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Abstract
In a simulation model of a railway system it is a necessity, to have realistic train overtaking behavior during disturbances. Manysimulation tools address this problem by using simple overtaking solutions, such as look ahead. These tend to be non-intuitive toconfigure and often not very human-realistic. The goal of this paper is to design a fuzzy system that can easily be used to simulatehuman-realistic overtaking behavior. A fuzzy system has been chosen because this approach is well-suited for human-style decisionmaking. The presented fuzzy system considers timetables, train positions, delays, buffer times etc. as inputs and provides instructionsto the simulation tool whether given train should or should not be overtaken. Finally the performance of the system is evaluated by acase study simulating a part of the railway system in the Czech Republic around the town of Pardubice.
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1. Introduction

Overtaking is a common occurrence in railway trafficand therefore it is a necessity to have realistic overtak-ing behavior in railway traffic simulations. A simulationran without any overtaking would be very unrealistic andwould not be able to provide any useful outputs. Simi-larly a simulation with poorly facilitated overtaking alsowouldn’t be able to provide any useful outputs. It is there-fore something that must be addressed in every railwaytraffic simulation (excluding some more limited systemswhere overtaking is not possible at all or not usually per-formed, such as many subway systems).
Configuring overtaking behavior in a simulation toolcan be rather tricky, especially for newcomers. Commonlyused simulation tools provide some built-in overtakingsolutions, but these are usually very simple and not veryhuman-like. They also tend to require quite extensiveknowledge of their inner workings to configure in a satis-factory way. Atop of that the configuration typically cannot

be transferred between different models, because it is veryspecific to the model it was created for.This paper’s goal is to create a decision support systemthat would be able to make decisions about overtaking ina human-like manner. This should be possible withoutthe need for model specific configuration and especiallyweird hacks to achieve the desired overtaking behavior.The decision support system should also be able to adjustitself not only to the model as a whole but also to the natureof the infrastructure and traffic in different parts of themodel.
2. State of the art

The typical solution to the problem of overtaking in railwaytraffic simulations is to use look aheads. These are typi-cally out-of-the-box built into the simulation tools and areusually very simple implementation wise and with verygood performance. However, they are not very human-like and can be quite tricky to configure well. They are
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also prone to misbehaving, most notably commonly mak-ing trains wait to be overtaken on main lines and thenovertaking them on speed limited sidings.

They also have issues with diverse models, where thelook ahead distance has to be picked more as a compromisethan an actually ideal value. In such a model a part withlonger stretches between stations would need longer lookahead distances to achieve the same level of realism as apart with shorter stretches between stations. In some toolsthis may not be possible at all, as the look ahead distance isa global setting (e.g. in OpenTrack it’s configured per traincategory but stays the same across the model). Leading toovertaking almost never happening in some parts of themodel. In other parts trains can be blocked for overtakingevent though the overtaking train is still quite far awayand there are other stations further ahead the line wherethe overtaking could be performed.
Since overtaking is so common in railway traffic, it is awell researched topic. There are many papers that touchon the subject of overtaking in from various perspectives.In Josyula et al. (2020) the authors explore the problemof overtaking in the context of train timetable reschedul-ing. They propose a method for finding a diverse set ofpossible solutions that are then presented to a dispatcheras an aid in their work. The dispatcher then picks the bestsolution from the set, modifies it to their liking or discardsit altogether.
The solutions provided would be rather difficult to im-plement in a simulation tool, as they would require a wholesecond decision support system to be implemented. Theseconds system would have to be able to evaluate and pos-sibly even modify the solutions provided to apply themto the simulation. This would be a very complex task andwould require a lot of work to implement. Given the wildlydifferent goal of the paper, it would most likely be betterto start from scratch (Josyula et al. (2020) could be handyas inspiration).
Other papers such as Obara et al. (2018), Cavone et al.(2022) and many others focus on real world applications.Some of them are easier to implement in a simulation toolthan others. A subset of these was even tested in variousforms of simulations, though not necessarily in off-the-shelf simulation tools that would be usable by the generalpublic (e.g. having an at least somewhat user-friendlyGUI). However almost none of them are focused on simu-lations specifically, mostly as dispatcher aids or automatictrain control systems for real world applications. Therealso aren’t many papers that would focus solely on the over-taking problem, most of them focus on the larger problemof train timetable rescheduling (which usually includesreordering AKA overtaking as one of it’s parts).
The use of fuzzy systems in this type of problem is notvery common. This used to be explored more in the past,though again with focus on real world applications ratherthan simulations. Examples can be a fuzzy control systemfor dispatching on a mining railway in Brazil explored inVieira and Gomide (1996) or a dispatcher aid implemented

