35t European Modeling & Simulation Symposium

2724-0029 © 2023 The Authors.
doi: 10.46354/i3m.2023.emss.013

20th International Multidisciplinary Modeling & Simulation Multiconference

An integrated methodology to system design and
simulation for electric vehicles based on X language

Pengfei Gul2, Yuteng Zhang!2, Zhen Chen’2 and Lin Zhang®2,*

1School of Automation Science and Electrical Engineering, Beihang University, Xueyuan Road No.37, Haidian, Beijing,

100191, China

2Complex System Engineering Center of the Ministry of Education, Xueyuan Road No.37, Haidian, Beijing, 100191, China

*Corresponding author. Email address: zhanglin@buaa.edu.cn

Abstract

To design and develop electric vehicles, traditional model-based system engineering methodologies need to combine system-oriented
SysML and physics-oriented Modelica or Simulink. However, cross-language and cross-platform integration design can lead to model
inconsistencies and increase the learning cost for modelers, while also reducing system development efficiency. To address these
issues, this paper proposes the use of X language for model-based systems engineering (MBSE) to realize integrated modeling and
simulation of functional and physical characteristics in the linear driving scenarios of electric vehicles. Based on the analysis of the
requirements for this scenario, an integrated model is established using X language, including a logical model for system architecture
based on functional requirements and a physical model based on performance requirements, and verified in XLab. This X
language-based integrated methodology to system design and simulation can quickly verify the coordination of functional and
performance requirements for electric vehicles. It can also help designers better identify system design problems holistically and enable
them to make timely corrections. This X language-based integrated methodology to system design and simulation provides a new
theoretical and methodological reference for designers in different fields.

Keywords: X language; Model-based system engineering(MBSE); Electric vehicles; Modeling & Simulation

1. Introduction

Complex electromechanical products involve various fields
and disciplines, such as mechanics, electronics, hy-
draulics, and control, which pose significant challenges
in their design due to the tight couple between different
fields and the increasing scale of the products (Lin et al.,
2010). Model-based systems engineering (MBSE) pro-
vides an effective solution for designing and developing
complex systems by delivering information through a uni-
fied and standardized model throughout the design and
development process (Ramos et al., 2011). The mainstream
modeling language for MBSE is currently SysML, which
supports graphical modeling in three dimensions based

on nine diagrams (Friedenthal et al., 2008).SysML is cur-
rently supported by Rhapsody, a software developed by
IBM, and Cameo Systems Modeler (CSM), a commercial
software from Dassault. In terms of modeling methods,
Harmony-SE (Douglass, 2005) for Rhapsody and Magic-
Grid for Cameo systems modeler are widely used (Morke-
vicius et al., 2017). However, SysML lacks precise semantic
support to describe the physical mechanisms of complex
systems. It primarily focuses on logical verification of sys-
tem architecture, limiting its ability to address deeper de-
sign issues. Therefore, simulation techniques need to be
incorporated into MBSE to verify system designs and pro-
vide feedback for model improvements. This integration
of system design and simulation is crucial for enhancing

© 2023 The Authors. This article is an open access article distributed under the terms and conditions of the Creative
Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).


https://creativecommons.org/licenses/by-nc-nd/4.0/.

| 35t European Modeling & Simulation Symposium, EMSS 2023

the efficiency of developing complex products.

This paper proposes a methodology for system design
and simulation integration in X language, a new genera-
tion of integrated modeling and simulation language, to
achieve the integration of system design and simulation.
The methodology provides a framework for unifying re-
quirements, functional, logical, and physical modeling,
and simulation, with integrated system design and simu-
lation capabilities. The methodology is applied to design-
ing and verifying pure electric vehicles in linear driving
scenarioss.

This paper’s subsequent work summarizes and ana-
lyzes the status of existing system design and simulation
integration methods and their problems in Section II. Sec-
tion III gives a general overview of X language and pro-
poses an integrated design and simulation methodology
based on X language. Section IV describes the integrated
design and simulation methodology based on X language
for designing and verifying pure electric vehicles under
the linear driving scenario in detail. The paper concludes
by summarizing and validating the study.

