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Abstract 
Digital Twin (DT) is an underused tool in the Oil & Gas industry. Today, the behaviour of Oil and Gas plants is realised by the non-
real-time analysis software. In contrast, the DT is a framework capable of controlling and managing a plant in real-time by 
exploiting sensors, virtual spaces, and the continuous connection between real and digital parts. In this paper, the DT of an 
experimental plant is presented; the DT is based on a model for evaluating the behaviour of an ejector. In contrast to research on 
DT in the literature, the proposed model is derived from the use of three Artificial Neural Networks (ANNs) and obtains the values 
of water pressure (ANN1), airflow (ANN3) and water flow (ANN2) at the ejector inlet. The three Multi Layers Perceptron networks, 
trained on a dataset obtained from the plant, represent the ejector behaviour at 97.85%, 97.79% and 97.94%, the score of each 
ANN. This modelling approach for DT is currently not widely used but, given the results, is a good alternative to the traditional 
techniques used. 
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1. Introduction & Background

Industry 4.0 and Industrial Internet of Things (IIoT)
technologies are changing the plant world dramatically. 
The “Digital Twin” (DT) concept was illustrated for the 
first time in 2002 by Grives (Grieves & Vickers, 2016). 
According to Pierluigi (Pierluigi Sandonnini, 2022), DT is 
one of the five emerging trends driving technological 
innovation. In 2012, NASA revisited the concept of DT, 
which defined it as a multiphysics, probabilistic, high-
fidelity, multiscale simulation that promptly reflects the 
state of a corresponding twin based on historical data, 
realtime sensor data, and the physical model (Glaessgen 
& Stargel, 2012). The need to perform monitoring, 
control, simula-tion, and analysis on plants is driving 
the development of the Digital Twin of industrial 

systems. The DT can be seen as a framework that 
implements the digital counterpart of a real 
system/plant/phenomenon. The digital and virtual parts 
are constantly connected and exchange information. 
Whenever a change is made to the virtual space, that 
change must also be recorded in real space and vice versa. 
Based on the literature review conducted by Wanasinghe 
et al. (Wanasinghe et al., 2020), the manufacturing sector 
was one of the first (with automotive and aviation 
industries) to grasp the importance of the Digital Twin as 
a tool capable of con-verging simulative analysis, 
visualisation of the risks and key performance indicators 
of the asset into a single interface. In most cases, the area 
of application of a DT in the Oil & Gas sector concerns the 
monitoring and maintenance of systems. In fact, this tool 
is rare in the Oil & Gas industry. However, evidence of this 
can be found in the literature. Analysing the documents 
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in Scopus and accessible with the key " ‘digital Twin’ 
AND ‘oil gas’ ", it’s possible to get 31 papers.  Of these 
results, 34.4% are from the “Energy” sector and 17.2 % 
from the “Engineering” sector. Most of the documents 
were published between the years 2019-2022. Most 
articles contain information on DT used for monitoring 
the oil and gas pipeline network. However, articles 
highlighting the use of DT to make analyses or 
predictions about the plants' condition are uncommon. 
What was found in the literature also reflects the 
current state of DT use by oil companies. Only a few 
major energy/oil companies use DT to manage oil 
facilities. Exxon Mobil and Kongsberg signed an 
agreement with a DT solution contextualised to 
dynamic simulation and collaboration capabilities. The 
Digital Twin software-as-a-service improves 
decision-making and the decentralisation of 
knowledge and innovation (Hart Energy, 2021). Among 
the first to apply DT, British Petroleum (BP) used the 
technology to solve the problem of monitoring and 
maintaining oil and gas facilities located in remote 
areas. BP used DT to improve the reliability of an oil 
exploration and production facility in Alaska. But the 
DT could not only enable remote control: it is also 
enabling predictive maintenance, risk and production 
time assessment, better collaboration among teams 
and better financial decision-making; it is working to 
achieve results in terms of safety (Asokan Ashok, 2021). 

In the Oil & Gas sector, system modelling is 
conducted with several tools such as Aspen HYSYS 
Hydraulics which performs CFD (Computational Fluid 
Dynamics) fluid dynamic analysis (Rilby, 2016), or Life 
Cycle Simulator (Heloin et al., 2013), but also ANSYS or 
Abaqus (Tao et al., 2022). All these tools work 
separately, one by one, generally based on 
mathematical models that require numerous 
parameters that are difficult to identify. For these 
reasons, it is easy to see that the Digital Twin is an 
excellent alternative that allows you to have a single 
digital platform that contains the digital model of a 
system in which all the features and rules present in the 
real part are shown.  

