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Abstract

In a simulation model of a railway system it is a necessity, to have realistic train overtaking behavior during disturbances. Many
simulation tools address this problem by using simple overtaking solutions, such as look ahead. These tend to be non-intuitive to
configure and often not very human-realistic. The goal of this paper is to design a fuzzy system that can easily be used to simulate
human-realistic overtaking behavior. A fuzzy system has been chosen because this approach is well-suited for human-style decision
making. The presented fuzzy system considers timetables, train positions, delays, buffer times etc. as inputs and provides instructions
to the simulation tool whether given train should or should not be overtaken. Finally the performance of the system is evaluated by a
case study simulating a part of the railway system in the Czech Republic around the town of Pardubice.
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1. Introduction

Overtaking is a common occurrence in railway traffic
and therefore it is a necessity to have realistic overtak-
ing behavior in railway traffic simulations. A simulation
ran without any overtaking would be very unrealistic and
would not be able to provide any useful outputs. Simi-
larly a simulation with poorly facilitated overtaking also
wouldn’t be able to provide any useful outputs. It is there-
fore something that must be addressed in every railway
traffic simulation (excluding some more limited systems
where overtaking is not possible at all or not usually per-
formed, such as many subway systems).

Configuring overtaking behavior in a simulation tool
can be rather tricky, especially for newcomers. Commonly
used simulation tools provide some built-in overtaking
solutions, but these are usually very simple and not very
human-like. They also tend to require quite extensive
knowledge of their inner workings to configure in a satis-
factory way. Atop of that the configuration typically cannot

be transferred between different models, because it is very
specific to the model it was created for.

This paper’s goal is to create a decision support system
that would be able to make decisions about overtaking in
a human-like manner. This should be possible without
the need for model specific configuration and especially
weird hacks to achieve the desired overtaking behavior.
The decision support system should also be able to adjust
itself not only to the model as a whole but also to the nature
of the infrastructure and traffic in different parts of the
model.

2. State of the art

The typical solution to the problem of overtaking in railway
traffic simulations is to use look aheads. These are typi-
cally out-of-the-box built into the simulation tools and are
usually very simple implementation wise and with very
good performance. However, they are not very human-
like and can be quite tricky to configure well. They are
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also prone to misbehaving, most notably commonly mak-
ing trains wait to be overtaken on main lines and then
overtaking them on speed limited sidings.

They also have issues with diverse models, where the
look ahead distance has to be picked more as a compromise
than an actually ideal value. In such a model a part with
longer stretches between stations would need longer look
ahead distances to achieve the same level of realism as a
part with shorter stretches between stations. In some tools
this may not be possible at all, as the look ahead distance is
a global setting (e.g. in OpenTrack it’s configured per train
category but stays the same across the model). Leading to
overtaking almost never happening in some parts of the
model. In other parts trains can be blocked for overtaking
event though the overtaking train is still quite far away
and there are other stations further ahead the line where
the overtaking could be performed.

Since overtaking is so common in railway traffic, it is a
well researched topic. There are many papers that touch
on the subject of overtaking in from various perspectives.
In Josyula et al. (2020) the authors explore the problem
of overtaking in the context of train timetable reschedul-
ing. They propose a method for finding a diverse set of
possible solutions that are then presented to a dispatcher
as an aid in their work. The dispatcher then picks the best
solution from the set, modifies it to their liking or discards
it altogether.

The solutions provided would be rather difficult to im-
plement in a simulation tool, as they would require a whole
second decision support system to be implemented. The
seconds system would have to be able to evaluate and pos-
sibly even modify the solutions provided to apply them
to the simulation. This would be a very complex task and
would require a lot of work to implement. Given the wildly
different goal of the paper, it would most likely be better
to start from scratch (Josyula et al. (2020) could be handy
as inspiration).