2. Related Works

The current research work for system-level design and
simulation integration is divided into two main types: one
is co-simulation. Based on the model integration stan-
dard interface FMI realizes the joint simulation of the sys-
tem logical behavior model constructed by SysML and the
system multidisciplinary physical behavior model con-
structed by a specific modeling simulation language. Sec-
ondly, model conversion. Based on the SysML extension
mechanism, the extension package for specific model-
ing simulation language is constructed to realize the auto-
matic conversion from system design to simulation. Re-
garding co-simulation, (Feldman et al., 2014) achieved the
combined simulation of the system’s logical design model
constructed using SysML and the physical model con-
structed using Modelica through FMI, offering guidance
for co-simulating continuous and discrete hybrid models.
(Jieshi et al.) compiled the SysML model into .fmu by FMI
(functional mock-up interface) to realize the integration
with Simulink and Modelica, which helps the unit design
to be co-simulated in advance and realize the testing pro-
cess in advance. However, the integration method based
on FMI only integrates the system-level design model and
physical-level simulation model from the data level, but
the system-level design model and physical-level simula-
tion model are still based on different languages and soft-
ware implementations, which makes it difficult to ensure
the consistency of the model. In terms of model conver-
sion, W. Schamai (Schamai, 2009; Schamai et al., 2010)
proposed the first more detailed method for system de-
sign and simulation integration, i.e., simulation mapping
to Modelica by extending UML, but its method does not
support the full Modelica syntax standard. In 2012, OMG
(integration working group et al.) proposed a SysML and

Modelica mapping method based on QVT and provided the
definition of the SysML4Modelica extension package for
metamodel conversion, which provides a new idea for map-
ping between SysML and Modelica, but the definition of
this extension is still not perfect and the QVT method used
does not support bidirectional conversion between models.
Shuhua Zhou (Shuhua et al., 2014) et al. implemented the
mapping from SysML to Modelica based on ATL and gave
the definition of the M-Design extension package for con-
verting metamodels. The M-Design extension package
defines a relatively complete Modelica syntax compared to
the SysML4Modelica extension package, but there are still
relevant metamodels that are not defined, such as state
machine, etc. Wu (Xinquan et al., 2023) proposed a model
conversion method for simulating hybrid SysML models
in the framework of the Discrete Event System Specifi-
cation (DEVS), constructed a DEVS-oriented SysML out-
line file and a DEVS metamodel including discrete, hybrid,
and coupled models, and implemented the ATL-based The
automatic conversion of SysML to DEVS is implemented
based on ATL, and the SysML model with the continuous
and discrete hybrid system is verified using the simulator
of DEVS. However, it only achieves one-way conversion
from SysML to DEVS. In conclusion, the model conversion
approach can achieve seamless integration of system de-
sign and simulation from the theoretical level, but it is
limited by the significant gap in syntax and semantics be-
tween system modeling languages (UML, SysML, etc.) and
simulation languages (Modelica, Simulink, etc.), which
cannot be fully bridged by the metamodel extension mech-
anism. Also, it needs to be implemented through different
languages and software integration. This also poses a huge
challenge to the consistent maintenance of the models. To
truly realize the integration of design and simulation, an
integrated MBSE methodology with complete support for
requirements analysis, functional analysis, system design,
and verification needs to be fundamentally constructed.

3. Xlanguage and integrated methodology to sys-
tem design and simulation

3.1. Xlanguage

i

Diagrams of X language

Structure Requirements Behavior

Diagrams Diagram Diagrams
Definition Connection Use case Activity Equation State Machine
Diagram Diagram Diagram Diagram Diagram Diagram

Figure 1. Diagrams of the X language

The X language is a new generation of integrated mod-
eling and simulation language for complex systems sup-



|Phsical subsystem N

Logical subsystem 1

Logical subsys

N

Phsical subsys

-

~

Couple Class |Continuous Class

Discrete Class

Function Class

Record Class | Connector Class

Connection
Text

Definition
Text

Equation
Text

State Machine
Text

Activity
Text

é::> Hybrid Modeling

Figure 2. A hybrid modeling framework for the X language.

porting MBSE based on the hybrid system modeling spec-
ification XDEVS (Xie et al., 2022) and borrowed from
SysML and Modelica modeling concepts (Zhangetal., 2021,
2022a,b; Pengfei et al., 2022). The X language is an object-
oriented language that defines six specific classes (contin-
uous class, discrete class, couple class, etc.) and two forms
(graphical modeling and textual modeling) to realize in-
tegrated modeling and simulation of system architecture
and physical mechanism, which provides the basis for fully
supporting the integration of MBSE.