This paper will report an example of constructing a 
simulation-based DT of an experimental oil and gas 
plant present in the DIISM (Dipartimento di Ingegneria 
Industriale e Scienze Matematiche) laboratories, 
Università Politecnica delle Marche. Even though the 
techniques most used in the Oil & Gas sector are 
different, the aim is to demonstrate the merits of this 
technology applied to this sector. This article aims to 
highlight the potential of such technology for the 
control, monitoring, analysis and study of Oil & Gas 
plants. It will be described the plant, the acquisition 
systems and the model of the principal component of 
the plant: the ejector.  

In contrast to common DTs, to model the behaviour 
of the ejector, it was used of Artificial Neural Networks 
(ANN) of the Multi-Layer Perceptron (MLP) Regressor 
type. This article proposes a model based on ANNs 

trained on the same dataset.  The ANNs structure is 
realised with 3 networks trained on the data of the same 
test and they can exchange data to estimate the 
parameters of interest. 

The complete dataset, from which some tests for 
training are selected, consists of only 5 tests; each 
presents 17 columns containing the values of the 
measured variables. Of all the measured variables, 
those of interest to our 3 networks are the percentage 
of valve opening downstream of the pump, the pressure 
of the diffuser cone, the inlet water pressure (ANN1), 
and the flow rate of water (ANN2) and air entering the 
system (ANN3). 

Section 2 describes the experimental setup, 
particularly, the ejector, the acquisition system and the 
dataset. In Section 3, the main difficulties in modelling 
the ejector are reported. Section 4 describes the 
network types, hyper parametrisation, training phase, 
and the specific characteristics of the 3 networks. The 
previsions are reported in Section 5. Finally, in Section 
6 are the conclusions.  

2. Materials and Methods

The experimental plant, the ejector and the acquisition 
system will be described below. 

2.1. Plant Description 

The plant of interest is an experimental plant located in 
the laboratories of the DIISM of the Università 
Politecnica delle Marche. The plant was built in the 
1990s to study oil extraction from " inactive" wells. To 
avoid installing a (very expensive) pump at the bottom 
of the reservoir, it was studied a system using an ejector 
and pressure from an "active" well adjacent to the 
"inactive" one (Figure 1).  

Figure 1. Scheme of extraction plant 

For safety, the experimental plant will use water and 
air instead of oil and gas. The system is shown in Figure 
3 and presents an opened water-collection tank; the 
water is drawn from the opened tank by a pump (in 
green in Figure 2) that sends it to the ejector; air and 
water converge in the ejector and mix in a two-phase 
mixture; the mixture is sent to a vertical tank that acts 
as a  vertical separator: in this way, the air can be sent 
back to the opened tank, and the air can exit through 
the appropriate channel. Along the whole system, there 
are 3 electro-valve (in turquoise), 8 sensors (in light 
blue) and manual valves (in orange) useful for 
simulating system faults.  

Table 1 shows all the characteristics of the sensors 
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and Table 2 describes the electro-valves. 

Figure 2. Plant scheme 

Figure 3. Experimental Plant photos 

Table 1. Plant Sensor 

ID  Description UM  Type  Tag  

S1  Inlet water 
pressure  

[bar]  OUTPUT  Endress+ Hauser 
Cerabar M PMP51  

S2  Inlet water flow 
rate  

[m3/h]  OUTPUT  Endress+ Hauser 
Promag W  

S3  Ejector pressure  [bar]  OUTPUT  Setra 280E  
S4  Mixture 

pressure in the 
diffuser  

[bar]  OUTPUT  Foxboro 841GM CI1  

S5  Tank pressure  [bar]  OUTPUT  Foxboro 841GM-CI1  
S6  Inlet air flow 

rate  
[m3/h]  OUTPUT  Foxboro Vortez DN 50  

S7  Water level in 
the tank  

[mm] OUTPUT Foxboro IDP-10  

S8  Air flow rate at 
the outlet  

[m3/h]  OUTPUT  Endress+ Hauser 
Prowirl 200  

Table 2. Plant electro-valves 

ID  Description UM  Type  

V1  Valve 1 closure  [%]  INPUT  
V2  Valve 2 closure [%]  INPUT  
V3  Valve 3 closure  [%]  INPUT  

