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Abstract 
To guarantee the effective equipment digital twin (DT) applications in intelligent manufacturing, the DT’s credibility must be 
properly assessed continuously. Pursuing a rather high assessment frequency would guarantee the accuracy of the credibility but 
would slow down the quantification process or consume too much computational resources. The dynamic credibility assessment 
of the real-time evolving DTs has comprehensive requirements for accuracy, rapidity, and cost. To achieve the dynamic balance, 
an adaptive assessment frequency optimization method is proposed. The optimal assessment frequency can be adjusted in real 
time using particle swarm optimization algorithms according to variable application requirements and working conditions. The 
influence of different frequency on the credibility of digital twins are analyzed based on experience from VV&A (Verification, 
Validation and Accreditation) methods in M&S (Modeling and Simulation). The method not only guarantees the accuracy and 
effectiveness of the assessment results, but also meets the assessment rapidity requirements and is relatively more economical. 
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1. Introduction

The Digital Twin (DT) has become a research hotspot in 
recent years. A digital twin is a digital model of a 
physical object, which can evolve in real time by 
receiving data from the physical object so as to keep it 
consistent with the physical object throughout its 
whole life cycle (Zhang, Zhou & Horn, 2021). The 
evolution and interactivity are two prominent features 
of current digital twins, which enable the DT users to 
obtain intrinsic information of the specific real-world 
object from virtual simulation tests. Based on the 
realistic simulation results, the digital twins can 
feedback effective optimization strategies on the 

physical system. By conducting the strategies, the 
current problems of the physical system would be 
solved, hidden risks would be avoided, and the overall 
efficiency would be improved (Liu, Ong & Nee, 2022). 

In the field of M&S, if the credibility of a model has 
not been evaluated according to the user requirements, 
the model cannot play its value in practice (Oberkampf 
& Trucano, 2008). Similarly, an equipment digital twin 
also needs a set of credibility evaluation methods. Only 
by ensuring that the credibility of the digital twin is 
higher than the use threshold can the digital twin have 
practical applications.  

The credibility evaluation of equipment digital twins 
is necessary, but difficult, because equipment digital 
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twins are highly dynamic and complex. On the one 
hand, equipment is a multi-granularity object 
involving multi-disciplinary fields, so the 
corresponding digital twin model has the 
characteristics of multi-physical domains, multi 
scales, and multi resolutions. The process of evaluating 
the credibility of such a complicated model is a system 
engineering project. On the other hand, the digital 
twins continuously evolve and interact with the 
physical objects during their entire lifecycles. 
Therefore, a digital twin is highly dynamic, which also 
leads to high uncertainty (Barkanyi, Chovan, Nemeth & 
Abonyi, 2021). These features put forward higher 
standards for the credibility evaluation methods of 
equipment digital twins. 

In intelligent manufacturing, large numbers of 
processing equipment are connected to the scheduling 
center in the form of digital twins (Wu, Mao, Chen & 
Wang, 2021). The digital twins perform simulation 
predictions based on actual production conditions. The 
scheduling center generates control signals to the 
manufacturing process for real-time capacity 
optimization. To guarantee the effectiveness of the DT  
applications, the DTs are supposed to be assessed in a 
high frequency. The digital twins need to be corrected 
based on the real-time status data of the processing 
equipment so as to stay within an acceptable credibility 
level. The dynamic credibility assessment of the real-
time evolving digital twins has comprehensive 
requirements for accuracy, rapidity, and cost. Pursuing 
a rather high assessment frequency would guarantee 
the accuracy of the credibility but would slow down the 
quantification of overall credibility or consume too 
much computational resources. 

In this paper, we propose an adaptive assessment 
frequency optimization method. The optimal 
assessment frequency can be adjusted in real time 
using particle swarm optimization algorithms 
according to variable application requirements and 
working conditions. The influence of different 
frequency on the credibility of digital twins are 
analyzed according to VV&A (Verification, Validation 
and Accreditation) methods from M&S (Modeling and 
Simulation). The method not only guarantees the 
accuracy and effectiveness of the assessment results, 
but also meets the assessment rapidity requirements 
and is relatively more economical. 