with the help of a fuzzy system in Fay and Schnieder (1997),the goal here is very similar to Josyula et al. (2020). Re-cently the research has moved to linear programming,neural networks and the like. With papers like Zhu et al.(2020) based on Q-learning, Cavone et al. (2022) mixedinteger linear programming or Obara et al. (2018) usingreinforcement learning (specifically Deep Q-Network).This being said, fuzzy systems are pretty common inrailway applications, just not in the context of overtak-ing nor rescheduling. Fuzzy systems has, in general, notonly in railway related applications, moved mostly to solv-ing smaller technical problems. These, specifically in thescope of railways, include brake assistance, as exploredin Tsuneyoshi et al. (2022), a study comparing differentfuzzy inference types. Other focus on vibration mitigation,as explored in Sezer et al. (2011) and many other topics andpapers.The fuzzy system developed as part of this paper is acontinuation of my prior work on Vyčítal (2022), whichwas more a proof of concept than a fully fledged solution,though it did work. More generally it is a continuationof my work on Vyčítal and Bažant (2020) and Vyčítal andBažant (2021). The algorithm from Vyčítal and Bažant(2021) will serve as the basis for the fuzzy system devel-oped in this paper, being the best performing of my workso far.The system presented in Vyčítal and Bažant (2020) wasa very simple system that was able to perform overtaking.It quite well addressed the issues of overtaking over sid-ings OpenTrack’s built-in solution is prone to. However ithad issues with trains overtaking each other repeatedly,requiring quite high thresholds to prevent this, which inturn cut significantly down on overtaking in general.This issue was mostly mitigated in Vyčítal and Bažant(2021), however it brought the necessity of manually con-figuring bonuses and penalties for individual categories oftrains. What also came up in the work following the paper,was the need to use more advanced approach to creatingmore complex decision support systems. This is whereVyčítal (2022) comes in, it explores the use of fuzzy sys-tems for this purpose. However this was more of a proof ofconcept than a fully fledged solution, as it was not able toperform as well as the algorithm from Vyčítal and Bažant(2021).
3. Fuzzy logic

In fuzzy logic, discrete input values are mapped to wordsof linguistic variables, each with certain degree of mem-bership. These words are then used by rules (in the form ofIF-THEN statements) that execute the desired logic. Therules then map to fuzzy words of linguistic variables onthe output side, again each with certain degree of mem-bership based on the degrees of membership of the inputwords used by given rule. The output linguistic variablesare then defuzzified, that is converted into discrete values.A simple example relevant to the topic of this paper
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could be a single rule fuzzy system that decides whetherto overtake or not based on the ETA at the next station.The rule would be: IF train ahead’s ETA is late and trainbehind’s ETA is soon THEN overtake is strong yes. Theinput variables would be the ETAs for each train and thewords “late” and “soon”. The output variable would be“overtake” with the words “strong yes”, “weak yes” and“no”. An input of 5 min for the train ahead and 3 min for thetrain behind would map to the words “late” with strength0.8 and “soon” with strength 0.2 for the train ahead and“soon” with strength 0.8 and “late” with strength 0.2 forthe train behind. Executing the rule would then yield out-put of “yes” with strength 0.8 (another rule could also add“no” with some strength to the mix at the same time andso on). This can be then defuzzified to a discrete value ofovertake equals 83 % if we define the range as 0 meaningno and 1 meaning yes with equally distributed words onthe range by center of gravity defuzzification. Since theoutput is now a discrete value, it can be used normallyoutside of the fuzzy system (e.g. we can decide that anyrecommendation above 60 % is good enough to plan theovertaking maneuver).
4. Fuzzy system