2.1.1. Ejector 

An ejector is a hydraulic element with no moving 
parts that can be used to pressure one fluid, called 
motive fluid, by taking advantage of a second fluid, 
called inlet fluid (Dipartimento di Energetica -

UNIVPM, 1990). The operation can be explained by 
referring to the Venturi effect: the pressure of a fluid 
increases with decreasing velocity. The motive fluid 
is water, while the inlet fluid is air. According to 
Bernoulli's theorem, the motive fluid is conveyed 
inside the nozzle, which has a change in cross-
section along its axis: this will increase velocity and 
decrease pressure. Due to the Venturi effect, the fluid 
exiting from the nozzle with a certain velocity causes 
a vacuum inside the mixing chamber that causes the 
inlet fluid (air) to be drawn into the chamber. The two 
fluids then come into contact, creating the mixture. 
Due to the energy imparted to it by the motive fluid, 
the mix will move with a certain speed along the 
mixing tube to the divergent cone, known as the 
diffuser. The gradual increase of the section, due to 
the diverging cone, causes the slowdown of the fluid:  
the kinetic energy is transformed into pressure 
energy. This element has no moving parts: it is very 
simple, versatile, requires little maintenance, and 
has easy installation and no sealing problems. To also 
simplify the interpretation of operation, 
assumptions are introduced on which the operating 
model of a liquid-gas ejector is defined:  

• isothermal compression of the gas between
suction conditions (s-suction) and discharge
conditions (l-line), with no loss of gas 
pressure between the machine inlet and the
mixer tube inlet;

• negligible increase in liquid temperature due 
to gas compression;

• passage through the mixing tube produces a
homogeneous mixture of the two liquid-gas 
phases, with no flow between them;

• the influences of the vapour pressure of the
liquid phase and the viscosity of the gas and
liquid are considered negligible.

Given the following conditions, it will be possible 
to write the following governing equations: 
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- Efflux through nozzle:
𝑝𝑑 −  𝑝𝑜 =  

1

2
𝜌𝑙  𝑉𝑙𝑜

2 (1 + 𝐾𝑛𝑧) ( 1 ) 

- Flow in the mixing tube:

𝑝𝑡 − 𝑝𝑜 =  
1

2
𝜌𝑙  𝑉𝑙𝑜

2 [2𝑏 + 2ϒ𝛷𝑜
2 

𝑏2

1 − 𝑏
− (2 + 𝐾𝑡ℎ)𝑏2(1 + 𝛷𝑡)(1 + ϒ𝛷𝑜)]

( 2 ) 

- Flow in the diffuser tube:

𝑝𝑙 − 𝑝𝑡 =  𝑍(1 + ϒ𝛷𝑜)[ 𝑏2(1 + 𝛷𝑡)2 − 𝑏2𝑎2(1 + 𝛷𝑙)2 −  𝐾𝑑𝑙 𝑏
2 (1 + 𝛷𝑡)] − 𝑝𝑜 𝛷𝑜  ln

𝑝𝑙

𝑝𝑡

( 3 ) 

 Figure 4. Ejector scheme

Figure 4 shows the simplified diagram in which the 
various sections referred to in the previous equations 
are highlighted. Table 3 and Table 4 explain the indices 
and parameters in the equations. 

Table 3. Equations Index 

Index 

d Motor fluid adduction section - drive 
n Motor fluid outflow section 
o Mixer tube inlet section
t  Mixer tube outlet section  
l Diffuser end section - line
s Suction fluid adduction section - suction 
nz Nozzle 
di Diffuser 
th Mixer tube (throat) 
en Suction box inlet 

Table 4. Equations Parameters 

Parameters 

a Ratio of At/Al diffuser sections 
b Ratio of the nozzle and mixing sections An/At 
K  Coefficient of friction loss 
p Fluid pressure [Mpa] 
Q  Fluid flow rate [m3/s] 
V Fluid velocity [m/s] 
ρ Fluid density [kg/m3] 
Φ Ratio of the volumetric flow rates of the fluid sucked in and 

the motor fluid (*) 
ϒ Ratio of the densities of the sucked and motor fluids in the 

section or the machine (**) 
Φ0 Q2o / Q1  
Φt Q2t / Q1 
Φs Q2s / Q1o 
Φeq ϒ Φ0 
ϒ ρ2o / ρ1

ϒeq ρL2 / ρ1

ƞ Ejector machine efficiency 
ƞ' Yield of two-phase mixture pumping system 

The ejector is the most mathematically complex 
element to model, especially for the two fluids that 
affect it (air and water, in our case). Of course, the 
equations are known and have already been studied, 
but very often, it is the coefficients that characterise 
them that are difficult to identify.  