Other papers such as Obara et al. (2018), Cavone et al.
(2022) and many others focus on real world applications.
Some of them are easier to implement in a simulation tool
than others. A subset of these was even tested in various
forms of simulations, though not necessarily in off-the-
shelf simulation tools that would be usable by the general
public (e.g. having an at least somewhat user-friendly
GUI). However almost none of them are focused on simu-
lations specifically, mostly as dispatcher aids or automatic
train control systems for real world applications. There
alsoaren’t many papers that would focus solely on the over-
taking problem, most of them focus on the larger problem
of train timetable rescheduling (which usually includes
reordering AKA overtaking as one of it’s parts).

The use of fuzzy systems in this type of problem is not
very common. This used to be explored more in the past,
though again with focus on real world applications rather
than simulations. Examples can be a fuzzy control system
for dispatching on a mining railway in Brazil explored in
Vieira and Gomide (1996) or a dispatcher aid implemented

with the help of a fuzzy system in Fay and Schnieder (1997),
the goal here is very similar to Josyula et al. (2020). Re-
cently the research has moved to linear programming,
neural networks and the like. With papers like Zhu et al.
(2020) based on Q-learning, Cavone et al. (2022) mixed
integer linear programming or Obara et al. (2018) using
reinforcement learning (specifically Deep Q-Network).

This being said, fuzzy systems are pretty common in
railway applications, just not in the context of overtak-
ing nor rescheduling. Fuzzy systems has, in general, not
only in railway related applications, moved mostly to solv-
ing smaller technical problems. These, specifically in the
scope of railways, include brake assistance, as explored
in Tsuneyoshi et al. (2022), a study comparing different
fuzzy inference types. Other focus on vibration mitigation,
as explored in Sezer et al. (2011) and many other topics and
papers.

The fuzzy system developed as part of this paper is a
continuation of my prior work on Vycital (2022), which
was more a proof of concept than a fully fledged solution,
though it did work. More generally it is a continuation
of my work on Vy¢ital and BaZant (2020) and Vycital and
Bazant (2021). The algorithm from Vycital and BaZant
(2021) will serve as the basis for the fuzzy system devel-
oped in this paper, being the best performing of my work
so far.

The system presented in Vycital and BaZant (2020) was
a very simple system that was able to perform overtaking.
It quite well addressed the issues of overtaking over sid-
ings OpenTrack’s built-in solution is prone to. However it
had issues with trains overtaking each other repeatedly,
requiring quite high thresholds to prevent this, which in
turn cut significantly down on overtaking in general.

This issue was mostly mitigated in Vy¢ital and Bazant
(2021), however it brought the necessity of manually con-
figuring bonuses and penalties for individual categories of
trains. What also came up in the work following the paper,
was the need to use more advanced approach to creating
more complex decision support systems. This is where
Vy¢cital (2022) comes in, it explores the use of fuzzy sys-
tems for this purpose. However this was more of a proof of
concept than a fully fledged solution, as it was not able to
perform as well as the algorithm from Vy¢ital and Bazant
(2021).

3. Fuzzylogic

In fuzzy logic, discrete input values are mapped to words
of linguistic variables, each with certain degree of mem-
bership. These words are then used by rules (in the form of
IF-THEN statements) that execute the desired logic. The
rules then map to fuzzy words of linguistic variables on
the output side, again each with certain degree of mem-
bership based on the degrees of membership of the input
words used by given rule. The output linguistic variables
are then defuzzified, that is converted into discrete values.

A simple example relevant to the topic of this paper



could be a single rule fuzzy system that decides whether
to overtake or not based on the ETA at the next station.
The rule would be: IF train ahead’s ETA is late and train
behind’s ETA is soon THEN overtake is strong yes. The
input variables would be the ETAs for each train and the
words “late” and “soon”. The output variable would be
“overtake” with the words “strong yes”, “weak yes” and
“no”. An input of 5 min for the train ahead and 3 min for the
train behind would map to the words “late” with strength
0.8 and “soon” with strength 0.2 for the train ahead and
“soon” with strength 0.8 and “late” with strength 0.2 for
the train behind. Executing the rule would then yield out-
put of “yes” with strength 0.8 (another rule could also add
“no” with some strength to the mix at the same time and
so on). This can be then defuzzified to a discrete value of
overtake equals 83 % if we define the range as 0 meaning
no and 1 meaning yes with equally distributed words on
the range by center of gravity defuzzification. Since the
output is now a discrete value, it can be used normally
outside of the fuzzy system (e.g. we can decide that any
recommendation above 60 % is good enough to plan the
overtaking maneuver).