From design perspective a decision has been made to al-ways consider two trains in isolation and compare the dif-ferences between the two to make a decision whether toovertake or not. The main goal is to abstract away fromany specifics of the model or even the trains themselves.This way, it’s possible to use the same fuzzy system forany model and any number of trains. This idea has alreadybeen tested as a proof of concept in my previous work inVyčítal and Bažant (2020) (comparing differences betweentrains to decide overtaking) and in Vyčítal (2022) (feedingthe differences into a fuzzy system to decide overtaking)and proved to be a good approach.There are some caveats to this approach however. Themost obvious is that there are more than two trains in atypical model and overtaking can very easily affect manytrains at once, both positively and negatively. This isn’t sosevere issue that it would prevent the use of this approachin practice, in the end approaches such as look ahead don’tevaluate the effects on other trains either and are still com-monly used in practice with good results. It does, however,likely limit the maximum possible potential that this ap-proach could achieve.Another caveat comes from system designer’s perspec-tive and that is that all inputs have to be preprocessedand normalized to be comparable and independent of themodel. This can lead to a bit cryptic inputs to the fuzzysystem, which are a bit harder to understand than theraw absolute values. However, considering how difficult itwould be to design a fuzzy system that would work withraw absolute values and achieve the same model indepen-dence, this is a good trade-off.

4.1. Implementation

The fuzzy inference system is implemented in MamdaniEH (1974) style. On the technical side of things, TypeScriptMicrosoft (2023) running on Node.js Foundation and con-tributors (2023) is used with the @thi.ng/fuzzy librarySchmidt (2020) facilitating general fuzzy logic to avoidreinventing the wheel. The simulation itself is then run-ning in the simulation tool OpenTrack Huerlimann (2017).Communication between the simulation tool and the fuzzysystem is done via custom tool utilizing OpenTrack’s SOAPAPI Huerlimann (2020). This tool further avoids reinvent-ing the wheel with the use of other well known librarieslike Axios Zabriskie (2023) to send commands to the simu-lation tool, Fastify Fastify (2023) to receive messages fromthe simulation tool and others.The overtaking maneuver planning is done via a seriesof route blocking commands send to the simulation tool.The routes are blocked for the train that is supposed towait for the other train to overtaken it. Concretely theroute through the main line track is blocked, so that thetrain will use some of the more distant tracks to wait forthe other train to overtake it. Also all of the routes out ofthe station are blocked, so that the train will not be ableto depart before the other train has overtaken it and theroutes are unblocked again.This method has been chosen as it allows for customovertaking without reimplementing all of the logic that thesimulation tool already has for route planning. OpenTrackcontinues to make all of the decisions as normal it justknows that it’s not supposed to let given train on givenroutes. There wouldn’t be much of an advantage in takingcomplete control over the route planning.
4.2. Input data

The input variables are based on exports from the simu-lation tool (static things like timetables or infrastructure)and the current state of the simulation (dynamic thingslike train positions or delays). These are then preprocessedinto a few values that are easier to use for comparisons inthe fuzzy system. Some are simply subtracted from oneanother, after being taken for the two trains in consid-eration (e.g. stop frequency). Other are combined frommultiple sources to form a single value before being sub-tracted from one another to create the differential inputvalue (e.g. ETA).The core input value is the difference in ETA betweenthe two trains in consideration. The basic idea behindthe ETA is when would the train arrive at the station inquestion if there were no other trains on the railway. Theexact formula is taken from Vyčítal and Bažant (2020):
e = a + max(0, d – b) (1)

