
© 2023 The Authors. This article is an open access article distributed under the terms and conditions of the Creative
Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

35th European Modeling & Simulation Symposium
20th International Multidisciplinary Modeling & Simulation Multiconference

2724-0029 © 2023 The Authors.
doi: 10.46354/i3m.2023.emss.007

Artificial Neural Networks approach for Digital Twin
modelling of an ejector

Ilaria Pietrangeli1,*, Giovanni Mazzuto1 , Filippo Emanuele Ciarapica1,
Maurizio Bevilacqua1

1 Department of Industrial Engineering and Mathematical Science, Università Politecnica delle Marche, 60131
Ancona, Italy;

*Corresponding author. Email address: i.pietrangeli@staff.univpm.it

Abstract
Digital Twin (DT) is an underused tool in the Oil & Gas industry. Today, the behaviour of Oil and Gas plants is realised by the non-
real-time analysis software. In contrast, the DT is a framework capable of controlling and managing a plant in real-time by
exploiting sensors, virtual spaces, and the continuous connection between real and digital parts. In this paper, the DT of an
experimental plant is presented; the DT is based on a model for evaluating the behaviour of an ejector. In contrast to research on
DT in the literature, the proposed model is derived from the use of three Artificial Neural Networks (ANNs) and obtains the values
of water pressure (ANN1), airflow (ANN3) and water flow (ANN2) at the ejector inlet. The three Multi Layers Perceptron networks,
trained on a dataset obtained from the plant, represent the ejector behaviour at 97.85%, 97.79% and 97.94%, the score of each
ANN. This modelling approach for DT is currently not widely used but, given the results, is a good alternative to the traditional
techniques used.

Keywords: Oil and Gas; Multi Layers Perceptron; Regression; Experimental Plant

1. Introduction & Background

Industry 4.0 and Industrial Internet of Things (IIoT)
technologies are changing the plant world dramatically.
The “Digital Twin” (DT) concept was illustrated for the
first time in 2002 by Grives (Grieves & Vickers, 2016).
According to Pierluigi (Pierluigi Sandonnini, 2022), DT is
one of the five emerging trends driving technological
innovation. In 2012, NASA revisited the concept of DT,
which defined it as a multiphysics, probabilistic, high-
fidelity, multiscale simulation that promptly reflects the
state of a corresponding twin based on historical data,
realtime sensor data, and the physical model (Glaessgen
& Stargel, 2012). The need to perform monitoring,
control, simula-tion, and analysis on plants is driving
the development of the Digital Twin of industrial

systems. The DT can be seen as a framework that
implements the digital counterpart of a real
system/plant/phenomenon. The digital and virtual parts
are constantly connected and exchange information.
Whenever a change is made to the virtual space, that
change must also be recorded in real space and vice versa.
Based on the literature review conducted by Wanasinghe
et al. (Wanasinghe et al., 2020), the manufacturing sector
was one of the first (with automotive and aviation
industries) to grasp the importance of the Digital Twin as
a tool capable of con-verging simulative analysis,
visualisation of the risks and key performance indicators
of the asset into a single interface. In most cases, the area
of application of a DT in the Oil & Gas sector concerns the
monitoring and maintenance of systems. In fact, this tool
is rare in the Oil & Gas industry. However, evidence of this
can be found in the literature. Analysing the documents

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:abc@uni.edu

 | 35th European Modeling & Simulation Symposium, EMSS 2023

in Scopus and accessible with the key " ‘digital Twin’
AND ‘oil gas’ ", it’s possible to get 31 papers. Of these
results, 34.4% are from the “Energy” sector and 17.2 %
from the “Engineering” sector. Most of the documents
were published between the years 2019-2022. Most
articles contain information on DT used for monitoring
the oil and gas pipeline network. However, articles
highlighting the use of DT to make analyses or
predictions about the plants' condition are uncommon.
What was found in the literature also reflects the
current state of DT use by oil companies. Only a few
major energy/oil companies use DT to manage oil
facilities. Exxon Mobil and Kongsberg signed an
agreement with a DT solution contextualised to
dynamic simulation and collaboration capabilities. The
Digital Twin software-as-a-service improves
decision-making and the decentralisation of
knowledge and innovation (Hart Energy, 2021). Among
the first to apply DT, British Petroleum (BP) used the
technology to solve the problem of monitoring and
maintaining oil and gas facilities located in remote
areas. BP used DT to improve the reliability of an oil
exploration and production facility in Alaska. But the
DT could not only enable remote control: it is also
enabling predictive maintenance, risk and production
time assessment, better collaboration among teams
and better financial decision-making; it is working to
achieve results in terms of safety (Asokan Ashok, 2021).