2. State of the art

During the ten years of DT concept development, most 
of the literature focused on discussing its concept and 
connotation (Lim, Zheng & Chen, 2020; Liu et al., 2021; 
Lu et al., 2020; Zhou et al., 2020; Tao et al., 2019). There 
still lacks a systematic credibility evaluation 
framework for reference in the field. The evaluation of 
a DT will include the evaluation of the DT model itself 
and the evaluation of real-time data used for the 
construction and evolution of the model. Theoretically, 
changes of data will be incorporated and reflected in the 

model, nevertheless, a separate evaluation of the 
credibility of data can prevent untrusted data from 
entering the DT, so as to better ensure the credibility of 
DT. Although there are few literatures on credibility 
evaluation for DTs, there are lot of research on the 
credibility evaluation in the field of M&S that will be 
helpful to develop credibility evaluation methods for 
DTs and equipment DTs. 

2.1 Data credibility evaluation 

Credibility of data used by a DT will influence the 
credibility of the DT. These data include a large number 
of sensor data, human related non-sensor data, and 
data from software. 

If the sensor is damaged or fails (Sun, Luo & Das, 
2019), or the sensor is unwilling to play a normal role 
in the sensor network (Jiang et al., 2014), the sensor 
data of the abnormal node is unreliable. Even if the data 
sources are normal, they are still inevitably affected by 
the working environment (Miao, 2014) or the 
installation distance and angle of the sensor (Mao, 
2016). For the credibility evaluation of sensor data 
itself, The authors (Liao et al., 2021) used the 
cumulative residual chi square check to evaluate the 
credibility of the data by comparing the current data 
with the historical data.  

Digital twin is inseparable from human participation 
in the construction stage and operation decision-
making stage. The author (Levelt & Caramazza, 2007) 
evaluated the influence of ambiguity and authority on 
this kind of data by studying psychology. Brown et al. 
(Barber & Robert, 2010) evaluated the credibility of 
human related propositions from the perspective of a 
priori knowledge and a posteriori knowledge.  

2.2 Model credibility evaluation 

The concept of VV & A (Verification, Validation and 
Accreditation) proposed by the U.S. Department of 
defense (DoD) is a series of methods and processes 
recognized in the field to improve the credibility of 
modeling and simulation. The research team of system 
simulation of National University of Defense 
Technology has carried out long-term research on VV 
& A of weapon equipment system simulation (Tang, 
2009; Liao et al., 2003; Wang, 2018). The teams of 
Harbin Institute of Technology have carried out VV & A 
and credibility evaluation research on the distributed 
interactive simulation system and made great 
achievements in this regard (Yang et al., 1999). For 
aerospace simulation system, reference (Kim et al., 
2017) puts forward a trust evaluation framework for the 
whole life cycle of modeling and simulation 
development. Reference (Zhou et al., 2020; Zhang & Ye, 
2006; Zhen & Hu, 2015; Sim & Lee, 2014) combs and 
expounds the trust evaluation theory of complex 
weapon equipment model.  

Further, the specific methods of model credibility 
evaluation can be summarized into three categories: 
qualitative analysis methods, quantitative analysis 
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methods and comprehensive analysis methods. 
Document (Zhang et al., 2021) proposed a d-digital 
target programming method suitable for complex 
simulation systems. The authors (Beydoun, Low & 
Bogg, 2013) proposed a set of model evaluation 
methods based on expert scoring, simulation 
requirements and simulation environment. Acar (2015) 
pointed out that the prediction ability of meta modeling 
can be improved by combining various types of models 
in the form of weighted average integration. Li et al. 
(2021) studies the credibility evaluation technology of 
complex simulation models by using the multi-agent 
interactive network method. Aiming at the problem of 
high complexity of simulation model, Ferson & 
Oberkampf (2009) designed the u-pooling region 
indicator. Li et al. (2014) proposed multivariate 
probability integral transformation (PIT). Dornheim & 
Brazauskas (2011) proposed a hybrid linear expectation 
model to automatically and efficiently calculate the 
credibility of complex systems. Liang et al. (2013) 
proposed a credibility measurement method based on 
dynamic Bayesian network. Hu (2011) proposed a 
framework of dynamic data-driven simulation 
method, which uses Monte Carlo method to conduct 
real-time simulation of wild fire. 