where e is the ETA, a is the timetabled arrival of the train,
d is current delay and b is the timetabled buffer time. Thisis then calculated for each train in consideration and the
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difference between the two is taken and used as for thefuzzy variable depicted in 1.The variable is split into 4 words: “soonish”, “slightlylater”, “later” and “very later”. The word soonish repre-sents ETA differences where the train ahead is expectedto arrive sooner, at about the same time or up to 160 slater. There generally isn’t much point in differentiatingbetween these cases as the overtaking will likely causeabout the same if not higher delay and won’t be worth it,at least not right now, it may be worth it later on. The nextword slightly later represents the next 40 s of ETA differ-ence where overtaking starts looking more appealing. Theword later is further 40 s of ETA difference after that and isthe point where overtaking is generally a good idea. Withthe last word very later capturing the rest being mostly ano-brainer for overtaking.

Figure 1. An input variable for the difference in ETA (in seconds) betweenthe two trains in consideration.

Next input is the difference in stopping frequency. Stop-ping frequency is defined as the percentage of stops atwhich the train stops compared to the total number ofstops on the path the train is timetabled to take. The fig-ure 2 provides visualization of the variable. The variable isdesigned to provide the ability to penalize or reward over-taking based on the difference in stopping frequency ofthe two trains in consideration. Since there are no hardanchor points for this variable, the words simply taper oftowards the middle to give a transition between the wordsand therefore to allow the rules to apply more stronglywhere the difference is higher.

Figure 2. An input variable for the difference in stopping frequency be-tween the two trains in consideration.

Lastly there is a variable 3 indicating whether the trainahead, that may stop to be overtaken, is timetabled to stopthere anyway. This isn’t actually a fuzzy variable, it’s bi-nary. Either the train is timetabled to stop there and it willbe 1 or it isn’t and it will be –1. They idea is to be able totake advantage of the opportunity to overtake a train that

is going to stop either way and avoid the delays associatedwith an unplanned stop.

Figure 3. An input variable indicating whether the train ahead is timetabledto stop where the overtaking may happen.

Compared with my previous attempt at creating a fuzzydecision system for overtaking from Vyčítal (2022), twoinput variables has been completely omitted. They turnedout to be anywhere between useless and detrimental to theperformance of the system, depending on the rules thatused them as inputs. I was simply unable to find a way tobeneficially include them in the system.The first omitted input is the difference in top speed be-tween the two trains in consideration. This turned out tobe a bad idea as the top speed of a train is not a good indica-tor of the train’s ability to overtake. The reason is that thetop speed is not the speed at which the train is currentlytraveling or will be traveling later on, but the maximumspeed it can travel at. Trains often travel at a lower speeddue to speed restrictions imposed by the infrastructure(e.g. the model used in the case study contains trains withtop speeds as high as 230 km h–1 but no infrastructureabove 160 km h–1). The speed the train will actually travelat is also already taken into account in the ETA calcula-tions as it is a part of the timetable (i.e. a train that can’tgo more than 100 km h–1 is not going to be timetabled tocover 100 km in less than 1 h).The second omitted input is the difference in prioritybetween the two trains in consideration. In this case, Itried considerably more approaches to including it in thesystem, but none of them worked well. Many were outrightdetrimental to the performance of the system, causingweird overtaking choices that should generally be avoided.This isn’t ideal as priority is very commonly consideredwhen deciding whether to overtake or not.The reason for this is that the priority of a train is notnecessarily indicative of how quickly will the train passthrough the railway section in question. Two trains thatwill behave exactly the same in given section may havedifferent priorities assigned to them (quite a few do inthe case study included in this paper). This can lead tosituations where lower priority train stops at a siding, letsthe higher priority train pass and then continues on itsway. Gaining delays in the process and forcing the higherpriority train to decelerate as it slows down on the mainline before entering the siding, generating delays for thehigher priority train as well. After all of this, the two trainsthen continue to their destinations, the higher prioritytrain now being ahead the lower priority train, both with
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higher delays than before, with absolutely no benefit toeither of them. Potentially also causing delays to othertrains that may be following them.The ETA input variable has also been significantlychanged compared to the version in Vyčítal (2022). Itturned out that having multiple words around 4 min markis more interesting for creating rules than differentiatingbetween inputs close to 0 min. Overtaking generally addsdelays in the short term so there has to be a significantfuture benefit to overtake in order to make it worth it.
4.3. Output data