For this purpose, very often, when the mathematics 
of the system is too complex to be solved, it is possible 
to use machine learning algorithms or ANNs that, with 
training done on experimental data of the system, 
provide us with an optimal model of the object of 
interest. 

2.2. Dataset 

The dataset is acquired by exploiting the sensors 
connected to a device called Revolution Pi (RevPi) 
which has an AIO-type module to which the plant's 
sensor pins are connected. The RevPi communicates 
with the server via WebSocket. Web sockets allow 
browser-server interaction and enable the 
implementation of applications that provide real-time 
data without the client continuously requesting 
information from the server. The server receives and 
resends the data to all other servers, including the DT 
interface accessed from a PC connected to the same 
internet line as RevPi. In this interface, there are 
tachometer graphs and animation in the interface 
showing changes in the levels, pressures and flow rates 
of water and air within the system; there is a button on 
the left side of the interface to record and store in a 
".csv" file the strings read during the time frame. This 
command was useful for acquiring the data for training 
our neural network. 

To obtain a useful dataset, it is possible to set 
parameters like water pressure at the plant inlet, tank 
level and tank pressure (Table 5). 

• PIN [bar]: Water pressure at the tank inlet
• LS [mm]: Tank level
• PS [bar]: Tank pressure

Table 5. Dataset 

PIN [bar]  LS [mm]  PS [bar]  

3  0  0  
3  0  1.3  
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3  250  1.5  
3  350  1.5  
3  450  1.3  

All tests contain data from sensors throughout the 
plant and are recorded so that there are approximately 
1600 acquisitions for each. The data are stored within 
each ".csv" file. The first line of each file is the "header" 
which has all the abbreviated names of the respective 
sampled variables.  The measured variables are shown 
in Table 6. 

Table 6. Header Dataset 

Name Description Unit  

PwatIN Inlet water pressure  [bar] 

QwatIN Inlet water flow rate  [m3/h] 

Peje Ejector pressure  [bar] 

Pdiff Diffuser mixture pressure  [bar] 

Ps Tank pressure  [bar] 

QairIN Inlet air flow rate  [m3/h] 

Ls Tank water level  [mm] 

QairOUT Outlet air flow rate  [m3/h] 

%Vwat Valve 1 closure  [%] 

%Vair Valve 2 closure  [%] 

%VwatOUT Valve 3 closure  [%] 

Test Identification Number of the Test - 

3. Modelling difficulties

As already pointed out in Section 1, today, the 
modelling of Oil & Gas plants is almost exclusively 
carried out with software (also not open sources) that 
mainly performs fluid-dynamic or thermodynamic 
analyses. In addition, control, analysis, and anomaly 
detection are often not carried out by a single 
technology but by multiple software and devices that 
must communicate and collaborate, with all its 
attendant difficulties. The best alternative in this 
context proposed in our article is the construction of a 
DT of the system. 

In the case proposed in this article, the model for a 
DT of the most complex element of the experimental 
plant is realised: the ejector model. The complexity of 
the ejector's characteristic equations and the difficulty 
in identifying the parameters that characterise them 
directed the construction of the ejector model towards 
using neural networks.  

In addition, as already mentioned in Section 2.1, 
water and air are handled in the ejector of the 
experimental plant instead of oil and gas for safety 
reasons. The presence of a compressible fluid such as 
air causes greater difficulty in applying the equations ( 
1 )-( 2 )-( 3 ), which can be used under stringent 
constraints or in finding a mathematical model. For 
this reason, it was also decided to use ANNs to model 
the ejector. Even ANNs cannot perfectly reproduce the 
behaviour of the ejector and the air inside it, but they 
are a quick and easy method to extract the first results 
accurately. 