In the Oil & Gas sector, system modelling is
conducted with several tools such as Aspen HYSYS
Hydraulics which performs CFD (Computational Fluid
Dynamics) fluid dynamic analysis (Rilby, 2016), or Life
Cycle Simulator (Heloin et al., 2013), but also ANSYS or
Abaqus (Tao et al., 2022). All these tools work
separately, one by one, generally based on
mathematical models that require numerous
parameters that are difficult to identify. For these
reasons, it is easy to see that the Digital Twin is an
excellent alternative that allows you to have a single
digital platform that contains the digital model of a
system in which all the features and rules present in the
real part are shown.

This paper will report an example of constructing a
simulation-based DT of an experimental oil and gas
plant present in the DIISM (Dipartimento di Ingegneria
Industriale e Scienze Matematiche) laboratories,
Università Politecnica delle Marche. Even though the
techniques most used in the Oil & Gas sector are
different, the aim is to demonstrate the merits of this
technology applied to this sector. This article aims to
highlight the potential of such technology for the
control, monitoring, analysis and study of Oil & Gas
plants. It will be described the plant, the acquisition
systems and the model of the principal component of
the plant: the ejector.

In contrast to common DTs, to model the behaviour
of the ejector, it was used of Artificial Neural Networks
(ANN) of the Multi-Layer Perceptron (MLP) Regressor
type. This article proposes a model based on ANNs

trained on the same dataset. The ANNs structure is
realised with 3 networks trained on the data of the same
test and they can exchange data to estimate the
parameters of interest.

The complete dataset, from which some tests for
training are selected, consists of only 5 tests; each
presents 17 columns containing the values of the
measured variables. Of all the measured variables,
those of interest to our 3 networks are the percentage
of valve opening downstream of the pump, the pressure
of the diffuser cone, the inlet water pressure (ANN1),
and the flow rate of water (ANN2) and air entering the
system (ANN3).

Section 2 describes the experimental setup,
particularly, the ejector, the acquisition system and the
dataset. In Section 3, the main difficulties in modelling
the ejector are reported. Section 4 describes the
network types, hyper parametrisation, training phase,
and the specific characteristics of the 3 networks. The
previsions are reported in Section 5. Finally, in Section
6 are the conclusions.

2. Materials and Methods

The experimental plant, the ejector and the acquisition
system will be described below.

2.1. Plant Description

The plant of interest is an experimental plant located in
the laboratories of the DIISM of the Università
Politecnica delle Marche. The plant was built in the
1990s to study oil extraction from " inactive" wells. To
avoid installing a (very expensive) pump at the bottom
of the reservoir, it was studied a system using an ejector
and pressure from an "active" well adjacent to the
"inactive" one (Figure 1).

Figure 1. Scheme of extraction plant

For safety, the experimental plant will use water and
air instead of oil and gas. The system is shown in Figure
3 and presents an opened water-collection tank; the
water is drawn from the opened tank by a pump (in
green in Figure 2) that sends it to the ejector; air and
water converge in the ejector and mix in a two-phase
mixture; the mixture is sent to a vertical tank that acts
as a vertical separator: in this way, the air can be sent
back to the opened tank, and the air can exit through
the appropriate channel. Along the whole system, there
are 3 electro-valve (in turquoise), 8 sensors (in light
blue) and manual valves (in orange) useful for
simulating system faults.

Table 1 shows all the characteristics of the sensors

Pietrangeli et al. |

and Table 2 describes the electro-valves.

Figure 2. Plant scheme

Figure 3. Experimental Plant photos

Table 1. Plant Sensor

ID Description UM Type Tag

S1 Inlet water
pressure

[bar] OUTPUT Endress+ Hauser
Cerabar M PMP51

S2 Inlet water flow
rate

[m3/h] OUTPUT Endress+ Hauser
Promag W

S3 Ejector pressure [bar] OUTPUT Setra 280E
S4 Mixture

pressure in the
diffuser

[bar] OUTPUT Foxboro 841GM CI1

S5 Tank pressure [bar] OUTPUT Foxboro 841GM-CI1
S6 Inlet air flow

rate
[m3/h] OUTPUT Foxboro Vortez DN 50

S7 Water level in
the tank

[mm] OUTPUT Foxboro IDP-10

S8 Air flow rate at
the outlet

[m3/h] OUTPUT Endress+ Hauser
Prowirl 200

Table 2. Plant electro-valves

ID Description UM Type

V1 Valve 1 closure [%] INPUT
V2 Valve 2 closure [%] INPUT
V3 Valve 3 closure [%] INPUT

2.1.1. Ejector

An ejector is a hydraulic element with no moving
parts that can be used to pressure one fluid, called
motive fluid, by taking advantage of a second fluid,
called inlet fluid (Dipartimento di Energetica -