As shown in Figure 1, in order to fully support MBSE, X
language defines seven types of diagrams, which are re-
quirement diagram, use case diagram, definition diagram,
connection diagram, equation diagram, activity diagram,
and state machine diagram. Among them, requirement
diagrams enable the analysis and management of require-
ments; use case diagrams and activity diagrams enable
the analysis and establishment of system functions; def-
inition diagrams and connection diagrams achieve the
structural description of the model; equation diagrams,
state machine diagrams, and activity diagrams achieve
the description of continuous and discrete behaviors of
the model. As shown in Figure 2, in order to support the
hybrid modeling of system-level design models with dis-
crete characteristics and physical-level models with con-
tinuous characteristics, continuous classes to support the
modeling of systems with continuous behavior, discrete
classes to model systems with discrete behavior, and cou-
ple classes to realize multi-granularity hybrid modeling
are defined on the basis of XDEVS theory. In addition, func-
tion classes, connector classes, and record classes are de-
fined to support the modeling of specific functions, data
structures, and ports in continuous and discrete classes.
The different classes are modeled in both graphical and tex-
tual forms. For example, the couple class defines the sys-
tem architecture and the interaction between the compo-
nents based on the definition diagram/text and the connec-
tion diagram/text. Among other things, the components
can consist of discrete classes defined by a combination of
definition diagram/text and state machine diagram/text
and continuous classes defined by a combination of defini-

tion diagram/text and equation diagram/text. Ultimately,
the resulting textual model has executable capabilities. In
conclusion, the XDEVS theory, the graphical combinato-
rial modeling approach, and the modeling paradigm of
bi-directional conversion of graphical and textual models
provide the possibility to implement integrated modeling
in X language.

3.2. System design and simulation integration method-
ology based on X language

Currently, there are two core methodologies in MBSE:
Harmony-SE and MagicGrid. The core of Harmony-SE is
divided into three parts: requirement analysis, functional
analysis, and design synthesis. In terms of implemen-
tation details, Harmony-SE relies on activity diagrams,
sequence diagrams, and state machine diagrams for the
behavioral description of complex system, from the exter-
nal behavioral identification in the black box to the internal
functional logic in the white box, essentially downplaying
the importance of parametric diagrams. The MagicGrid
implements the design process of complex systems in the
form of a matrix. Vertically, it is based on the four core
perspectives of requirements, behavior, structure, and pa-
rameters as the pillars of system engineering research;
horizontally, it is mainly divided into two levels: prob-
lem domain and solution domain to analyze the system
solution step by step. The core implementation process
also starts with requirements analysis, defines the struc-
ture and behavior of the black box, and then defines the
structure and behavior of the white box and the parame-
ter constraints of the system. In terms of implementation
details, MagicGrid relies on activity diagrams and state ma-
chine diagrams for behavior descriptions but places more
emphasis on modeling parametric diagrams. However, al-
though Rhapsody and Cameo Systems Modeler provides
methods for describing complex system objects at a finer
granularity (Harmony-SE, MagicGrid), in the end, these
SysML-based models are not inherently executable. In
essence, these two MBSE methodologies only implement
the design process of complex systems and it is difficult



4 | 35t European Modeling & Simulation Symposium, EMSS 2023

Requirements

= =D

Functions

10

[Record Class|

Physics

Logical Models

Discrete Class|

Continuous Class

n
Codes

Equation
Codes

o
Codes.

Integrated Logical and Physical Models

Figure 3. System design and simulation integration methodology based on X language.

to verify the system design in depth. Therefore, a true
MBSE methodology must introduce simulation, and only
by realizing the unification of complex system design and
simulation can the closed-loop system design be truly re-
alized.