4. Artificial Neural Networks model

As mentioned in Section 2.1.1, the equations that 
characterise the behaviour of the ejector are very 
complex and difficult to use for real-time analysis. For 
this reason, it is possible to model the behaviour of this 
component through ANNs. In particular, three 
networks were constructed to derive three 
fundamental parameters of the ejector: inlet water 
pressure (PwatIN), inlet water flow rate (QwatIN) and 
air flow rate at the ejector inlet (QairIN). The three 
networks were implemented in Python and have a 
similar structure.  

4.1. General description 

A system with 3 Multiple Input Single Output (MISO) 
ANNs has been constructed to allow us to derive the 
variables of interest.  All 3 networks exploit the MLP 
Regressor function, train on the same dataset and have 
similar functionalities. The general operation is 
explained below.  

First, a function was created to load the dataset: of 
the 5 tests in Table 5, only the first is loaded to train and 
test the networks (the remainder will be used to 
validate them). 

In each ANNs, the single selected test is then 
normalised according to the values in Table 7 with the 
MinMaxScaler() function. Normalisation is necessary to 
reduce the computational load and better predict the 
outcome. The dataset is then divided into the X and Y 
matrices containing the values of the independent and 
dependent variables (to be estimated).  

Table 7. Normalisation data 

%Vwat Pdiff PwatIN  QwatIN QairIN 

0 0 0  0 0  
100 10 10  100 100  

The data are split into "train data" and "test data" 
with the train_test_split() function in which the 
argument is passed the matrices X and Y, the test_size 
and the random_state. The test_size is a value between 
0-1 corresponding to the percentage of data allocated
for the test. The random_state is a number
corresponding to the seed of the random sequence with
which the train and test data will be divided.

Hyper parameterisation with a search grid is then 
performed, and the network function from the scikit-
leran library, MLPRegressor, is loaded, to which the 
hyper- parameterisation parameters are entered as an 
argument. 

4.2. MLPRegressor and hyper-parameterisation 

MLPRegressor is a neural network from the open-
source library Scikit-learn that can be used to perform 
regression.  Regression in machine learning can be seen 
as a mapping from one space to another, each space 
having a different number of dimensions. "MLP" refers 
to a particular kind of neural network called a Multi-
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Layer Perceptron. The ANN is trained using supervised 
learning to predict output data points based on input 
data points by supplying input and output data as data 
sets (Scikit-Learn Documentation). 

Some of the fundamental parameters that the 
MLPRegressor function takes as arguments are 
reported in Table 8. 

Table 8. MLPRegressor parameters  

Name Description Choices  

h
idden

_
 

layer_
size

s The element 
represents the 
number of 
neurons in the 
hidden layer 

Natural Number  

In the case reported in this article,  a 
natural number in the range (0, 501) with 
step 5 was chosen. 

activatio
n

 The activation 
function for 
the hidden 
layer 

- ‘identity’, returns f(x) = x
- ‘logistic’, returns f(x) = 1 / (1 + exp(-x)).
- ‘tanh’, returns f(x) = tanh(x).
- ‘relu’, returns f(x) = max(0, x)

solver 

The solver for 
weight 
optimization 

- ‘lbfgs’ is an optimiser in the family of 
quasi-Newton methods. 
- ‘sgd’ refers to stochastic gradient
descent. 
- ‘adam’ refers to a stochastic gradient-
based optimiser proposed by Kingma, 
Diederik, and Jimmy Ba 

learn
in

g_
rate 

Learning rate 
schedule for 
weight 
updates. 

- ‘constant’ is a constant learning rate
given by ‘learning_rate_init’. 
- ‘invscaling’ gradually decreases the 
learning rate learning_rate_ at each time
step ‘t’ using an inverse scaling exponent 
of ‘power_t’. effective_learning_rate = 
learning_rate_init / pow(t, power_t) 
- ‘adaptive’ keeps the learning rate 
constant to ‘learning_rate_init’ as long as 
training loss decreases. 

m
ax_

iter  

The maximum 
number of 
iterations. The 
solver iterates 
until 
convergence or 
this number of 
iterations 

Natural number. 