UNIVPM, 1990). The operation can be explained by
referring to the Venturi effect: the pressure of a fluid
increases with decreasing velocity. The motive fluid
is water, while the inlet fluid is air. According to
Bernoulli's theorem, the motive fluid is conveyed
inside the nozzle, which has a change in cross-
section along its axis: this will increase velocity and
decrease pressure. Due to the Venturi effect, the fluid
exiting from the nozzle with a certain velocity causes
a vacuum inside the mixing chamber that causes the
inlet fluid (air) to be drawn into the chamber. The two
fluids then come into contact, creating the mixture.
Due to the energy imparted to it by the motive fluid,
the mix will move with a certain speed along the
mixing tube to the divergent cone, known as the
diffuser. The gradual increase of the section, due to
the diverging cone, causes the slowdown of the fluid:
the kinetic energy is transformed into pressure
energy. This element has no moving parts: it is very
simple, versatile, requires little maintenance, and
has easy installation and no sealing problems. To also
simplify the interpretation of operation,
assumptions are introduced on which the operating
model of a liquid-gas ejector is defined:

• isothermal compression of the gas between
suction conditions (s-suction) and discharge
conditions (l-line), with no loss of gas
pressure between the machine inlet and the
mixer tube inlet;

• negligible increase in liquid temperature due
to gas compression;

• passage through the mixing tube produces a
homogeneous mixture of the two liquid-gas
phases, with no flow between them;

• the influences of the vapour pressure of the
liquid phase and the viscosity of the gas and
liquid are considered negligible.

Given the following conditions, it will be possible
to write the following governing equations:

 | 35th European Modeling & Simulation Symposium, EMSS 2023

- Efflux through nozzle:
𝑝𝑑 − 𝑝𝑜 =

1

2
𝜌𝑙 𝑉𝑙𝑜

2 (1 + 𝐾𝑛𝑧) (1)

- Flow in the mixing tube:

𝑝𝑡 − 𝑝𝑜 =
1

2
𝜌𝑙 𝑉𝑙𝑜

2 [2𝑏 + 2ϒ𝛷𝑜
2

𝑏2

1 − 𝑏
− (2 + 𝐾𝑡ℎ)𝑏2(1 + 𝛷𝑡)(1 + ϒ𝛷𝑜)]

(2)

- Flow in the diffuser tube:

𝑝𝑙 − 𝑝𝑡 = 𝑍(1 + ϒ𝛷𝑜)[𝑏2(1 + 𝛷𝑡)2 − 𝑏2𝑎2(1 + 𝛷𝑙)2 − 𝐾𝑑𝑙 𝑏
2 (1 + 𝛷𝑡)] − 𝑝𝑜 𝛷𝑜 ln

𝑝𝑙

𝑝𝑡

(3)

 Figure 4. Ejector scheme

Figure 4 shows the simplified diagram in which the
various sections referred to in the previous equations
are highlighted. Table 3 and Table 4 explain the indices
and parameters in the equations.

Table 3. Equations Index

Index

d Motor fluid adduction section - drive
n Motor fluid outflow section
o Mixer tube inlet section
t Mixer tube outlet section
l Diffuser end section - line
s Suction fluid adduction section - suction
nz Nozzle
di Diffuser
th Mixer tube (throat)
en Suction box inlet

Table 4. Equations Parameters

Parameters

a Ratio of At/Al diffuser sections
b Ratio of the nozzle and mixing sections An/At
K Coefficient of friction loss
p Fluid pressure [Mpa]
Q Fluid flow rate [m3/s]
V Fluid velocity [m/s]
ρ Fluid density [kg/m3]
Φ Ratio of the volumetric flow rates of the fluid sucked in and

the motor fluid (*)
ϒ Ratio of the densities of the sucked and motor fluids in the

section or the machine (**)
Φ0 Q2o / Q1
Φt Q2t / Q1
Φs Q2s / Q1o
Φeq ϒ Φ0
ϒ ρ2o / ρ1

ϒeq ρL2 / ρ1

ƞ Ejector machine efficiency
ƞ' Yield of two-phase mixture pumping system

The ejector is the most mathematically complex
element to model, especially for the two fluids that
affect it (air and water, in our case). Of course, the
equations are known and have already been studied,
but very often, it is the coefficients that characterise
them that are difficult to identify.

For this purpose, very often, when the mathematics
of the system is too complex to be solved, it is possible
to use machine learning algorithms or ANNs that, with
training done on experimental data of the system,
provide us with an optimal model of the object of
interest.