Traditional M&S pays more attention to offline 
simulation, and its credibility evaluation method is 
mainly Verification, Validation, and Accreditation. DT 
specifically aims at online simulation, expanding 
interactive and evolutionary characteristics based on 
traditional offline simulation. Therefore, a number of 
credibility concepts and evaluation methods from in 
M&S domain can be used for references. Considering 
the unique features of equipment DTs, new principles 
and methods need to be applied to conduct the 
credibility evaluation of DTs. 

3. Materials and Methods

3.1. Features of the digital twin system 

1) Evolution

Evolution is the most iconic feature of a DT as well as
an equipment DT. The aim of DT evolution is to mirror 
the physical object throughout its lifecycle. To achieve 
the goal, three kinds of evolution are applied. 

Fig. 1(a) Evolution without input   Fig. 1(b) Evolution with input 

The first is the internal circulation evolution. This 
form exists because the DT needs to be initialized and 

the mechanism of the physical object needs to be 
refined. On the one hand, when a digital twin is 
constructed, there still exists a structure and parameter 
gap between the digital model and the physical object. 
Therefore, the real-time data are collected to adjust the 
digital model according to the real state of the physical 
object. On the other hand, due to the incomplete 
recognition of the intrinsic mechanism of the physical 
world, a flow of continuous data are collected to 
constantly adjust and improve the inner mechanism of 
DT. As shown in Fig.1(a), each circular cross-section is 
one attempt to refine the mechanism. For 
compensation of the intrinsic error caused by 
unmatured mechanism, the initialization-like 
adjustment of the DT structure and parameter need to 
be conducted periodically. However, the value of DT 
depends on the effective simulation supported by real 
mechanism, rather than high similarity caused by high 
frequency calibration. Therefore, how well does the 
mechanism refinement work strongly affects the DT 
credibility, and needs to be evaluated. This makes the 
evaluation quite different from those only compare the 
outputs obtained from both DT and the physical object. 

The second is the execution of the digital twin model. 
Considering the physical object as an isolated system. If 
not influenced by the outside, including the 
environment and manual intervention, the physical 
object changes only according to its own laws. In this 
case, once perfectly initialized, the digital twin will act 
the same as the physical object according to the fully 
refined mechanism. 

The last is the external circulation evolution. 
Because the isolated system is bound to be used by 
human and affected by the environment, it is essential 
to gather the intervention information from the 
outside. This kind of data are collected and transformed 
into the input of DT, which will motivate the 
corresponding reaction of DT according to its inner 
mechanism. Theoretically, possessed with the perfect 
initialization and mechanism, the DT will present the 
same state as the physical object based on the impact 
data from outside the isolated system. But as shown in 
Fig.1(b), in the real situation, the DT would try to 
consume the input and fulfill the internal circulation 
refinement at the same time. Although the difference 
between the DT and the physical object seems large at 
first, the error would shrink afterwards. In the case of 
constant input flow, it would take a long time to 
distinguish the external disturbance from the error 
caused by immature mechanism. Therefore, the 
credibility evaluation should evaluate the DT through a 
period of time, and the credibility value would change 
continuously throughout the whole lifecycle. 

2) Interactivity

There are two directions of interactivity. One is from
the equipment to the DT. The transmission content 
includes the real-time acquisition of the status 
information of the equipment through distributed 
sensors, the data automatically generated by various 
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built-in software of the equipment, and manually 
updated information like text drawings. The other 
direction is from the digital twin to the equipment. The 
optimization adjustment strategy, scheduling and 
other decisions on the equipment can be made 
according to the testing, prediction, and simulation 
based on the digital twin. The equipment will be 
updated iteratively according to the feedback 
information.  

The interaction between the two equally essential 
directions is relatively independent and occurs 
according to the needs. The interaction pointing to the 
digital twin is the basis. The quality of this step will 
determine the credibility of subsequent prediction and 
simulation. It is necessary to shorten the information 
iteration cycle as much as possible on the premise of 
ensuring the information quality. The interaction 
pointing to the equipment is the purpose. If the 
performance is reduced in this step, it may lead to a 
vicious circle in the follow-up. Therefore, sufficient 
arguments and risk prevention measures are necessary 
when implementing the feedback suggestions. 

