar-ket and flat market respectively. All the Ê[Y(e, k, v)] aredivided by 1,000 for clarity. The parameters combina-tion with the highest mean profit in the trending mar-ket is (k∗, v∗) = arg maxk,v Ê[Y(etrend, k, v)] = (4, 32) with

Ê[Y(etrend, k∗, v∗)] = 2276.37, while the combination withthe highest mean profit under flat market is (k∗, v∗) =arg maxk,v Ê[Y(eflat, k, v)] = (2, 32) with Ê[Y(eflat, k∗, v∗)] =
2352.83. The combinations with the highest mean profitare displayed in bold in the table.Under etrend, of the full 12 combinations of k, v, 10 com-binations could not reject the null hypothesis in Z-test atthe significant level of α = 0.05 (including k∗, v∗ itself),while all 12 combinations under eflat. All the combinationsare underlined in the table, and the p-values of the Z-testare displayed in the subscript. We will use those combina-tions of parameters to create KY (etrend)∗, VY (etrend)∗ andKY (eflat)∗, VY (eflat)∗ respectively.
6.2. Profits Comparison: PRSH vs PRBO

The kernel density plot of detrend and deflat is shown in Fig. 3.It can be seen from the graph that for both Ê[D(etrend)] and
Ê[D(eflat)] the distributions fall largely to the right of theequality line d = 0. This demonstrates that profits of PRBOare larger than profits of PRSH in both market types.Table 5 shows the statistic result of detrend and deflat . Wefirst perform a K-S test, which demonstrates that bothD(etrend) and D(eflat) pass the normality test at the sig-nificance level α = 0.05 (i.e., K-S test p-values shown inTable 5 are greater than 0.05). A Z-test is then performed,with p-values of 0.0 showing that the null hypothesis issignificantly rejected and E[D(e)] > 0, ∀e. Therefore, we
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Figure 3. Kernel density plot of detrend and deflat showing profit-generating
performance advantages of PRBO over PRSH.

Table 5. Statistic results of detrend and deflat showing PRBO generates sig-
nificantly higher profits than PRSH in both markets.

e Mean Std K-S test p-value Z-test p-value
trend 995.20 475.24 0.50 1.23 × 10–98

flat 1022.44 550.39 0.98 4.33 × 10–78

conclude that, on average, the PRBO trading algorithmmakes significantly more profit than PRSH trading in botha trending market and a flat market. We present this asstrong evidence that PRBO outperforms PRSH.
7. Conclusions

We have introduced PRBO, a new adaptive trading algo-rithm for solving the Nonstationary Continuum-ArmedBandit (NCAB) problem by Bayesian optimization and a“bandit-over-bandit" framework. In a series of empiricalsimulations, PRBO was compared against PRSH, a refer-ence trading algorithm from the literature. Across a varietyof market conditions, PRBO was shown to generate signif-icantly more profit than PRSH, despite having fewer tun-able parameters. We present this as strong evidence thatPRBO is a novel contribution to the field of agent-basedcomputational economics and financial markets simula-tion. In the wider context, we also present this work asevidence of the potential value of framing problems in fi-nance as NCAB problems, and proposing solutions inspiredby the NCAB literature.
However, the work has some limitations. In particular,we assume that similar parameters produce similar pay-offs and the change in the payoff distribution is smoothin time. In future, we will perform variational analysisto better understand the rate of change of payoff distri-butions. We will also attempt to improve the model byusing deep learning approaches to estimate the kernelfunction in Gaussian processes. Finally, we will evaluatePRBO in more complex markets with time-varying supply

and demand, and explore the coevolutionary dynamics ofmarkets containing populations of co-adaptive agents.
In a practical application scenario, the model could beused to adapt the parameters of an automated trading sys-tem in real time. While the current best-performing pa-rameter set are used for live trading, in parallel an offlinesimulation environment using live market data feeds isused to continuously update payoff distributions. Whennew best parameters are identified, the live system is im-mediately updated with the new best parameter set.
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Appendix: Statistical Tests for Normality
For completeness, here we present evidence that profit dis-tributions are approximately normally distributed. Thisenables us to safely use the Z-test for statistical signifi-cance testing.
PRSH Hyperparameter Exploration

We first test the normality of X(e, k, v, m) using the Kol-mogorov–Smirnov (K-S) test with hypotheses:
• H0 : X(e, k, v, m) conforms to the normal distribution.• H1 : X(e, k, v, m) is not normally distributed.

If we cannot reject the null hypothesis H0, thenX(e, k, v, m) conforms to the normal distributionand we perform the Z-test to ascertain whether
E[X(e, k∗, v∗, m∗)] > E[X(e, k, v, m)], ∀k, v, m. We willperform Z-test on each xe,k,v,m that we have obtainedone-by-one with xe,k∗,v∗,m∗ . The hypothesis of the Z-testis:
• H0 : E[X(e, k∗, v∗, m∗)] ≤ E[X(e, k, v, m)]• H1 : E[X(e, k∗, v∗, m∗)] > E[X(e, k, v, m)]

If at a specific significance level, for some combinations of{k, v, m}, we cannot reject H0, then record those {k, v, m}.Eventually all recorded {k, v, m} together with {k∗, v∗, m∗}will form {K∗X(e), V∗X(e), M∗X(e)}.Table 6 and Table 7 show the K-S test p-values of theprofit made by PRSH traders under trending market andflat market, respectively. All p-values exceed 0.05, so
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Table 6. K-S test result (p-value) of the profits made by PRSH traders under trending market. All profits are approximately normally distributed.