2.2. Dataset

The dataset is acquired by exploiting the sensors
connected to a device called Revolution Pi (RevPi)
which has an AIO-type module to which the plant's
sensor pins are connected. The RevPi communicates
with the server via WebSocket. Web sockets allow
browser-server interaction and enable the
implementation of applications that provide real-time
data without the client continuously requesting
information from the server. The server receives and
resends the data to all other servers, including the DT
interface accessed from a PC connected to the same
internet line as RevPi. In this interface, there are
tachometer graphs and animation in the interface
showing changes in the levels, pressures and flow rates
of water and air within the system; there is a button on
the left side of the interface to record and store in a
".csv" file the strings read during the time frame. This
command was useful for acquiring the data for training
our neural network.

To obtain a useful dataset, it is possible to set
parameters like water pressure at the plant inlet, tank
level and tank pressure (Table 5).

• PIN [bar]: Water pressure at the tank inlet
• LS [mm]: Tank level
• PS [bar]: Tank pressure

Table 5. Dataset

PIN [bar] LS [mm] PS [bar]

3 0 0
3 0 1.3

Pietrangeli et al. |

3 250 1.5
3 350 1.5
3 450 1.3

All tests contain data from sensors throughout the
plant and are recorded so that there are approximately
1600 acquisitions for each. The data are stored within
each ".csv" file. The first line of each file is the "header"
which has all the abbreviated names of the respective
sampled variables. The measured variables are shown
in Table 6.

Table 6. Header Dataset

Name Description Unit

PwatIN Inlet water pressure [bar]

QwatIN Inlet water flow rate [m3/h]

Peje Ejector pressure [bar]

Pdiff Diffuser mixture pressure [bar]

Ps Tank pressure [bar]

QairIN Inlet air flow rate [m3/h]

Ls Tank water level [mm]

QairOUT Outlet air flow rate [m3/h]

%Vwat Valve 1 closure [%]

%Vair Valve 2 closure [%]

%VwatOUT Valve 3 closure [%]

Test Identification Number of the Test -

3. Modelling difficulties

As already pointed out in Section 1, today, the
modelling of Oil & Gas plants is almost exclusively
carried out with software (also not open sources) that
mainly performs fluid-dynamic or thermodynamic
analyses. In addition, control, analysis, and anomaly
detection are often not carried out by a single
technology but by multiple software and devices that
must communicate and collaborate, with all its
attendant difficulties. The best alternative in this
context proposed in our article is the construction of a
DT of the system.

In the case proposed in this article, the model for a
DT of the most complex element of the experimental
plant is realised: the ejector model. The complexity of
the ejector's characteristic equations and the difficulty
in identifying the parameters that characterise them
directed the construction of the ejector model towards
using neural networks.

In addition, as already mentioned in Section 2.1,
water and air are handled in the ejector of the
experimental plant instead of oil and gas for safety
reasons. The presence of a compressible fluid such as
air causes greater difficulty in applying the equations (
1)-(2)-(3), which can be used under stringent
constraints or in finding a mathematical model. For
this reason, it was also decided to use ANNs to model
the ejector. Even ANNs cannot perfectly reproduce the
behaviour of the ejector and the air inside it, but they
are a quick and easy method to extract the first results
accurately.

4. Artificial Neural Networks model

As mentioned in Section 2.1.1, the equations that
characterise the behaviour of the ejector are very
complex and difficult to use for real-time analysis. For
this reason, it is possible to model the behaviour of this
component through ANNs. In particular, three
networks were constructed to derive three
fundamental parameters of the ejector: inlet water
pressure (PwatIN), inlet water flow rate (QwatIN) and
air flow rate at the ejector inlet (QairIN). The three
networks were implemented in Python and have a
similar structure.

4.1. General description

A system with 3 Multiple Input Single Output (MISO)
ANNs has been constructed to allow us to derive the
variables of interest. All 3 networks exploit the MLP
Regressor function, train on the same dataset and have
similar functionalities. The general operation is
explained below.

First, a function was created to load the dataset: of
the 5 tests in Table 5, only the first is loaded to train and
test the networks (the remainder will be used to
validate them).

In each ANNs, the single selected test is then
normalised according to the values in Table 7 with the
MinMaxScaler() function. Normalisation is necessary to
reduce the computational load and better predict the
outcome. The dataset is then divided into the X and Y
matrices containing the values of the independent and
dependent variables (to be estimated).

Table 7. Normalisation data

%Vwat Pdiff PwatIN QwatIN QairIN

0 0 0 0 0
100 10 10 100 100

The data are split into "train data" and "test data"
with the train_test_split() function in which the
argument is passed the matrices X and Y, the test_size
and the random_state. The test_size is a value between
0-1 corresponding to the percentage of data allocated
for the test. The random_state is a number
corresponding to the seed of the random sequence with
which the train and test data will be divided.