3.2. problem analysis 

The analysis of the target problem considered both 
the experience from VV&A process in M&S and the 
dynamic evolution feature of DT. The analysis consists 
of the meaning of DT credibility and its assessment, 
credibility assessment in intelligent manufacturing 
scenarios, trigger modes of the assessment, impact of 
assessments with different trigger frequency and 
important factors for assessment frequency 
adaptation.  

1）The meaning of DT credibility and its assessment

The credibility of an equipment digital twin is the
degree of correctness and timeliness of the given DT, 
simulation process and simulation results, when DT 
continuously interacts and evolves in each stage of the 
equipment life cycle, under the requirements defined 
by Lu et al. (2023). 

Credibility assessment requires evaluation of the 
model building process, the application process, and 
the simulation results. For the digital twins, this 
evaluation process is too time-consuming to be 
feasible, and therefore requires significant 
simplification, such as separating the basic evaluation 
from the dynamic evaluation. For parts that remain 
constant over time or change very slowly, a thorough 
and detailed basic evaluation is performed at long 
intervals. While for parts that change rapidly, a fast 
dynamic evaluation is performed using algorithms 
based on real-time data.  

2) Credibility assessment in intelligent 
manufacturing scenarios 

In the intelligent manufacturing scenario, due to the 
flexibility of the manufacturing process, the 
correlation between multiple types of manufacturing 

equipment is not fixed. The equipment faces more 
possibilities of working environment and work 
content. So the change of equipment and the changing 
frequency are unpredictable. Therefore effective 
credibility assessment is needed to confirm the real-
time consistency of the twin model of each equipment 
and its physical object. Otherwise the planning of the 
manufacturing process could hardly have practical 
effect due to a large number of errors that cannot be 
predicted in advance. 

3) Trigger analysis for credibility assessment

There are three main trigger modes for the
credibility assessment process. 

The first is the time-triggered mode, i.e., setting the 
frequency of the interval to trigger the evaluation 
process fixedly. This approach is more effective for 
demand scenarios with fewer change possibilities, and 
once the device has a rapid and complex change, the 
assessment frequency needs to be set to a fixed higher 
value, which is a waste of resources.  

The second is the event-triggered mode, i.e., the 
corresponding evaluation is triggered based on 
detected events such as device state changes or end-of-
evolution process flags. This approach is more effective 
for scenarios with apparent change states and simple 
interaction processes. If the device interaction is 
complex and the change situations are diverse, it is 
difficult to preset the detection parameters or methods 
in advance.  

The third is a mixed event and time trigger mode, 
that is, set a fixed lower interval time, while also 
responding to the received event trigger signal. This 
mode can play the advantages of both modes to a 
certain extent, but does not compensate enough for the 
disadvantages of both. There is an actual need for an 
adaptive interval frequency trigger mode. It can not 
only automatically calculate the appropriate high 
frequency trigger signal in the changing complex 
working conditions, but can also adjust to a lower 
frequency trigger signal in the low period of the scene 
events. 

4) Analysis of the impact of high and low trigger
frequency on credibility assessment 

The frequency of the credibility assessment trigger 
is compared to the states change speed of the physical 
objects. When the credibility assessment trigger 
frequency is high, the data related to the changing 
physical objects can be collected more 
comprehensively. However, when the evaluation 
frequency is much larger than the change rate of 
physical objects, it will generate a large amount of 
unnecessary sampling data, trigger lots of evaluation 
process. This further increases the computational 
workload of the evolution process trigger, which will 
cause a lot of waste of system physical and 
computational resources, and even cause repeated 
conflicts before and after the evolution process. When 
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the evaluation frequency is low, the change states of 
some physical objects will be missed, which causes 
inconsistency between the DTs and physical objects 
fundamentally. If the change states of physical objects 
have little impact on the application requirements of 
the DTs, this relatively low evaluation frequency can be 
accepted to obtain a better balance considering the 
resource efficiency. 