In the case reported in this article, 500 was 
chosen as max_iter according to the 
documentation on Scikit-Learn  

(Sklearn.Neural_network.MLPRegressor — Scikit-Learn Documentation) and  
(Scikit-Learn  Documentation - MLPRegression Example) 

Among the functions available in Scikit-learn, this 
regression function was chosen because there could be 
a linear relationship between the input and output 
parameters of each network: in the first network, the 
values of %Vwat and Pdiff are passed in to obtain the 
trend of the variable PwatIN; the second network takes 
the value of PwatIN as input to obtain the value of 
QwatIN; the third network takes the value of Pdiff and 
PwatIN as input to obtain the value of QairIN. It was 
decided to use only one hidden layer in each network 
because the relationship between the different 
parameters is linear. 

A hyper-parameterisation with a search grid is used 
to choose the best parameters to pass as an argument 
to the MLPRegressor function. The GridSearchCV 
function from sklearn.model_selection is imported to 
perform the hyper-parameterisation. The arguments 

of this function are: 

• estimator: the object to be optimised;
• parameters: which must be in the form of a

dictionary where each key represents a variable
assignable to the estimator and each list accessible
with the keys contains the admissible parameters
(Table 8);

• scoring: a strategy for evaluating model
performance with cross-validation on the test set.
The neg_mean_squared_error was chosen from
the eligible Regression strategies.

• cv: cross-validation splitting strategy; it was
chosen cv=3;

• n_jobs: number of jobs that can run in parallel. It
was chosen -1 to use all processors;

• return_train_score: get insights on how different
parameter settings impact the
overfitting/underfitting trade-off and, for this
reason, was set on True.

The GridSearchCV function tests all possible 
combinations of the number of neurons, activation 
functions, solvers, etc... and finds the best combination 
that can then be used to obtain the best score from each 
network. 

The following sections will specify each network's 
parameters obtained by hyper-parameterisation 
(Sklearn.Model_selection.GridSearchCV — Scikit-
Learn Documentation). As anticipated, all 3 networks 
were trained with the same test: the PIN:3 bar, LS :0 mm, 
and PS:0 bar test (which will be referred to as 3_0_0 for 
convenience).  

Figure 5. ANNs working structure 

After the training phase, the 3 networks work 
together as shown in Figure 5: the first network takes 
%Vwat and Pdiff data as input from the original dataset 
to estimate PwatIN. The PwatIN evaluated by ANN1 is 
given to ANN2 to estimate QwatIN. Finally, ANN3 takes 
the Pdiff values from the original dataset and the 
PwatIN values estimated by ANN1 to predict QairIN. 

4.3. ANN1: PwatIN 

The first step in building the first network was to 
import the training dataset and train the ANN with it. 
For this purpose, it was implemented a code 
(schematised in Figure 6) that allows to: 

1. load the test of interest in ".csv" format;
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2. select only the columns of interest for the first
network i.e. %Vwat, Pdiff, %PwatIN and save
them as dataset_interest;

3. save also the columns %Vwat, Pdiff, %PwatIN
and Test like dataset_test;

4. normalise the dataset_interest with the
MinMaxScaler() function and the parameters of
%Vwat, Pdiff, %PwatIN in Table 7 and save the
result as dataset_interest_norm.

Figure 6. ANN1: train 

After being run, this part of code returns dataset_inte- 
rest, dataset_test, dataset_interest_norm. 

It was necessary to divide dataset_ineterst into 
dependent variable Y and independent variable X to 
which the measured values of PwatIN and the values of 
Pdiff, %VwatIN, respectively, had to be associated. To 
do this, it was used the function train_test_split 
(illustrated in Section 4.1). The test_size chosen is 0.30, 
and the random_state is 0 (to achieve reproducibility). 

Then, the hyper-parameterisation was run, which 
resulted in 470 neurons, activation function 'relu’, 
solver 'lbfgs', learning_rate 'constant', having chosen 
as random_state 22 and max_iter 500. The values were 
fed back into the MLPRegressor function to build the 
MLP model. The 'fit' method was then used to train the 
model on the x_train and y_train data. 

With the 'score' method, it is possible to calculate 
the network score, i.e. the coefficient of determination 
of the prediction. The score is 0.9785, corresponding to 
97.85% correspondence between predicted and 
measured data. With the 'predict' method and the 
values of X_train and X_test, it was possible to 
calculate the predictions of the train and test data. The 
mean square errors were calculated, which were found 
to be 0.01997 for the train and 0.02243 for the test. 
These errors are normalised to the PwatIN values in 
Table 7. 