Hyper parameterisation with a search grid is then
performed, and the network function from the scikit-
leran library, MLPRegressor, is loaded, to which the
hyper- parameterisation parameters are entered as an
argument.

4.2. MLPRegressor and hyper-parameterisation

MLPRegressor is a neural network from the open-
source library Scikit-learn that can be used to perform
regression. Regression in machine learning can be seen
as a mapping from one space to another, each space
having a different number of dimensions. "MLP" refers
to a particular kind of neural network called a Multi-

6 | 35th European Modeling & Simulation Symposium, EMSS 2023

Layer Perceptron. The ANN is trained using supervised
learning to predict output data points based on input
data points by supplying input and output data as data
sets (Scikit-Learn Documentation).

Some of the fundamental parameters that the
MLPRegressor function takes as arguments are
reported in Table 8.

Table 8. MLPRegressor parameters

Name Description Choices

h
idden

_

layer_
size

s The element
represents the
number of
neurons in the
hidden layer

Natural Number

In the case reported in this article, a
natural number in the range (0, 501) with
step 5 was chosen.

activatio
n

 The activation
function for
the hidden
layer

- ‘identity’, returns f(x) = x
- ‘logistic’, returns f(x) = 1 / (1 + exp(-x)).
- ‘tanh’, returns f(x) = tanh(x).
- ‘relu’, returns f(x) = max(0, x)

solver

The solver for
weight
optimization

- ‘lbfgs’ is an optimiser in the family of
quasi-Newton methods.
- ‘sgd’ refers to stochastic gradient
descent.
- ‘adam’ refers to a stochastic gradient-
based optimiser proposed by Kingma,
Diederik, and Jimmy Ba

learn
in

g_
rate

Learning rate
schedule for
weight
updates.

- ‘constant’ is a constant learning rate
given by ‘learning_rate_init’.
- ‘invscaling’ gradually decreases the
learning rate learning_rate_ at each time
step ‘t’ using an inverse scaling exponent
of ‘power_t’. effective_learning_rate =
learning_rate_init / pow(t, power_t)
- ‘adaptive’ keeps the learning rate
constant to ‘learning_rate_init’ as long as
training loss decreases.

m
ax_

iter

The maximum
number of
iterations. The
solver iterates
until
convergence or
this number of
iterations

Natural number.

In the case reported in this article, 500 was
chosen as max_iter according to the
documentation on Scikit-Learn

(Sklearn.Neural_network.MLPRegressor — Scikit-Learn Documentation) and
(Scikit-Learn Documentation - MLPRegression Example)

Among the functions available in Scikit-learn, this
regression function was chosen because there could be
a linear relationship between the input and output
parameters of each network: in the first network, the
values of %Vwat and Pdiff are passed in to obtain the
trend of the variable PwatIN; the second network takes
the value of PwatIN as input to obtain the value of
QwatIN; the third network takes the value of Pdiff and
PwatIN as input to obtain the value of QairIN. It was
decided to use only one hidden layer in each network
because the relationship between the different
parameters is linear.

A hyper-parameterisation with a search grid is used
to choose the best parameters to pass as an argument
to the MLPRegressor function. The GridSearchCV
function from sklearn.model_selection is imported to
perform the hyper-parameterisation. The arguments

of this function are:

• estimator: the object to be optimised;
• parameters: which must be in the form of a

dictionary where each key represents a variable
assignable to the estimator and each list accessible
with the keys contains the admissible parameters
(Table 8);

• scoring: a strategy for evaluating model
performance with cross-validation on the test set.
The neg_mean_squared_error was chosen from
the eligible Regression strategies.

• cv: cross-validation splitting strategy; it was
chosen cv=3;

• n_jobs: number of jobs that can run in parallel. It
was chosen -1 to use all processors;

• return_train_score: get insights on how different
parameter settings impact the
overfitting/underfitting trade-off and, for this
reason, was set on True.

The GridSearchCV function tests all possible
combinations of the number of neurons, activation
functions, solvers, etc... and finds the best combination
that can then be used to obtain the best score from each
network.

The following sections will specify each network's
parameters obtained by hyper-parameterisation
(Sklearn.Model_selection.GridSearchCV — Scikit-
Learn Documentation). As anticipated, all 3 networks
were trained with the same test: the PIN:3 bar, LS :0 mm,
and PS:0 bar test (which will be referred to as 3_0_0 for
convenience).