5) Analysis of important factors for assessment
frequency adaptation 

a. The effect of working conditions

From the analysis of the trigger frequency impacts,
it is clear that the change speed of the working 
condition will affect the change speed of the 
equipment. Thus the optimal frequency of the 
assessment will be affected. The understanding of the 
working conditions comes from the environmental 
perception, so it is necessary to collect data, analyze 
and model the environment factors that can affect the 
change of the equipment. So that the change of the 
working condition and the change of the equipment can 
be deduced in turn. Due to the high uncertainty of the 
environment and the ambiguity of the influence 
mechanism between the working conditions and the 
equipment, it is difficult to make accurate analyses and 
predictions. Considering that this factor is an indirect 
influence, a qualitative analysis can be performed to 
give a rough estimate, and further frequency 
adjustment can be used to find the optimal frequency 
value. 

b. The effect of user requirements

The user requirements refer to the requirements for
the application of DTs. In this context, it refers to the 
optimality or planning requirements for the 
manufacturing capability of each device in a intelligent 
manufacturing scenario. This type of requirements will 
determine the credibility requirements for each 
assessment indicator of the manufacturing equipment 
DTs. The credibility requirements determine the 
acceptable range of variance between the falsity and 
reality indicated by each indicator. According to the 
analysis of the impact of evaluation frequency on 
plausibility, when the frequency is lower, the clarity of 
the physical objects variation will be lower. So the lower 
limit of the assessment frequency for each indicator 
will be determined by the acceptable error range given 
by the user requirements. 

c. The effect of evolution methods

The evolution methods are methods that adjust the
existing model in the direction of error reduction. 
Different evolution methods have various sensitivity to 
errors. When the error changes are small, some 
methods can target evolution for each tiny change, 
some methods will be fuzzy and unify the changes as 
one, and some methods will not be able to identify the 
changes and do not evolve. There is no absolute 
superiority or inferiority of each type of method itself. 

It is necessary to comprehensively consider the specific 
demand scenario with the corresponding evolution 
method and configure the appropriate evaluation 
frequency. For example, for evolution methods with 
high sensitivity, in high precision manufacturing, the 
credibility requirement for the DT is rather high. The 
DT needs to be evolved immediately for any small 
errors. So that a high frequency should be configured 
for the assessment. However, in toy-like 
manufacturing with low precision requirements, high-
frequency evaluation will trigger high-frequency 
evolution, resulting in unnecessary waste of 
computational resources. In such cases, a low 
frequency should be configured for the assessment. 

d. The effect of assessment time consumption

In different scenarios, with different devices, 
different assessment methods will consume different 
periods of time. If the assessment time is too long, it is 
not suitable to use a higher assessment frequency, 
otherwise more and more assessment processes will 
linger in the system and the resource cost effectiveness 
will be low. From another perspective, assessment 
methods with longer assessment time cost are 
inherently unsuitable for physical objects that change 
fast. This inherent constraint enables assessment time 
consumption to be an important reference factor for 
assessment frequency, and the two should be kept 
within a certain ratio. 

e. The effect of resource costs

Resource costs include the costs of data acquisition,
transmission, and storage, and the cost of assessment 
computation resources, which is an important factor 
limiting the upper limit of assessment frequency. When 
the assessment cost is relatively high, the grasp of the 
dynamics of physical object changes is limited to a 
certain extent and thus is not applicable to physical 
objects that change too rapidly. This is similar to the 
analysis of time consumption described above. 
However, there is no necessary correlation between 
time consumption and resource costs. Only if one part 
of the assessment process is particularly slow, the 
overall time spent will be long, while the resource costs 
may still be low. Therefore, the impact of time 
consumption and resource costs on the frequency of 
assessment should be viewed together. 

The analysis above is referred to the VV&A 
experience and the prominent evolution feature of DT. 
To balance the performance and cost of the DT 
credibility assessment, the PSO algorithm is 
reconfigured by optimizing five important factors 
raised by the analysis. 

3.3. methodology 

In this paragraph, the PSO (Particle Swarm 
Optimization) algorithm is introduced firstly, then the 
acquisition methods of each frequency influencing 
factors are briefly analyzed, and the total method 
including data acquisition, factors calculation and the 
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adjusted PSO algorithm is given in the end. 