4. Fuzzy system

From design perspective a decision has been made to al-
ways consider two trains in isolation and compare the dif-
ferences between the two to make a decision whether to
overtake or not. The main goal is to abstract away from
any specifics of the model or even the trains themselves.
This way, it’s possible to use the same fuzzy system for
any model and any number of trains. This idea has already
been tested as a proof of concept in my previous work in
Vycital and Bazant (2020) (comparing differences between
trains to decide overtaking) and in Vy¢ital (2022) (feeding
the differences into a fuzzy system to decide overtaking)
and proved to be a good approach.

There are some caveats to this approach however. The
most obvious is that there are more than two trains in a
typical model and overtaking can very easily affect many
trains at once, both positively and negatively. This isn’t so
severe issue that it would prevent the use of this approach
in practice, in the end approaches such as look ahead don’t
evaluate the effects on other trains either and are still com-
monly used in practice with good results. It does, however,
likely limit the maximum possible potential that this ap-
proach could achieve.

Another caveat comes from system designer’s perspec-
tive and that is that all inputs have to be preprocessed
and normalized to be comparable and independent of the
model. This can lead to a bit cryptic inputs to the fuzzy
system, which are a bit harder to understand than the
raw absolute values. However, considering how difficult it
would be to design a fuzzy system that would work with
raw absolute values and achieve the same model indepen-
dence, this is a good trade-off.
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4.1. Implementation

The fuzzy inference system is implemented in Mamdani
EH (1974) style. On the technical side of things, TypeScript
Microsoft (2023) running on Node.js Foundation and con-
tributors (2023) is used with the @thi.ng/fuzzy library
Schmidt (2020) facilitating general fuzzy logic to avoid
reinventing the wheel. The simulation itself is then run-
ning in the simulation tool OpenTrack Huerlimann (2017).
Communication between the simulation tool and the fuzzy
system is done via custom tool utilizing OpenTrack’s SOAP
API Huerlimann (2020). This tool further avoids reinvent-
ing the wheel with the use of other well known libraries
like Axios Zabriskie (2023) to send commands to the simu-
lation tool, Fastify Fastify (2023) to receive messages from
the simulation tool and others.

The overtaking maneuver planning is done via a series
of route blocking commands send to the simulation tool.
The routes are blocked for the train that is supposed to
wait for the other train to overtaken it. Concretely the
route through the main line track is blocked, so that the
train will use some of the more distant tracks to wait for
the other train to overtake it. Also all of the routes out of
the station are blocked, so that the train will not be able
to depart before the other train has overtaken it and the
routes are unblocked again.

This method has been chosen as it allows for custom
overtaking without reimplementing all of the logic that the
simulation tool already has for route planning. OpenTrack
continues to make all of the decisions as normal it just
knows that it’s not supposed to let given train on given
routes. There wouldn’t be much of an advantage in taking
complete control over the route planning.

4.2. Input data

The input variables are based on exports from the simu-
lation tool (static things like timetables or infrastructure)
and the current state of the simulation (dynamic things
like train positions or delays). These are then preprocessed
into a few values that are easier to use for comparisons in
the fuzzy system. Some are simply subtracted from one
another, after being taken for the two trains in consid-
eration (e.g. stop frequency). Other are combined from
multiple sources to form a single value before being sub-
tracted from one another to create the differential input
value (e.g. ETA).

The core input value is the difference in ETA between
the two trains in consideration. The basic idea behind
the ETA is when would the train arrive at the station in
question if there were no other trains on the railway. The
exact formula is taken from Vy¢ital and Bazant (2020):

e = a+max(0,d — b) (1)
where e is the ETA, a is the timetabled arrival of the train,

d is current delay and b is the timetabled buffer time. This
is then calculated for each train in consideration and the
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difference between the two is taken and used as for the
fuzzy variable depicted in 1.