Figure 5. ANNs working structure

After the training phase, the 3 networks work
together as shown in Figure 5: the first network takes
%Vwat and Pdiff data as input from the original dataset
to estimate PwatIN. The PwatIN evaluated by ANN1 is
given to ANN2 to estimate QwatIN. Finally, ANN3 takes
the Pdiff values from the original dataset and the
PwatIN values estimated by ANN1 to predict QairIN.

4.3. ANN1: PwatIN

The first step in building the first network was to
import the training dataset and train the ANN with it.
For this purpose, it was implemented a code
(schematised in Figure 6) that allows to:

1. load the test of interest in ".csv" format;

Pietrangeli et al. |

2. select only the columns of interest for the first
network i.e. %Vwat, Pdiff, %PwatIN and save
them as dataset_interest;

3. save also the columns %Vwat, Pdiff, %PwatIN
and Test like dataset_test;

4. normalise the dataset_interest with the
MinMaxScaler() function and the parameters of
%Vwat, Pdiff, %PwatIN in Table 7 and save the
result as dataset_interest_norm.

Figure 6. ANN1: train

After being run, this part of code returns dataset_inte-
rest, dataset_test, dataset_interest_norm.

It was necessary to divide dataset_ineterst into
dependent variable Y and independent variable X to
which the measured values of PwatIN and the values of
Pdiff, %VwatIN, respectively, had to be associated. To
do this, it was used the function train_test_split
(illustrated in Section 4.1). The test_size chosen is 0.30,
and the random_state is 0 (to achieve reproducibility).

Then, the hyper-parameterisation was run, which
resulted in 470 neurons, activation function 'relu’,
solver 'lbfgs', learning_rate 'constant', having chosen
as random_state 22 and max_iter 500. The values were
fed back into the MLPRegressor function to build the
MLP model. The 'fit' method was then used to train the
model on the x_train and y_train data.

With the 'score' method, it is possible to calculate
the network score, i.e. the coefficient of determination
of the prediction. The score is 0.9785, corresponding to
97.85% correspondence between predicted and
measured data. With the 'predict' method and the
values of X_train and X_test, it was possible to
calculate the predictions of the train and test data. The
mean square errors were calculated, which were found
to be 0.01997 for the train and 0.02243 for the test.
These errors are normalised to the PwatIN values in
Table 7.

Figure 7. Prediction PwatIN - train dataset

Once the MLP model has been trained and tested and
initial predictions have been made with train and test
data, it is possible to use MLP to predict PwatIN values
from Pdiff and %Vwat data of the entire dataset.

Columns of Pdiff, %Vwat and PwatIn from each test
are then loaded, normalised and the MLP.predict
method is applied to make the predictions (Figure 7).
The errors committed in prediction by each trial are
then calculated.

PwatIN forecast results are saved in 'csv' files with
data from QairIN, QwatIN and Pdiff to be passed on to
ANN2 and ANN3.

4.4. ANN2: QwatIN

The second network works similarly to the first, but
differently, the PwatIN and QwatIN columns are
selected in the training phase (Figure 8). As in the
previous network, the data are normalised (with the
corresponding values in Table 7), divided into the X and
Y matrices, and re-subdivided into train and test data
with a test_size of 0.3. Hyper-parameterisation results
in 175 neurons, the activation function 'relu', the solver
'adam' and 'constant' as the learning_rate. The
calculated score for this network is 0.9794 (97.94%),
while the train and test normalised errors are 0.00307
and 0.00287, respectively.

Figure 8. ANN2: train

Using the 'predict' method, it is possible to estimate
the trend of the test used in the training phase: tests
“3_0_0”.

Figure 9. Prediction QwatIN - train dataset

The error in the prediction (Figure 9) of the test is
0.4612 m3/h.

4.5. ANN3: QairIN

Figure 10. ANN3: train

Like the first two ANNs, the third ANN uses the data-
loading function to obtain the PwatIN, Pdiff and QairIN
values of the training trial (Figure 10). Again, once the
3 columns of data are selected, they can be divided into

| 35th European Modeling & Simulation Symposium, EMSS 2023

the X and Y matrices: to the X matrix, it is assigned the
values of PwatIN and Pdiff, while to the Y matrix, it is
assigned the vector of the variable QairIN. Then, it is
possible to split train and test data with test_size of 0.3.

The MLPRegressor function is then used in which
the following are given as arguments: number of
neurons 185, activation function 'relu', solver 'lbfgs'
and learning rate ‘constant’. These parameters were
obtained by hyper parametrisation. The other
parameters are the same as for the last networks.

The calculated score for this network is 0.9779
(97.79%), while the train and test normalised errors
are 0.02636 and 0.02637, respectively.

Again, it is possible to use our network to initially
redraw the trend of the test used in the training phase
(Figure 11). The average error over the whole trend is
4.028 m3/h.