Currently, there are two traditional MBSE modeling
and simulation approaches to achieve the unification of
complex system design and simulation: the FMI-based
co-simulation approach and the model conversion-based
approach. Although model conversion and co-simulation
have bridged the barriers between design and simulation
to a certain extent, both methods require cross-language
and cross-platform, which poses a huge challenge to the
consistency maintenance of models when the R&D system
is complex enough.

In order to truly realize the integration of design and
simulation. In this paper, an integrated design and simu-
lation methodology based on X language is proposed. The
methodology can completely support the design and veri-
fication process of MBSE based on X language. As shown
in the figure3, combining the four levels of MBSE develop-
ment (requirements, functional, logical, and physical), the
diagram based on X language realizes the modeling pro-
cess of each level. Specifically, at the requirements level,
stakeholder needs are analyzed and managed based on re-
quirements diagrams; at the functional level, the decom-
position of functions is realized based on use case diagrams
and activity diagrams; at the system logical architecture
level, the composition of logical subsystems, interaction
logic, and functional behavior of each logical subsystem
is realized based on graphical couple classes (definition
diagram, connection diagram), discrete classes (defini-
tion diagram, state machine diagram), etc. At the physical
architecture level, the physical constraints of each phys-
ical subsystem are modeled based on graphical continu-
ous classes (definition diagrams, equation diagrams), etc.
From the simulation point of view, the graphical logical ar-
chitecture models and physical models constructed above
can be automatically generated into corresponding textual
simulatable models by the developed converter. Specifi-
cally, for the logical architecture model of the system, it

consists mainly of couple classes and discrete classes. The
definition text of the couple class defines the components
of the logical system, the connection text defines the in-
teraction between all logical subsystems constructed by
the discrete class, and the definition text of the discrete
class defines the parameters, ports, etc. of each logical
subsystem, and the state machine text defines the states
and state transfer conditions. The final logic simulable
textual model is simulated by the developed compiler and
simulator to verify the functional requirements of the sys-
tem. The mixed logical and physical model consists of cou-
pled, continuous, and discrete classes. The definition text
of the couple class defines the components of the hybrid
system, the connection text defines the events and data
interaction between the logical and physical subsystems,
the definition text of the discrete class defines the param-
eters, event inputs, and output ports of each logical sub-
system, the state machine text defines the states and state
transfer conditions, the definition text of the continuous
class defines the parameters, variables, and ports of each
physical subsystem, and the equation diagram defines the
physical constraints based on the equations. The result-
ing mixed logical and physical simulable textual model
can be simulated by the developed compiler and simula-
tor to integrate and verify the functional requirements
and non-functional requirements related to the physical
performance of the system. When the simulation results
show that the requirements are not satisfied, the system’s
functional architecture and key performance parameters
can be verified and optimized through continuous itera-
tive design. In summary, the X language-based integrated
design and simulation methodology unifies the integrated
modeling and simulation of the logical and physical levels
of the system. The methodolgy avoids the problem that the
physical layer is based on requirements only and cannot be
verified jointly with the system logical architecture layer,
which leads to differences in the system integration pro-
cess and cannot guarantee the consistency of the system
design.



4. Case Study for electric vehicles(EV)

Currently, MBSE has become the first method for the de-
velopment and design of various complex systems. Re-
search institutes and developers in different fields at home
and abroad are gradually adopting MBSE to try to build
complete virtual digital prototypes containing system de-
sign and simulation. Therefore, this paper adopts the inte-
grated design and simulation methodology based on X lan-
guage to realize the integrated modeling and simulation
of the linear driving scenarios of EV from requirements
and functional analysis, system architecture, and physi-
cal units to achieve the purpose of rapid verification and
optimization of EV design solutions and key performance
parameters.