Figure 7. Prediction PwatIN - train dataset  

Once the MLP model has been trained and tested and 
initial predictions have been made with train and test 
data, it is possible to use MLP to predict PwatIN values 
from Pdiff and %Vwat data of the entire dataset. 

Columns of Pdiff, %Vwat and PwatIn from each test 
are then loaded, normalised and the MLP.predict 
method is applied to make the predictions (Figure 7). 
The errors committed in prediction by each trial are 
then calculated. 

PwatIN forecast results are saved in 'csv' files with 
data from QairIN, QwatIN and Pdiff to be passed on to 
ANN2 and ANN3. 

4.4. ANN2: QwatIN 

The second network works similarly to the first, but 
differently, the PwatIN and QwatIN columns are 
selected in the training phase (Figure 8).  As in the 
previous network, the data are normalised (with the 
corresponding values in Table 7), divided into the X and 
Y matrices, and re-subdivided into train and test data 
with a test_size of 0.3. Hyper-parameterisation results 
in 175 neurons, the activation function 'relu', the solver 
'adam' and 'constant' as the learning_rate. The 
calculated score for this network is 0.9794 (97.94%), 
while the train and test normalised errors are 0.00307 
and 0.00287, respectively. 

Figure 8. ANN2: train 

Using the 'predict' method, it is possible to estimate 
the trend of the test used in the training phase: tests 
“3_0_0”. 

Figure 9. Prediction QwatIN - train dataset  

The error in the prediction (Figure 9) of the test is 
0.4612 m3/h. 

4.5. ANN3: QairIN 

Figure 10. ANN3: train 

Like the first two ANNs, the third ANN uses the data-
loading function to obtain the PwatIN, Pdiff and QairIN 
values of the training trial (Figure 10). Again, once the 
3 columns of data are selected, they can be divided into 
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the X and Y matrices: to the X matrix, it is assigned the 
values of PwatIN and Pdiff, while to the Y matrix, it is 
assigned the vector of the variable QairIN. Then, it is 
possible to split train and test data with test_size of 0.3. 

The MLPRegressor function is then used in which 
the following are given as arguments: number of 
neurons 185, activation function 'relu', solver 'lbfgs' 
and learning rate ‘constant’. These parameters were 
obtained by hyper parametrisation. The other 
parameters are the same as for the last networks.   

The calculated score for this network is 0.9779 
(97.79%), while the train and test normalised errors 
are 0.02636 and 0.02637, respectively.  

Again, it is possible to use our network to initially 
redraw the trend of the test used in the training phase 
(Figure 11). The average error over the whole trend is 
4.028 m3/h. 

Figure 11. Prediction QairIN - train dataset – normalised 

5. Results and Discussion

As mentioned above, once the three networks have 
been trained, it is possible to predict the performance 
of each test. The dataset is therefore formed: it is 
possible to concatenate all tests and normalise them 
according to the values in Table 7.  

Now, by selecting only the columns for Pdiff and 
%VwatIN values, it is possible to predict PwatIN values 
with the 'predict' method of regressor, obtained from 
the first ANN. This prediction yields the trends shown 
in Figure 12 with the errors shown in Table 9. 

Table 9. ANN1 prediction errors 

Test name Real error [bar] 

3_0_0 0.03057 

3_0_1.3 0.02456 

3_250_1.5 0.04541 

3_350_1.5 0.03177 

3_450_1.3 0.04570 

At the end of the training, testing and prediction of 
the first network, the predicted values of PwatIN of the 
5 tests are saved to two csv files: in the first file in 
addition to PwatIN the values of QwatIN of the 5 tests 
are saved (file1), in the second file in addition to PwatIN 
the values of Qair and Pdiff of the 5 tests are 
saved(file2). The next 2 ANNs will also call up these files 
to estimate those data. 

Figure 12 . ANN 1 predictions-original dataset -normalised 

ANN2 predictions are made, first of all, from the 
original PwatIN data of the dataset (trends in Figure 13; 
errors in Table 10) and then from the dataset saved in 
file1. The QwatIN values of file1 will be useful for error 
evaluation. 