Figure 11. Prediction QairIN - train dataset – normalised

5. Results and Discussion

As mentioned above, once the three networks have
been trained, it is possible to predict the performance
of each test. The dataset is therefore formed: it is
possible to concatenate all tests and normalise them
according to the values in Table 7.

Now, by selecting only the columns for Pdiff and
%VwatIN values, it is possible to predict PwatIN values
with the 'predict' method of regressor, obtained from
the first ANN. This prediction yields the trends shown
in Figure 12 with the errors shown in Table 9.

Table 9. ANN1 prediction errors

Test name Real error [bar]

3_0_0 0.03057

3_0_1.3 0.02456

3_250_1.5 0.04541

3_350_1.5 0.03177

3_450_1.3 0.04570

At the end of the training, testing and prediction of
the first network, the predicted values of PwatIN of the
5 tests are saved to two csv files: in the first file in
addition to PwatIN the values of QwatIN of the 5 tests
are saved (file1), in the second file in addition to PwatIN
the values of Qair and Pdiff of the 5 tests are
saved(file2). The next 2 ANNs will also call up these files
to estimate those data.

Figure 12 . ANN 1 predictions-original dataset -normalised

ANN2 predictions are made, first of all, from the
original PwatIN data of the dataset (trends in Figure 13;
errors in Table 10) and then from the dataset saved in
file1. The QwatIN values of file1 will be useful for error
evaluation.

Figure 13. ANN2 predictions – original dataset -normalised

Table 10 . ANN2 prediction errors– original dataset

Test name Normalised error Real error [m3/h]

3_0_0 0.004612 0.4612
3_0_1.3 0.003597 0.3597
3_250_1.5 0.003859 0.3859
3_350_1.5 0.003825 0.3825
3_450_1.3 0.004278 0.4278

The results of ANN2, obtained with the PwatIN
values from ANN1, are the following (errors in Table 11;
trends in Figure 14).

Pietrangeli et al. |

Table 11. ANN2 prediction errors– ANN1 dataset (file1)

Test name Real error [m3/h]

3_0_0 0.5869

3_0_1.3 0.3413

3_250_1.5 0.6695

3_350_1.5 0.5461

3_450_1.3 0.6898

Figure 14. ANN2 predictions – ANN1 dataset (file1)

Also for ANN3, the predicted QairIN values of the 5
tests are given from both, the data of the original
dataset (trends in Figure 15; errors in Table 12) and the
data obtained from ANN1 (trends in Figure 16; errors in
Table 13).

Figure 15. ANN3 predictions – original dataset -normalised

Table 12. ANN3 prediction errors– original dataset

Test name Normalised error Real error [m3/h]

3_0_0 0.040281 4.0281

3_0_1.3 0.058875 5.8875

3_250_1.5 0.107093 10.7093

3_350_1.5 0.127389 12.7389

3_450_1.3 0.1138191 11.3819

Figure 16. ANN3 predictions – ANN1 dataset (file2)

Table 13. ANN3 prediction errors– ANN1 dataset (file2)

Test name Real error [m3/h]

3_0_0 6.0405

3_0_1.3 7.8256

3_250_1.5 11.1661

3_350_1.5 12.8702

3_450_1.3 11.7109

As can be seen from the results, the first ANN1 and
ANN2 perform good predictions. In particular, the
errors are small even when ANN2 processes data
derived from ANN1. Obviously, these last results are
negatively affected by the error that comes from ANN1.
In fact, since ANN1 is not 100% accurate, it returns data
with an error that is accentuated by ANN2, which also
does not perform 100%.

Even though this inconvenience arises in the
interaction between the networks, it was decided to
operate in this way to use the two networks also
separately (in the case where it is necessary to operate
with only one network). In fact, if the input parameters
are already known, each network can calculate the
respective results, regardless of the operation of the
other ANNs.

ANN3 is the worst-performing ANN compared to the
other ANNs. The fact that the errors are larger than
those of the others is not surprising: capturing air
behaviour in a system is extremely difficult due to the
compressibility characteristics of this fluid. In
addition, the air is a fluid highly susceptible to
environmental conditions outside the system: it is
strongly affected by ambient temperature and
atmospheric pressure, for example. In addition to the
room temperature, it must be considered that the air

| 35th European Modeling & Simulation Symposium, EMSS 2023

heats up during plant operation and causes more
difficulties. For these reasons, the behaviour of air is
captured by ANN3 with larger errors than in the case of
water flow or water pressure.