4.1. Requirements analysis

Electric vehicles are the main trend of future automotive
development. In this paper, an electric vehicle linear driv-
ing scenario is studied and an integrated design and simu-
lation approach based on X language is used to realize the
design and verification process for electric vehicles. The
driver is the main stakeholder involved in this scenario.
The specific requirements involved in the linear driving
scenarios process are summarized as follows by investigat-
ing the relevant drivers’ driving requirements for electric
vehicles:

1. EV can release the handbrake normally.

2. EV can accelerate and decelerate normally.

3. Under WLTC conditions, EV can automatically com-
plete driving tests with an average error of less than 0.5.

The above requirements are the basis for realizing the func-
tional analysis and design of EV. As shown in Figure 4, this
paper documents and manages requirements based on the
requirements diagram.

<<requirement>>
system_requirement

<<requirement>> <<requirement>> <<requirement>>
reql req? req3

Type Type Tipe
onal ctional

Text
"EV can release the handbrake,
ormally.”

WLTC condition, "

Figure 4. Requirements Diagram for EV

4.2. Functional analysis

In order to refine the requirements of the linear driving
scenarios, this paper is based on a use case diagram to

clarify the functions that should be implemented in an
electric vehicle. As shown in Figure 5, the use case diagram
depicts the linear driving use case and its four sub-use
cases (handbrake brake release, acceleration, deceleration,
and operating state testing) in the linear driving scenarios
of EV.

driver

Figure 5. Use case Diagram for EV

After the requirements and use case model of the linear
driving scenarios are built, this paper establishes the func-
tional activity flow of the linear driving scenarios based
on the activity diagram. As shown in Figure 6, firstly,
the driver releases the handbrake and then sends a speed
change request according to the road condition, and when
itis necessary toaccelerate or drive at a constant speed, the
throttle opening size is adjusted, and the car body realizes
the speed response and feeds back to the central control
system; similarly, when it is necessary to decelerate, the
brake opening size is adjusted, and the car body realizes
the speed response and feeds back to the central control
system; so on and so forth, and when the driving task
is completed, the speed control is stopped. By assigning
the functional activity flow to the corresponding partic-
ipants in the form of swim lanes, the logical or physical
subsystems involved in the linear driving scenario and the
interaction between them can be clearly analyzed, based
on which the top-level model of the electric vehicle can be
constructed.

Based on the above functional architecture analysis, the
linear driving scenario will include several subsystems,
such as the central control system, throttle system, brak-
ing system, etc. In this paper, we establish the composition
of each logical or physical subsystem inside the electric
vehicle and the interaction between them based on cou-
ple classes. The couple class is described at the graphical
level by a definition diagram and a connection diagram, as
shown in Figures 7a and 7b. Among them, the definition
diagram describes the subsystems involved in the elec-
tric vehicle during linear driving; the connection diagram
describes the interaction of logical signals or physical vari-
ables between the subsystems. The subsystems in yellow
in the connection diagram have discrete characteristics,
and the subsystems in red have continuous characteris-
tics. Meanwhile, the corresponding textual model can be
automatically generated after the graphical modeling is



| 35th European Modeling & Simulation Symposium, EMSS 2023

completed, as shown in Figure 7c.

Figure 6. Activity Diagram for EV

4.3. Architecture Design

Figure 7. Graphical and textual models for system architecture

4.4. Design of logical and physical subsystems

Based on the above analysis, the logical or physical behav-
ior of each subsystem is established based on continuous
and discrete classes. Once all the subsystems are modeled,
simulations can be executed to verify that the system de-
sign meets the requirements. In this paper, we introduce
the typical subsystems of the central control system with
discrete characteristics and the dynamics system with con-
tinuous characteristics as examples.

4.4.1. The central control system

The central control system(CCS) acts as the master control
system in the linear driving scenario of the EV and coor-
dinates and controls the behavior of other subsystems in
the linear driving scenario. After sending the handbrake
release command, the central control system enters the
handbrake pending release state. After the handbrake is
released, it enters the state of the driving situation to be
determined. In this state, the difference signal between
the desired speed and real speed is sent to the automatic
control system, which gets the opening degree of throttle
or brake through PI control and outputs the desired driving
or braking torque through the throttle system or brake sys-

Figure 8. Graphical and textual models for CCS

tem, and then calculates the current car speed through the
motor systemn, transmission system, power system, and
dynamics system, and returns it to CCS, which judges the
current driving status of the EV based on the car speed and
acceleration. The central control system judges the current
driving state (acceleration, deceleration, and standstill) of
the EV based on the speed and acceleration of the EV, and
so on until the task of linear driving is completed. Here,
the structure and behavior of CCS are described based on
discrete classes. As shown in Figures 8a and 8b, where
the definition diagram describes the input and output sig-
nals of CCS and the related state variables; the state ma-
chine diagram describes the state and behavior logic of
CCS. Meanwhile, the corresponding textual model can be
automatically generated after the graphical modeling is
completed, as shown in Figure 8c.