Since the purpose of the fuzzy system is to recommendwhether to overtake or not, the output consists of a singlevariable indicating the strength of the recommendationto overtake. The variable can be visually seen in 4 and itconsists of five words. The words are evenly spaced outto allow the rules to express recommendation to overtakeand not to overtake with two levels of strength and also nopreference.

Figure 4. The output variable for the strength of the recommendation toovertake.

To use the output in the simulation tool, which expectsa discrete order to overtake or not, the output is defuzzifiedusing the center of gravity method. This yields a discretenumber which is further reduced to a binary value by com-paring it to a threshold of 4.5, values through 4.5 meannot to overtake and values above 4.5 mean to overtake. Ifthe result is to overtake, the simulation tool will then beinstructed to plan an overtaking maneuver. If the result isto not overtake, the simulation tool will either receive noinstructions and continue as normal or it will be instructedto cancel a previously planned overtaking maneuver.
4.4. Rules

Most of the rules compare differences and more complexvalues created as described in the previous section. Thispreprocessing is much simpler and more performant whendone in classic programming languages than in the fuzzylogic system as combing and compering the raw valueswould very quickly explode into a huge number of rulesand would be difficult to be made independent from con-crete model or even station. Thanks to this the rules arerelatively simple and there aren’t that many of them, yetthey are crucial to the decision support system’s perfor-mance as they combine them all together and create the

final recommendation to overtake or not.
1. IF train ahead’s ETA is very later THEN recommenda-tion to overtake is strong yes WEIGHT 12. IF train ahead’s ETA is later THEN recommendation toovertake is weak yes WEIGHT 13. IF train ahead’s ETA is slightly later THEN recommen-dation to overtake is maybe WEIGHT 14. IF train ahead’s ETA is soonish THEN recommendationto overtake is strong no WEIGHT 15. IF train ahead’s stop frequency is lower THEN recom-mendation to overtake is weak no WEIGHT 26. IF train ahead’s stop frequency is same THEN recom-mendation to overtake is maybe WEIGHT 17. IF train ahead’s stop frequency is higher THEN recom-mendation to overtake is weak yes WEIGHT 18. IF train ahead stops anyway THEN recommendationto overtake is weak yes WEIGHT 19. IF train ahead doesn’t stops anyway THEN recommen-dation to overtake is weak no WEIGHT 1

The backbone of the decision are rules number 1–4.They analyze the difference in ETA between the two trainsin consideration. This on its own is pretty much what Vyčí-tal and Bažant (2020) is based on, however here it’s com-bined with additional rules, which will be described later,instead of a single threshold to plan or cancel overtaking.Overtaking is strongly recommended if the train ahead isexpected to arrive substantially later than the train whichis considering overtaking. On the other hand if the trainahead is expected to arrive sooner, at the same time or onlyslightly later, overtaking is strongly not recommended.There are also two intermediate levels of recommendation,in case the difference in ETA is not as clear.Rules number 5–7 analyze the stopping frequency ofthe trains in consideration. The reasoning behind this isthat the more the train stops the more likely it is to causea lot of delays to the trains behind it in case of furtherdisturbances (e.g. an intercity train catching up with acommuter train and being stuck behind it running slowlyor worse, stopping on red signals, because the commutertrain has to stop at every stop along the way). On the otherhand a train stopping often is unlikely to ever catch up witha train stopping rarely. These rules therefore discourageovertaking when the train that is being overtaken stopsless often than the train that is considering overtaking andvice versa. The negative recommendation is stronger thanthe positive one as overtaking carelessly is quite likelyto cause a lot of delays to all trains involved even thoseinvolved only indirectly.Finally rules number 8–9 analyze whether the trainahead is going to stop regardless of whether the overtak-ing is planned or not. If the train ahead does stop anyway,then further recommendation to overtake is added. How-ever if the train would otherwise pass without stopping,then a recommendation against overtaking is added. Thisis because if the train ahead is going to stop anyway, thenit’s only going to be held in the station longer, no other
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delays, when compared to the timetable, are going to becaused to it. In the case that the train would otherwisepass without stopping, the time spent decelerating to stop,acceleration to get back to speed, spent waiting in the sta-tion and by running on the longer path on the siding andatop of that most likely at lower top speed are going to beadded as none of that was timetabled for. It can also affectthe train behind it as it itself might have to slow down tokeep the safe distance and then accelerate back to speed, inworst case scenario it might encounter red signal and stopcompletely. For these reasons overtaking when the trainthat is to be overtaken stops anyway due to it’s timetableis highly advantageous.
5. Evaluation