Figure 13. ANN2 predictions – original dataset -normalised 

Table 10 . ANN2 prediction errors– original dataset  

Test name Normalised error  Real error [m3/h] 

3_0_0 0.004612 0.4612 
3_0_1.3 0.003597 0.3597 
3_250_1.5 0.003859 0.3859 
3_350_1.5 0.003825 0.3825 
3_450_1.3 0.004278 0.4278 

The results of ANN2, obtained with the PwatIN 
values from ANN1, are the following (errors in Table 11; 
trends in Figure 14). 
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Table 11. ANN2 prediction errors– ANN1 dataset (file1) 

Test name Real error [m3/h] 

3_0_0 0.5869 

3_0_1.3 0.3413 

3_250_1.5 0.6695 

3_350_1.5 0.5461 

3_450_1.3 0.6898 

Figure 14. ANN2 predictions – ANN1 dataset (file1) 

Also for ANN3, the predicted QairIN values of the 5 
tests are given from both, the data of the original 
dataset (trends in Figure 15; errors in Table 12) and the 
data obtained from ANN1 (trends in Figure 16; errors in 
Table 13).  

Figure 15. ANN3 predictions – original dataset -normalised 

Table 12. ANN3 prediction errors– original dataset 

Test name Normalised error  Real error [m3/h] 

3_0_0 0.040281 4.0281 

3_0_1.3 0.058875 5.8875 

3_250_1.5 0.107093 10.7093 

3_350_1.5 0.127389 12.7389 

3_450_1.3 0.1138191 11.3819 

Figure 16. ANN3 predictions – ANN1 dataset (file2) 

Table 13. ANN3 prediction errors– ANN1 dataset (file2) 

Test name Real error [m3/h] 

3_0_0 6.0405 

3_0_1.3 7.8256 

3_250_1.5 11.1661 

3_350_1.5 12.8702 

3_450_1.3 11.7109 

As can be seen from the results, the first ANN1 and 
ANN2 perform good predictions. In particular, the 
errors are small even when ANN2 processes data 
derived from ANN1. Obviously, these last results are 
negatively affected by the error that comes from ANN1. 
In fact, since ANN1 is not 100% accurate, it returns data 
with an error that is accentuated by ANN2, which also 
does not perform 100%.  

Even though this inconvenience arises in the 
interaction between the networks, it was decided to 
operate in this way to use the two networks also 
separately (in the case where it is necessary to operate 
with only one network). In fact, if the input parameters 
are already known, each network can calculate the 
respective results, regardless of the operation of the 
other ANNs.  

ANN3 is the worst-performing ANN compared to the 
other ANNs. The fact that the errors are larger than 
those of the others is not surprising: capturing air 
behaviour in a system is extremely difficult due to the 
compressibility characteristics of this fluid. In 
addition, the air is a fluid highly susceptible to 
environmental conditions outside the system: it is 
strongly affected by ambient temperature and 
atmospheric pressure, for example. In addition to the 
room temperature, it must be considered that the air 



| 35th European Modeling & Simulation Symposium, EMSS 2023 

heats up during plant operation and causes more 
difficulties. For these reasons, the behaviour of air is 
captured by ANN3 with larger errors than in the case of 
water flow or water pressure. 

6. Conclusions

The aim of this paper is highlighting how a DT could be 
a good alternative to monitor, analyse and simulate the 
behaviour of an Oil & Gas plant without the use of 
dedicated software or a non-open sources system. The 
main advantage of the use DT is that all these studies 
can be done in just one digital platform. In this article, 
it’s reported the model for a DT of an ejector: a simple 
component that can be studied only with complex 
equations. To avoid this difficulty, an ANNs system is 
proposed to predict the behaviour of water pressure, 
water flow and air flow inlet the ejector from the value 
of diffuser pressure, and the percentage of closure of 
Valve 1.  

Even if the ANNs system doesn’t perform the ejector 
behaviour perfectly, prediction errors are limited and 
justified by the characteristics (compressibility, in 
particular) of the fluids processed. The major 
limitations of our work relate to the choice of ANNs 
type, the limited size of the dataset and the difficulties 
involved in using two fluids. Therefore, as future 
developments, it is possible to: develop the DT model of 
the ejector by exploiting Multiple Input-Multiple 
Output ANNs to estimate all variables of interest in one 
shot; improve the process of hyper parameterisation; 
construct a larger dataset with more parameters: a 
temperature sensor could be included to track the 
ambient temperature in which the system operates and 
correlate it to the airflow. 
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