The variable is split into 4 words: “soonish”, “slightly
later”, “later” and “very later”. The word soonish repre-
sents ETA differences where the train ahead is expected
to arrive sooner, at about the same time or up to 160s
later. There generally isn’t much point in differentiating
between these cases as the overtaking will likely cause
about the same if not higher delay and won’t be worth it,
at least not right now, it may be worth it later on. The next
word slightly later represents the next 40 s of ETA differ-
ence where overtaking starts looking more appealing. The
word later is further 40 s of ETA difference after that and is
the point where overtaking is generally a good idea. With
the last word very later capturing the rest being mostly a
no-brainer for overtaking.

soonish slightly later &V later  very later
-800 0 180260 340 800

Figure 1. An input variable for the difference in ETA (in seconds) between
the two trains in consideration.

Next input is the difference in stopping frequency. Stop-
ping frequency is defined as the percentage of stops at
which the train stops compared to the total number of
stops on the path the train is timetabled to take. The fig-
ure 2 provides visualization of the variable. The variable is
designed to provide the ability to penalize or reward over-
taking based on the difference in stopping frequency of
the two trains in consideration. Since there are no hard
anchor points for this variable, the words simply taper of
towards the middle to give a transition between the words
and therefore to allow the rules to apply more strongly
where the difference is higher.

lower same higher

1 0.5 0 0.5 1

Figure 2. An input variable for the difference in stopping frequency be-
tween the two trains in consideration.

Lastly there is a variable 3 indicating whether the train
ahead, that may stop to be overtaken, is timetabled to stop
there anyway. This isn’t actually a fuzzy variable, it’s bi-
nary. Either the train is timetabled to stop there and it will
be 1 or it isn’t and it will be —1. They idea is to be able to
take advantage of the opportunity to overtake a train that

is going to stop either way and avoid the delays associated
with an unplanned stop.

no yes

Figure 3. An input variable indicating whether the train ahead is timetabled
to stop where the overtaking may happen.

Compared with my previous attempt at creating a fuzzy
decision system for overtaking from Vycital (2022), two
input variables has been completely omitted. They turned
out to be anywhere between useless and detrimental to the
performance of the system, depending on the rules that
used them as inputs. [ was simply unable to find a way to
beneficially include them in the system.

The first omitted input is the difference in top speed be-
tween the two trains in consideration. This turned out to
be a bad idea as the top speed of a train is not a good indica-
tor of the train’s ability to overtake. The reason is that the
top speed is not the speed at which the train is currently
traveling or will be traveling later on, but the maximum
speed it can travel at. Trains often travel at a lower speed
due to speed restrictions imposed by the infrastructure
(e.g. the model used in the case study contains trains with
top speeds as high as 230kmh™ but no infrastructure
above 160 km h™1). The speed the train will actually travel
at is also already taken into account in the ETA calcula-
tions as it is a part of the timetable (i.e. a train that can’t
go more than 100 km h™! is not going to be timetabled to
cover 100 km in less than 1h).

The second omitted input is the difference in priority
between the two trains in consideration. In this case, I
tried considerably more approaches to including it in the
system, but none of them worked well. Many were outright
detrimental to the performance of the system, causing
weird overtaking choices that should generally be avoided.
This isn’t ideal as priority is very commonly considered
when deciding whether to overtake or not.

The reason for this is that the priority of a train is not
necessarily indicative of how quickly will the train pass
through the railway section in question. Two trains that
will behave exactly the same in given section may have
different priorities assigned to them (quite a few do in
the case study included in this paper). This can lead to
situations where lower priority train stops at a siding, lets
the higher priority train pass and then continues on its
way. Gaining delays in the process and forcing the higher
priority train to decelerate as it slows down on the main
line before entering the siding, generating delays for the
higher priority train as well. After all of this, the two trains
then continue to their destinations, the higher priority
train now being ahead the lower priority train, both with



higher delays than before, with absolutely no benefit to
either of them. Potentially also causing delays to other
trains that may be following them.