To evaluate the fuzzy system a simulation was run in thesimulation tool OpenTrack with and an algorithm from myolder paper Vyčítal and Bažant (2021). The algorithm fromVyčítal and Bažant (2021) was used with the same config-uration as in the paper however the model has been mildlymodified in the meantime and more importantly the codeconnecting the algorithm to the simulation tool has beensignificantly changed. These changes fixed some race con-ditions that were present in the original implementationand made the runs replicable. It nevertheless changed theresults slightly, though the changes affect all runs moreor less equally (i.e. rerunning the case study comparingVyčítal and Bažant (2020) and Vyčítal and Bažant (2021)as presented in Vyčítal and Bažant (2021) yields somewhatdifferent numbers but the same conclusions).
As mentioned before, in general terms the model isstill the same as in Vyčítal and Bažant (2021), that is: Thesimulation model consists of a part of the Czech railwaynetwork, specifically around the town Pardubice. Over-all the model contains over 50 km of tracks with multiplestations and stops. Topologically the infrastructure is con-figured in Y shape with a branch line splitting in Pardubiceand continuing through Rosice providing inflow to andoutflow from the main line. With this the fuzzy system ispresented with traffic merging and splitting in differentdirections, there is also traffic crossing the main line fromthe branch line and vice versa. Both the main line andthe branch lines are double-track with very dense mixedtraffic. The traffic used is typical for the area, however isnot strictly speaking real world as the area is currently un-dergoing a major reconstruction and the model representsthe situation after the reconstruction.
To prevent interference with decisions made externallyby the fuzzy system from this paper and the algorithmfrom Vyčítal and Bažant (2021), the simulation was config-ured with look ahead distance of 0 m. Setting it to anythingelse could result in deadlocks, where OpenTrack would beblocking one train from moving forward, because it wouldbe waiting for another train, whose look ahead reachedbeyond the first train, to move forward. While at the sametime the second train would be blocked in place by the

fuzzy system’s overtaking decision. Even if that wouldn’thappen, it would still void the results as it would be diffi-cult to evaluate the performance of the fuzzy system, if itwas fighting with by the built-in look ahead of OpenTrack.The delays were again configure the same as in Vyčítaland Bažant (2021): According to the SŽDC SM124 guidelineSŽDC (2019) (up to 2 h on entry, average delays are bellow10 min. for passenger traffic), SŽ (formerly SŽDC) is thelocal railway infrastructure manager. Exactly the samedelay scenarios used for the fuzzy system from this paperwere also used for the algorithm from Vyčítal and Bažant(2021).The simulation consisted of 30 runs with the fuzzy sys-tem from this paper and another 30 runs with the algo-rithm from Vyčítal and Bažant (2021), each run containing2 h of traffic.
6. Results

The high level overview of the results of the simulation isvisualized in 5. The fuzzy system presented in this paperwas able to match or outperform the reference algorithmfrom Vyčítal and Bažant (2021) in every measured cate-gory.The reference algorithm from Vyčítal and Bažant (2021)had to be manually configured with bonuses and penal-ties for each train category to achieve the best results.Meanwhile the fuzzy system from this paper was able toachieve its results based solely on infrastructure exportsfrom OpenTrack and messages sent during the simula-tion via OpenTrack API. Both of these were also used bythe reference algorithm from Vyčítal and Bažant (2021) inaddition to the manually input bonuses and penalties.