1) PSO algorithm

In 1995, inspired by the regularity of bird flock
foraging behavior, James Kennedy and Russell 
Eberhart developed a simplified algorithmic model that 
was eventually improved over the years to form the PSO 
algorithm, which can also be called the particle swarm 
algorithm. 

Particle swarm algorithms have the advantages of 
fast convergence, few parameters, and simple 
implementation of the algorithm (for high-
dimensional optimization problems, convergence to 
the optimal solution is faster than genetic algorithms), 
but there is also the problem of falling into a local 
optimal solution. 

The idea of the particle swarm algorithm originated 
from the study of the foraging behavior of a flock of 
birds, where the flock finds the optimal destination by 
sharing information collectively. In the figure below, 
imagine a scenario in which a flock of birds is searching 
for food randomly in a forest, and they want to find the 
location with the largest amount of food. However, 
none of the birds know exactly where the food is, but 
only have a sense of where it is in the general direction. 
Each bird searches in the direction it decides, and 
during the search it records the location where it has 
found the most food and the amount of food. During the 
search process, each bird adjusts its search direction 
according to the location with the most food in its 
memory and the location with the most food recorded 
by the current flock. After a period of searching, the 
flock can find out where the most food is in the forest. 

2) The obtainment of frequency influencing factors

The adaptive assessment frequency is composed of a
weighted sum of 5 influencing factors in Eq.1. 

F = 𝐴1 ∗ 𝑆 + 𝐴2 ∗ 𝐿 + 𝐴3 ∗ 𝐸 + 𝐴4 ∗ 𝐶 + 𝐴5 ∗ 𝑅 (1) 

Where F  is the adaptive assessment frequency, 𝑆  is 
the change rate of the equipment, 𝐿 is the lower limit 
given by user requirements, 𝐸 is the sensitivity of the 
evolution method, 𝐶  is the assessment time 
consumption, 𝑅  is the resource costs, 𝐴1 ~ 𝐴5  are the 
parameters to be optimized by PSO. 

To obtain S, the data that can be collected from the 
working environment should be analyzed.  Appropriate 
acquisition points should be selected for the 
environmental data 𝑥(𝑡) . Use the batch of data to 
construct the working condition change rate formula 
𝑓(𝑥(𝑡)). Based on the experience and data 𝑦(𝑡) collected 
from the field tests, the working condition change rate 
is transformed into the equipment change rate by 𝑔(·,·) 
, which becomes one of the particle parameters. 

𝑆 = 𝑔(𝑓(𝑥(𝑡)), 𝑦(𝑡)) (2) 

To obtain 𝐿 , an analysis on user requirements is 
conducted to quantify the range of plausible values for 
the hierarchical indicators. The indicators are from 

multidimensional perspectives of the characterized 
manufacturing equipment DT. The value range is 
further analyzed to derive the lower limit of the 
assessment frequency of each indicator, which is 
denoted as (𝑙1, 𝑙2, … , 𝑙𝑛) . The assessment frequency is 
supposed to be the maximum of each lower limit, so 
that the physical state can be always fetched properly. 
The lower limit is not necessarily the lowest value of the 
actual assessment frequency, and sometimes the 
assessment accuracy needs to be sacrificed for the 
needs of lower resource costs or timeliness. 

𝐿 = max (𝑙1, 𝑙2, … , 𝑙𝑛) (3) 

To obtain 𝐸, the sensitivities of different evolution 
methods are quantified based on the concerning errors. 
The  sensitivity 𝐸s is calculated by Eq.4. The impact of 
evolution methods on the assessment frequency should 
be analyzed to initially establish suitable evolution 
methods under different scenario requirements. The 
corresponding sensitivity of the chosen evolution 
method is denoted as 𝐸. 

𝐸s =  
𝜀𝑚𝑖𝑛

𝜀𝑎𝑣𝑒𝑟𝑎𝑔𝑒
(4) 

Where the 𝜀𝑚𝑖𝑛  refers to the minimum error which 
can trigger the evolution process, the 𝜀𝑎𝑣𝑒𝑟𝑎𝑔𝑒  means 
the average of the error detected by the assessment. 