The ETA input variable has also been significantly
changed compared to the version in Vycital (2022). It
turned out that having multiple words around 4 min mark
is more interesting for creating rules than differentiating
between inputs close to 0 min. Overtaking generally adds
delays in the short term so there has to be a significant
future benefit to overtake in order to make it worth it.

4.3. Output data

Since the purpose of the fuzzy system is to recommend
whether to overtake or not, the output consists of a single
variable indicating the strength of the recommendation
to overtake. The variable can be visually seen in 4 and it
consists of five words. The words are evenly spaced out
to allow the rules to express recommendation to overtake
and not to overtake with two levels of strength and also no
preference.

strong no weak no maybe weak yes strong yes
0 1 2 3 4 5 6 7 8 9

Figure 4. The output variable for the strength of the recommendation to
overtake.

To use the output in the simulation tool, which expects
adiscrete order to overtake or not, the output is defuzzified
using the center of gravity method. This yields a discrete
number which is further reduced to a binary value by com-
paring it to a threshold of 4.5, values through 4.5 mean
not to overtake and values above 4.5 mean to overtake. If
the result is to overtake, the simulation tool will then be
instructed to plan an overtaking maneuver. If the result is
to not overtake, the simulation tool will either receive no
instructions and continue as normal or it will be instructed
to cancel a previously planned overtaking maneuver.

4.4. Rules

Most of the rules compare differences and more complex
values created as described in the previous section. This
preprocessing is much simpler and more performant when
done in classic programming languages than in the fuzzy
logic system as combing and compering the raw values
would very quickly explode into a huge number of rules
and would be difficult to be made independent from con-
crete model or even station. Thanks to this the rules are
relatively simple and there aren’t that many of them, yet
they are crucial to the decision support system’s perfor-
mance as they combine them all together and create the
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final recommendation to overtake or not.

1. IF train ahead’s ETA is very later THEN recommenda-
tion to overtake is strong yes WEIGHT 1

2. IF train ahead’s ETA is later THEN recommendation to
overtake is weak yes WEIGHT 1

3. IF train ahead’s ETA is slightly later THEN recommen-
dation to overtake is maybe WEIGHT 1

4. IF train ahead’s ETA is soonish THEN recommendation
to overtake is strong no WEIGHT 1

5. IF train ahead’s stop frequency is lower THEN recom-
mendation to overtake is weak no WEIGHT 2

6. IF train ahead’s stop frequency is same THEN recom-
mendation to overtake is maybe WEIGHT 1

7. IF train ahead’s stop frequency is higher THEN recom-
mendation to overtake is weak yes WEIGHT 1

8. IF train ahead stops anyway THEN recommendation
to overtake is weak yes WEIGHT 1

9. IF train ahead doesn’t stops anyway THEN recommen-
dation to overtake is weak no WEIGHT 1

The backbone of the decision are rules number 1—4.
They analyze the difference in ETA between the two trains
in consideration. This on its own is pretty much what Vyc¢i-
tal and Bazant (2020) is based on, however here it’s com-
bined with additional rules, which will be described later,
instead of a single threshold to plan or cancel overtaking.
Overtaking is strongly recommended if the train ahead is
expected to arrive substantially later than the train which
is considering overtaking. On the other hand if the train
ahead is expected to arrive sooner, at the same time or only
slightly later, overtaking is strongly not recommended.
There are also two intermediate levels of recommendation,
in case the difference in ETA is not as clear.

Rules number 5—7 analyze the stopping frequency of
the trains in consideration. The reasoning behind this is
that the more the train stops the more likely it is to cause
a lot of delays to the trains behind it in case of further
disturbances (e.g. an intercity train catching up with a
commuter train and being stuck behind it running slowly
or worse, stopping on red signals, because the commuter
train has to stop at every stop along the way). On the other
hand a train stopping often is unlikely to ever catch up with
a train stopping rarely. These rules therefore discourage
overtaking when the train that is being overtaken stops
less often than the train that is considering overtaking and
vice versa. The negative recommendation is stronger than
the positive one as overtaking carelessly is quite likely
to cause a lot of delays to all trains involved even those
involved only indirectly.