Figure 5. The average change in delay in seconds (y axis) per category oftrains (x axis) across the 30 runs.

The bar chart in 5 shows the average change in delayin seconds across all of the trains and some interestingcategories of trains. The change in delay is calculated asthe difference between the delay at the destination andthe delay at the entry to the model, where negative meansdecrease in delay and positive an increase in delay. Thedelay at the destination is capped at 0 s from the bottom,
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as there is little benefit in decreasing the delay further (thetrain will wait for it’s scheduled 0 s delayed departure atthe next station anyway no matter how early it arrived).
Apart from the all category that contains all of the trains,the data is split by the type of traffic. Freight trains aregrouped together in the freight category, these are quitevaried in their behavior but they all have lower prioritiesthan passenger traffic. Passenger trains that stop at most(usually all) passenger stations and stops are grouped inthe commuter category. Whereas passenger trains thatstop only at bigger passenger stations are grouped in theintercity category.
As mentioned before, the all category saw noticeabledecrease in delays. Inspecting the individual categoriesreveals that intercity traffic gains delays and the othertwo categories decrease their delays. This makes sense asthere are very small reserves timetabled for the intercitytraffic while the other two categories have more generoustimetables in this regard, making it easier to decrease theirdelays.

Figure 6. The confidence interval for the average change in delay in secondsacross the 30 runs, run numbers are plotted on the x axis and the delaygained while passing through the model on the y axis.

When comparing the fuzzy system from this paper tothe reference algorithm from Vyčítal and Bažant (2021),the fuzzy system performed better everywhere except theintercity category. The difference in intercity categoryis the only one that is not significant (95 % confidencelevel). There is quite high variability across runs (as canbe seen in 6) and the difference is not big enough to con-fidently say that it means something. Overall the fuzzysystem managed to achieve about the same delay changefor intercity traffic as the reference algorithm from Vyčítaland Bažant (2021) without sabotaging the commuter andfreight traffic to the same extent.
When put to absolute numbers (see 7), it can be seenthat the delays are relatively high and the change in delaycomparatively small. This is caused in part by the fact thatthe model is quite small (the main line track across themodel has 50 km) and therefore even if a good overtakingdecision is made, it can’t do miracles, there simply isn’tenough of time to take down 15 min from a train’s delay.

Figure 7. The average delay in seconds (y axis) per category of trains (x axis)at their destination across the 30 runs.

Another contributing factor is the high utilization of themain line, which is utilized to its full capacity. This leadsto delays very easily cascading from one train to the nextas there are very short separation times between trains.
7. Conclusion

The fuzzy system presented in this paper has proved to bea viable solution to the problem of overtaking in railwaytraffic simulations. It is able to adjust itself effortlessly tothe model it is used in based solely on the infrastructureexports from OpenTrack and messages sent during thesimulation via OpenTrack API. It is also an improvementwhen compared to the reference algorithm from Vyčítaland Bažant (2021) in both achieved results and easy of use.
The fuzzy system presented in this paper is of coursenot perfect nor all encompassing. Further works couldfocus on incorporating priority into the system as an op-tional configurable input (many railways use priority invarious ways and here it’s completely ignored). Anotherpossible improvement could be to incorporate a safe guardagainst repeated overtaking, the system isn’t very proneto a train getting stuck for a very long time but it happensthat a train is overtaken multiple times in a row and thereis no mechanism to limit that.
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