6. Conclusions

The aim of this paper is highlighting how a DT could be
a good alternative to monitor, analyse and simulate the
behaviour of an Oil & Gas plant without the use of
dedicated software or a non-open sources system. The
main advantage of the use DT is that all these studies
can be done in just one digital platform. In this article,
it’s reported the model for a DT of an ejector: a simple
component that can be studied only with complex
equations. To avoid this difficulty, an ANNs system is
proposed to predict the behaviour of water pressure,
water flow and air flow inlet the ejector from the value
of diffuser pressure, and the percentage of closure of
Valve 1.

Even if the ANNs system doesn’t perform the ejector
behaviour perfectly, prediction errors are limited and
justified by the characteristics (compressibility, in
particular) of the fluids processed. The major
limitations of our work relate to the choice of ANNs
type, the limited size of the dataset and the difficulties
involved in using two fluids. Therefore, as future
developments, it is possible to: develop the DT model of
the ejector by exploiting Multiple Input-Multiple
Output ANNs to estimate all variables of interest in one
shot; improve the process of hyper parameterisation;
construct a larger dataset with more parameters: a
temperature sensor could be included to track the
ambient temperature in which the system operates and
correlate it to the airflow.

Funding

This paper is supported by European Union's Horizon
Europe research and innovation programme under
grant agreement No 101057294, project AIDEAS (AI-
Driven industrial Equipment product life cycle boosting
Agility, Sustainability and resilience).

This paper is also supported by European Union's
Horizon Europe research and innovation programme
under grant agreement No 101092043, project
AGILEHAND (Smart Grading, Handling and
Packaging Solutions for Soft and Deformable
Products in Agile and Reconfigurable Lines).

References

Asokan Ashok. (2021). Digital Twins in 2021: 15 Amazing
Examples. https://unfoldlabs.medium.com/digital-
twins-in-2021-15-amazing-examples-
3e492d4852f5

Dipartimento di Energetica -UNIVPM. (1990). STUDIO
DI EIETTORI BIFASE PER L’INDUSTRIA PETROLIFERA.

Glaessgen, E. H., & Stargel, D. S. (2012). The digital twin

paradigm for future NASA and U.S. air force vehicles.
53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics and Materials Conference 2012.

Grieves, M., & Vickers, J. (2016). Origins of the Digital
Twin Concept.
https://doi.org/10.13140/RG.2.2.26367.61609

Hart Energy. (2021). Exxon Mobil to Deploy Kongsberg
Digital Twin Software.
https://www.hartenergy.com/news/exxon-mobil-
deploy-kongsberg-digital-twin-software-194928

Heloin, N. R., Haarklou, E., Thiabaud, P., Jalby, G., &
Schiefloe, T. (2013). Peregrino FPSO - Operation
Challenges Overcome by the Use of Dynamic
Simulation from Studies to Training. In OTC Brasil
(p. OTC-24329-MS).
https://doi.org/10.4043/24329-MS

Pierluigi Sandonnini. (2022). Report Gartner: 5 tendenze
chiave per il futuro dell’AI - AI4Business.
https://www.ai4business.it/news/report-gartner-
5-tendenze-chiave-per-il-futuro-dellai/

Rilby, E. (2016). Dynamic Simulations of an Oil and Gas
Well Stream.

scikit-learn documentation - MLPRegression example.
(n.d.). Retrieved March 10, 2023, from
https://scikit-
learn.org/stable/auto_examples/miscellaneous/pl
ot_partial_dependence_visualization_api.html#s
phx-glr-auto-examples-miscellaneous-plot-
partial-dependence-visualization-api-py

Scikit-learn documentation. (n.d.). Retrieved March 9,
2023, from https://scikit-
learn.org/stable/modules/neural_networks_super
vised.html#multi-layer-perceptron

sklearn.model_selection.GridSearchCV — scikit-learn
documentation. (n.d.). Retrieved March 9, 2023,
from https://scikit-
learn.org/stable/modules/generated/sklearn.model
_selection.GridSearchCV.html

sklearn.neural_network.MLPRegressor — scikit-learn
documentation. (n.d.). Retrieved March 9, 2023,
from https://scikit-
learn.org/stable/modules/generated/sklearn.neura
l_network.MLPRegressor.html

Tao, F., Xiao, B., Qi, Q., Cheng, J., & Ji, P. (2022). Digital
twin modeling. Journal of Manufacturing Systems, 64,
372–389.
https://doi.org/10.1016/J.JMSY.2022.06.015

Wanasinghe, T. R., Wroblewski, L., Petersen, B. K.,
Gosine, R. G., James, L. A., de Silva, O., Mann, G. K. I.,
& Warrian, P. J. (2020). Digital Twin for the Oil and
Gas Industry: Overview, Research Trends,
Opportunities, and Challenges. IEEE Access, 8,
104175–104197.
https://doi.org/10.1109/ACCESS.2020.2998723