M m1 m2 m3
K V 32 64 128 256 32 64 128 256 32 64 128 256

2 0.61 0.38 0.98 0.84 0.85 0.54 0.42 0.73 0.7 0.96 0.25 0.974 0.96 0.61 0.9 0.98 0.92 0.76 0.66 0.99 0.81 0.95 0.97 0.996 0.85 0.54 0.85 0.84 0.93 0.2 1.0 0.76 0.99 0.95 0.72 0.948 0.73 0.94 0.98 1.0 0.9 0.95 0.73 0.49 0.51 1.0 0.7 0.5810 0.55 0.8 0.55 0.4 0.84 0.86 1.0 0.42 0.98 0.24 0.99 0.512 0.99 0.86 0.31 0.62 0.9 0.34 0.58 0.88 0.92 0.83 0.84 0.6414 0.78 0.98 0.63 1.0 0.68 0.98 0.41 0.61 0.87 0.97 0.72 0.6516 0.95 0.85 0.97 0.83 0.61 0.97 0.94 0.97 0.88 0.99 0.39 0.97
Table 7. K-S test result (p-value) of the profits made by PRSH traders under flat market. All profits are approximately normally distributed.

M m1 m2 m3
K V 32 64 128 256 32 64 128 256 32 64 128 256

2 0.97 0.82 0.24 0.86 0.38 0.32 0.88 0.97 0.98 0.78 0.8 0.744 0.37 0.89 0.76 0.91 0.99 0.99 0.91 0.97 0.62 0.85 0.98 0.876 0.83 0.94 1.0 0.53 0.88 0.92 0.58 0.98 0.82 0.78 0.63 0.998 0.61 0.27 0.51 0.97 0.32 0.7 0.96 0.7 0.94 0.82 0.67 0.2410 0.97 0.99 0.94 0.99 0.54 0.94 0.74 0.72 0.14 0.51 0.95 0.9912 0.99 0.74 0.17 0.63 0.45 0.95 0.97 0.51 0.99 0.99 0.99 0.7314 0.52 0.88 0.52 0.67 0.89 0.99 0.24 0.99 0.5 0.71 0.91 0.9916 1.0 0.83 0.51 0.75 0.96 0.68 0.93 0.95 0.99 0.77 0.32 0.98
Table 8. K-S test result (p-value) of PRBO profits in trending market and flat market. All profits are approximately normally distributed.

Market Trending Flat
K V 32 64 128 256 32 64 128 256

2 0.58 0.33 0.47 0.82 0.96 0.95 0.92 0.893 0.69 1.0 0.96 0.54 0.41 0.47 0.54 0.894 0.45 0.91 0.97 0.99 0.61 0.88 0.85 0.26

we accept that all profits are approximately normally dis-tributed. Therefore, we are able to use Z-test for statisticalsignificance testing.
PRBO Hyperparameter Exploration

We test the normality of Y(e, k, v) using the K-S test, with:
• H0 : Y(e, k, v) conforms to the normal distribution.• H1 : Y(e, k, v) is not normally distributed.

If Y(e, k, v) conforms to the normal distribution wecan then perform the Z-test to ascertain whether
E[Y(e, k∗, v∗)] > E[Y(e, k, v)], ∀k, v. We will perform Z-test on each ye,k,v that we have examined one-by-one with
ye,k∗,v∗ . The hypothesis of the Z-test is:
• H0 : E[Y(e, k∗, v∗)] ≤ E[Y(e, k, v)]• H1 : E[Y(e, k∗, v∗)] > E[Y(e, k, v)]

If at a specific significance level, for some combinationsof {k, v}, we cannot reject H0, then record those {k, v}.Eventually all recorded {k, v} together with {k∗, v∗} willform {K∗Y (e), V∗Y (e)}.Table 8 shows the K-S test p-values of the profit madeby PRBO traders under trending market and flat market,

respectively. All p-values exceed 0.05, so we accept that allprofits are approximately normally distributed. Therefore,we are able to use Z-test for statistical significance testing.
PRBO vs PRSH: Normality Testing

We test the normality of D(e) using the K-S test:
• H0 : D(e) conforms to the normal distribution.• H1 : D(e) is not normally distributed.

If D(e) conforms to the normal distribution we can thenperform Z-test to test whether E[D(e)] > 0. The hypothe-sis of the Z-test is:
• H0 : E[D(e)] ≤ 0• H1 : E[D(e)] > 0

If we can reject the null hypothesis H0 at a specific signifi-cance level, we can accept that PRBO statistically outper-forms PRSH.Table 5 shows the K-S test p-values of D under trend-ing market and flat market. Both p-values exceed 0.05,so we accept that D is approximately normally distributed.Therefore, we are able to use Z-test for statistical signifi-cance testing.
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