To obtain 𝐶 , the theoretical analysis of time 
consumption of each assessment process should be 
combined with actual measured data to get the average 
assessment time consumption 𝐶 under certain scenario 
conditions。 

To obtain 𝑅 , the cost of data acquisition, 
transmission and storage, and the cost of evaluation 
computing resources should be quantified one by one. 
Thus the average cost to be spent for one assessment 
process could be given. 

Considering the proposed influencing factors, the 
main processes of PSO algorithm is adapted and shown 
in fig.2 . 

3) Adaptive algorithm

Fig. 2 Algorithm flow chart 
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Table 1. Algorithm pseudo-code. 
Algorithm: PSO for adaptive assessment frequency 

1: FOR each influencing factors 
2:   Obtain factor value 
3: FOR each particle 𝑖 
4:   FOR each factor parameter A 
5:     Initialize position 𝑥iA randomly within 

acceptable range 
6:     Initialize velocity 𝑣iA randomly within 

acceptable range 
7:   END FOR 
8: END FOR 
9: Iteration 𝑗 = 1 
10: DO 
11:   FOR each particle 𝑖 
12:     Update frequency 𝐹 according to the 

equation 
13:     F = 𝐴1 ∗ 𝑆 + 𝐴2 ∗ 𝐿 + 𝐴3 ∗ 𝐸 + 𝐴4 ∗ 𝐶 + 𝐴5 ∗ 𝑅 

14:     Calculate fitness value 
15:     IF the fitness value is better than 𝑝𝑖𝐴,𝑝𝑏

𝑗  in 
history 

16:       Set current fitness value as 𝑝𝑖𝐴,𝑝𝑏
𝑗  

17:     END IF 
18:   END FOR 
19:   Choose the particle with the best fitness value 

as the  𝑝𝐴,𝑔𝑏
𝑗  

20:   FOR each particle 𝑖 
21:   FOR each factor parameter A 
22:       Calculate velocity according to the equation 
23:       𝑣𝑖𝐴

𝑗+1
= 𝜔𝑣𝑖𝐴

𝑗
+ 𝑐1𝑟1(𝑝𝑖𝐴,𝑝𝑏

𝑗
− 𝑥𝑖𝐴

𝑗
) + 𝑐2𝑟2(𝑝𝐴,𝑔𝑏

𝑗
−

𝑥𝑖𝐴
𝑗

) 

24:       Update particle position according to the 
equation 

25:       𝑥𝑖𝐴
𝑗+1

= 𝑥𝑖𝐴
𝑗

+ 𝑣𝑖𝐴
𝑗+1

26:     END FOR 
27:   END FOR 
28: 𝑗 = 𝑗 + 1

29: WHILE maximum iterations or minimum 
error criteria are not attained 

In the pseudo-code given in table 1, 𝑖 is the particle 
number, A  is a certain parameter to be optimized in 
Eq.1, 𝑥iA  is the position value of parameter A of the 
particle 𝑖 , 𝑣iA is the velocity value of parameter A of the 
particle  𝑖 , 𝑗  is the iteration number, 𝑝𝑖𝐴,𝑝𝑏

𝑗  is the 
individual optimized value of parameter A of particle 𝑖 
in iteration 𝑗, 𝑝𝐴,𝑔𝑏

𝑗  is the population optimized value of 
parameter A  in iteration 𝑗 , 𝑣𝑖𝐴

𝑗  is the velocity value of 
parameter A of the particle  𝑖  in iteration 𝑗 , 𝑥𝑖𝐴

𝑗  is the 
position value of parameter A of the particle  𝑖  in 
iteration 𝑗.  

The velocity updating equation is as follows: 

 𝑣𝑖𝐴
𝑗+1

= 𝜔𝑣𝑖𝐴
𝑗

+ 𝑐1𝑟1(𝑝𝑖𝐴,𝑝𝑏
𝑗

− 𝑥𝑖𝐴
𝑗

) + 𝑐2𝑟2(𝑝𝐴,𝑔𝑏
𝑗

− 𝑥𝑖𝐴
𝑗

) (5) 

Where 𝜔 is the inertia weight of a certain particle, 𝑐1 
is the individual learning rate, 𝑐2  is the population 
learning rate , 𝑟1, 𝑟2  are randomized among [0,1] to 
increase the randomness of the search.  