Finally rules number 8—9 analyze whether the train
ahead is going to stop regardless of whether the overtak-
ing is planned or not. If the train ahead does stop anyway,
then further recommendation to overtake is added. How-
ever if the train would otherwise pass without stopping,
then a recommendation against overtaking is added. This
is because if the train ahead is going to stop anyway, then
it’s only going to be held in the station longer, no other
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delays, when compared to the timetable, are going to be
caused to it. In the case that the train would otherwise
pass without stopping, the time spent decelerating to stop,
acceleration to get back to speed, spent waiting in the sta-
tion and by running on the longer path on the siding and
atop of that most likely at lower top speed are going to be
added as none of that was timetabled for. It can also affect
the train behind it as it itself might have to slow down to
keep the safe distance and then accelerate back to speed, in
worst case scenario it might encounter red signal and stop
completely. For these reasons overtaking when the train
that is to be overtaken stops anyway due to it’s timetable
is highly advantageous.

5. Evaluation

To evaluate the fuzzy system a simulation was run in the
simulation tool OpenTrack with and an algorithm from my
older paper Vycital and BaZant (2021). The algorithm from
Vycital and Bazant (2021) was used with the same config-
uration as in the paper however the model has been mildly
modified in the meantime and more importantly the code
connecting the algorithm to the simulation tool has been
significantly changed. These changes fixed some race con-
ditions that were present in the original implementation
and made the runs replicable. It nevertheless changed the
results slightly, though the changes affect all runs more
or less equally (i.e. rerunning the case study comparing
Vycital and BaZant (2020) and Vy¢ital and BaZzant (2021)
as presented in Vycital and BaZant (2021) yields somewhat
different numbers but the same conclusions).

As mentioned before, in general terms the model is
still the same as in Vycital and BaZant (2021), that is: The
simulation model consists of a part of the Czech railway
network, specifically around the town Pardubice. Over-
all the model contains over 50 km of tracks with multiple
stations and stops. Topologically the infrastructure is con-
figured in Y shape with a branch line splitting in Pardubice
and continuing through Rosice providing inflow to and
outflow from the main line. With this the fuzzy system is
presented with traffic merging and splitting in different
directions, there is also traffic crossing the main line from
the branch line and vice versa. Both the main line and
the branch lines are double-track with very dense mixed
traffic. The traffic used is typical for the area, however is
not strictly speaking real world as the area is currently un-
dergoing a major reconstruction and the model represents
the situation after the reconstruction.

To prevent interference with decisions made externally
by the fuzzy system from this paper and the algorithm
from Vycital and BaZant (2021), the simulation was config-
ured with look ahead distance of 0 m. Setting it to anything
else could result in deadlocks, where OpenTrack would be
blocking one train from moving forward, because it would
be waiting for another train, whose look ahead reached
beyond the first train, to move forward. While at the same
time the second train would be blocked in place by the

fuzzy system’s overtaking decision. Even if that wouldn’t
happen, it would still void the results as it would be diffi-
cult to evaluate the performance of the fuzzy system, if it
was fighting with by the built-in look ahead of OpenTrack.

The delays were again configure the same as in Vy¢ital
and BaZant (2021): According to the SZDC SM124 guideline
SZDC (2019) (up to 2 h on entry, average delays are bellow
10 min. for passenger traffic), SZ (formerly SZDC) is the
local railway infrastructure manager. Exactly the same
delay scenarios used for the fuzzy system from this paper
were also used for the algorithm from Vycital and BaZant
(2021).

The simulation consisted of 30 runs with the fuzzy sys-
tem from this paper and another 30 runs with the algo-
rithm from Vy¢ital and Bazant (2021), each run containing
2 h of traffic.

6. Results

The high level overview of the results of the simulation is
visualized in 5. The fuzzy system presented in this paper
was able to match or outperform the reference algorithm
from Vycital and BaZant (2021) in every measured cate-
gory.