4.4.2. The dynamics system

Figure 9. Graphical and textual models for the dynamics system

In the linear driving scenarios, the dynamics system
calculates the current acceleration and speed by calculat-
ing the combined force on the body at each moment and
sends it to CCS to determine the current driving status.
The dynamics system, upon receiving the actual driving
torque or braking torque calculated by the transmission
system, can calculate the driving force or braking force F;
using equation (1).

T,
Fi = 70 (1)



, 7\] I
‘“\\u;‘\\ u \\‘ |
| ]
'L Ll
M‘\\& " i

|

Figure 10. Simulation results for WLTC.

where T, represents the actual driving or braking torque
and r represents the wheel radius. The resistances en-
countered during linear driving scenarios include rolling
resistance and air resistance. Their calculation formulas
are as follows:

- Rolling resistance:

f = o+ fil35) * falgog" (2)
Fy = f + mgcos(«) (3)

where f is the rolling friction coefficient, u represents
the vehicle speed, and f,, f;, and f,, are constants.
- Air resistance:

_ CpAu?
Fw = 2115 (4)

where Cp, represents the air drag coefficient, A repre-
sents the windward area, and u represents the vehicle
speed.

Based on the principle of dynamics, the acceleration,
speed, and wheel speed of EV can be calculated with the
following formulas:

Ft—Fw—Ff:ma (5)
U=ug+at (6)
thw = (30/pi)() )

where a represents the acceleration, u represents the ve-
hicle speed, u, represents the initial vehicle speed, and
uw represents the wheel speed. Based on the above analy-

sis, the construction of the structure and behavior of the
dynamics system is realized based on continuous classes.
As shown in Figures 9a and 9b, the definition diagram
defines the input and output ports, related parameters,
and variables and the equation diagram define the phys-
ical mechanism . Meanwhile, the corresponding textual
model can be automatically generated after the graphical
modeling is completed, as shown in Figure 9c.

4.5. Simulation

The textual model of the electric vehicle formed after all
subsystems are built can be combined to form a complete
executable simulation model. Based on the simulation re-
sults obtained, it is possible to verify whether the currently
designed EV meets all the system design requirements. At
the beginning of the simulation, the values of the relevant
parameters of the EV are shown in Table 1.

Table 1. Key parameters of EV

parameters value
Transmission ratio 13.5
Efficiency of transmission 0.95
Wheel radius 0.284

Kp 0.03
K; 0.001

Finally, the results of the simulation are used to verify
that the requirements are met. As can be seen from Figure
10a, when the parameters Kp=0.03 and Ki=0.001 of the PI
controller, the difference between the EV speed and the de-
sired speed is relatively large. In addition, the average error
between the car speed and the desired speed was calcu-
lated to be 3.014. The req3 was not satisfied. Therefore, the
relevant parameters need to be adjusted and re-simulated
to verify that the requirements are met. Here, we ensure
that the other parameters remain unchanged and adjust



| 35t European Modeling & Simulation Symposium, EMSS 2023

the values of Kp and Ki to meet the relevant requirements.
After several rounds of parameter adjustment, Kp=0.5 and
Ki=0.01 were finally selected, and as can be seen from Fig-
ure 10b, the difference between the car speed and the de-
sired speed is relatively small. In addition, the average
error between the speed of the EV and the desired speed
was calculated to be 0.252. The req3 was satisfied. in addi-
tion, under this set of parameters, combined with Figures
16c and 16d, it can be seen that the EV completed the hand-
brake release, acceleration, and deceleration normally in
the first 110s, satisfying the req1 and req2. In summary,
the integrated design and simulation methodology based
on X language can realize the full closed-loop verification
process of requirements and functional analysis, system
architecture design, and simulation for linear driving sce-
narios of EV, effectively improving the efficiency of system
development.