There are three parts in the velocity updating 
equation. The first is 𝜔𝑣𝑖𝐴

𝑗 , which is the inertia part. This 
part represents the confidence in the previous motion 
state of the particle itself. Larger 𝜔 is good for global 
search, jumping out of local extremes and not falling 
into local optimums, while a smaller 𝜔 is beneficial to 
local search, allowing the algorithm to converge to the 
optimal solution quickly. When the problem space is 
large, in order to achieve a balance between search 
speed and search accuracy, it is a common practice to 
make the algorithm have a high global search capability 
in the early stage to get a suitable seed, and a high local 
search capability in the later stage to improve the 
convergence accuracy, so It is not desirable to have a 
fixed constant. In the manufacturing scenario, the 
working condition would not change too fast, so the 
inertia weight should pick a relatively high number, 
like 1.5 or 1.8. 

The second is 𝑐1𝑟1(𝑝𝑖𝐴,𝑝𝑏
𝑗

− 𝑥𝑖𝐴
𝑗

), which is the cognitive 
part. It represents the part of the particle's own 
experience, which can be understood as the distance 
and direction between the particle's current position 
and its own historical optimal position. When the 
working condition is relatively stable, it is 
recommended to choose a higher value of 𝑐1 than 𝑐2 to 
obtain the optimized solutions more precisely, like 𝑐1 =
2.2, 𝑐2 = 1.8. 

The third is 𝑐2𝑟2(𝑝𝐴,𝑔𝑏
𝑗

− 𝑥𝑖𝐴
𝑗

), which is the social part. 
It denotes the information sharing and cooperation 
between particles, especially from the experience of 
other good particles in the population, which can be 
understood as the distance and direction between the 
current position of a particle and the historical optimal 
position of the population. 

4. Results and Discussion

With the analysis of DT characteristics and the
understanding of the connotation of DT credibility, this 
paper proposes the meaning and importance of DT 
credibility assessment in intelligent manufacturing 
scenarios. Further, with respect to the frequency of 
credibility assessment, the patterns of assessment 
triggers in intelligent manufacturing are analyzed, and 
the impact of different assessment frequency on the 
assessment effect is discussed. The impact on the 
effectiveness of assessment frequency is analyzed from 
five main aspects: working conditions, user 
requirements, evolution methods, assessment time 
consumption, and resource costs. The quantitative 
acquisition methods of each factor are briefly 
introduced.  

The optimization function of the assessment 
frequency is organized according to the idea of multi-
objective optimization, and the PSO algorithm is 
modified to adapt it to the requirements of this 
scenario. The preferential settings of some parameters 
in the algorithm are initially discussed for the 
characteristics of the intelligent manufacturing 
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scenario. Finally, the whole process including data 
collection, influence factors acquisition, parameter 
optimization and the pseudo-code of the core 
algorithm are formed. The method can solve the 
problem of DT credibility assessment frequency 
adaptation in the intelligent manufacturing scenario. 

The analysis of assessment frequency in this paper is 
a major missing point in the current research on digital 
twin trusted assessment. Most of the research has not 
yet focused on the profound impact on assessment 
brought by the automatic cycle of rapid construction, 
real-time assessment, and dynamic use of digital 
twins. This paper provides a preliminary analysis of the 
issue, and the relevant assessment elements, access 
methods, and overall self-optimizing adjustments are 
of high value to the effectiveness of DT credibility 
assessment. 

5. Conclusions

In this paper, an adaptive assessment frequency
optimization method is proposed. The optimal 
assessment frequency can be adjusted in real time 
using particle swarm optimization algorithms 
according to five influencing factors: working 
conditions, user requirements, evolution methods, 
assessment time consumption, and resource costs. The 
method is of high value to the effectiveness of DT 
credibility assessment in intelligent manufacturing 
scenario. The DT credibility can be assessed properly by 
adjusting the assessment frequency to balance the 
accuracy, time consumption and cost. For the efficiency 
limitation of the PSO algorithm, the working condition 
could not change too rapidly. Otherwise, it would be 
difficult to converge at the optimal frequency. 
Optimization algorithms that balance global optimum 
search power and convergence efficiency need to be 
carried out. More detailed parameterization and fuller 
experimental validation also need to be done in the 
future. 
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