The reference algorithm from Vycital and BaZant (2021)
had to be manually configured with bonuses and penal-
ties for each train category to achieve the best results.
Meanwhile the fuzzy system from this paper was able to
achieve its results based solely on infrastructure exports
from OpenTrack and messages sent during the simula-
tion via OpenTrack API. Both of these were also used by
the reference algorithm from Vy¢ital and BaZant (2021) in
addition to the manually input bonuses and penalties.

Fuzzy System ! Reference Algorithm
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Al Commuter Freight Intercity

Figure 5. The average change in delay in seconds (y axis) per category of
trains (x axis) across the 30 runs.

The bar chart in 5 shows the average change in delay
in seconds across all of the trains and some interesting
categories of trains. The change in delay is calculated as
the difference between the delay at the destination and
the delay at the entry to the model, where negative means
decrease in delay and positive an increase in delay. The
delay at the destination is capped at 0 s from the bottom,



as there is little benefit in decreasing the delay further (the
train will wait for it’s scheduled 0 s delayed departure at
the next station anyway no matter how early it arrived).

Apart from the all category that contains all of the trains,
the data is split by the type of traffic. Freight trains are
grouped together in the freight category, these are quite
varied in their behavior but they all have lower priorities
than passenger traffic. Passenger trains that stop at most
(usually all) passenger stations and stops are grouped in
the commuter category. Whereas passenger trains that
stop only at bigger passenger stations are grouped in the
intercity category.

As mentioned before, the all category saw noticeable
decrease in delays. Inspecting the individual categories
reveals that intercity traffic gains delays and the other
two categories decrease their delays. This makes sense as
there are very small reserves timetabled for the intercity
traffic while the other two categories have more generous
timetables in this regard, making it easier to decrease their
delays.

Fuzzy System | Reference Algorithm
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Figure 6. The confidence interval for the average change in delay in seconds
across the 30 runs, run numbers are plotted on the x axis and the delay
gained while passing through the model on the y axis.

When comparing the fuzzy system from this paper to
the reference algorithm from Vycital and Bazant (2021),
the fuzzy system performed better everywhere except the
intercity category. The difference in intercity category
is the only one that is not significant (95 % confidence
level). There is quite high variability across runs (as can
be seen in 6) and the difference is not big enough to con-
fidently say that it means something. Overall the fuzzy
system managed to achieve about the same delay change
for intercity traffic as the reference algorithm from Vycital
and Bazant (2021) without sabotaging the commuter and
freight traffic to the same extent.

When put to absolute numbers (see 7), it can be seen
that the delays are relatively high and the change in delay
comparatively small. This is caused in part by the fact that
the model is quite small (the main line track across the
model has 50 km) and therefore even if a good overtaking
decision is made, it can’t do miracles, there simply isn’t
enough of time to take down 15 min from a train’s delay.

Tomas Vy¢cital |

Fuzzy System|] Reference Algorithm

A Commute Freight Intercity

Figure 7. The average delay in seconds (y axis) per category of trains (x axis)
at their destination across the 30 runs.

Another contributing factor is the high utilization of the
main line, which is utilized to its full capacity. This leads
to delays very easily cascading from one train to the next
as there are very short separation times between trains.

7. Conclusion

The fuzzy system presented in this paper has proved to be
a viable solution to the problem of overtaking in railway
traffic simulations. It is able to adjust itself effortlessly to
the model it is used in based solely on the infrastructure
exports from OpenTrack and messages sent during the
simulation via OpenTrack API. It is also an improvement
when compared to the reference algorithm from Vy¢ital
and Bazant (2021) in both achieved results and easy of use.

The fuzzy system presented in this paper is of course
not perfect nor all encompassing. Further works could
focus on incorporating priority into the system as an op-
tional configurable input (many railways use priority in
various ways and here it’s completely ignored). Another
possible improvement could be to incorporate a safe guard
against repeated overtaking, the system isn’t very prone
to a train getting stuck for a very long time but it happens
that a train is overtaken multiple times in a row and there
is no mechanism to limit that.
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