5. Conclusions

This paper proposes an integrated design and simulation
methodology based on the X language, which provides a
framework to unify requirements, functions, logic and
physics. Based on this methodology, combining X lan-
guage and XLab, the full closed-loop verification process
from requirement and functional analysis, system archi-
tecture design to simulation is realized for the linear driv-
ing scenarios of EV, which can quickly realize the early
verification of the design solution of EV and improve the
efficiency of system design and development.

6. Funding

This work is supported by the National Key R&D Program
of China (GrantNo.2018YFB1701601).

References

Douglass, B. (2005). The harmony process. i-logix white
paper, i-logix. Inc.: Burlington, MA, USA.

Feldman, Y. A., Greenberg, L., and Palachi, E. (2014). Simu-
lating rhapsody sysml blocks in hybrid models with fmi.
In Proceedings of the 10 th International Modelica Con-
ference; March 10-12; 2014; Lund; Sweden, number 096,
pages 43—52. LinkOping University Electronic Press.

Friedenthal, S., Moore, A., and Steiner, R. (2008). Omg
systems modeling language (omg sysml™) tutorial. In
INCOSE international symposium, volume 18, pages 1731—
1862. Wiley Online Library.

integration working group, S.-M. et al. Sysml modelica
transformation specification version 1.0, 2010.

Jieshi, S., Qing, Z., Bingfei, L., and Cong, C. Co-simulation
of sysml and simulink/modelica using fmi.

Lin, Z., Lei, R., and Fei, T. (2010). Complex product manu-
facturing digital integration platform technology. De-
fense Manufacturing Technology, 4:4—10.

Morkevicius, A., Aleksandraviciene, A., Mazeika, D.,

Bisikirskiene, L., and Strolia, Z. (2017). Mbse grid: A
simplified sysml-based approach for modeling complex
systems. In INCOSE International Symposium, volume 27,
pages 136—150. Wiley Online Library.

Pengfei, G., Lin, Z., Zhen, C., and Junjie, Y. (2022). Collabo-
rative design and simulation integrated method of civil
aircraft take-off scenarios based on x language. Journal
of System Simulation, 34(5):929.

Ramos, A. L., Ferreira, J. V., and Barcel9, J. (2011). Model-
based systems engineering: An emerging approach for
modern systems. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 42(1):101—
111.

Schamai, W. (2009). Modelica modeling language (Modeli-
caML): A UML profile for Modelica. Linkoping University
Electronic Press.

Schamai, W., Pohlmann, U., Fritzson, P., Paredis, C. J.,
Helle, P., and Strobel, C. (2010). Execution of umlstate
machines using modelica. In 3rd International Workshop
on Equation-Based Object-Oriented Modeling Languages
and Tools; Oslo; Norway; October 3, number 047, pages
1-10. Citeseer.

Shuhua, Z., Yue, C., Zheng, Z., and Yusheng, L. (2014).
System design and simulation integration for complex
mechatronic products based on sysml and modelica.
Journal ofComputer-Aided Design & Computer Graphics.
Beijing, 30:728—-738.

Xie, K., Zhang, L., Laili, Y., and Wang, X. (2022). Xdevs:
A hybrid system modeling framework. International
Journal of Modeling, Simulation, and Scientific Computing,
13(02):2243001.

Xinquan, W., Xuefeng, Y., Xingchan, L., and Yongzhen,
W. (2023). Simulating hybrid sysml models: a model
transformation approach under the devs framework.
The Journal of Supercomputing, 79(2):2010—2030.

Zhang, L., Ye, F., Laili, Y., Xie, K., Gu, P., Wang, X., Zhao,
C., Zhang, X., and Chen, M. (2021). X language: an in-
tegrated intelligent modeling and simulation language
for complex products. In 2021 Annual Modeling and Sim-
ulation Conference (ANNSIM), pages 1—11. IEEE.

Zhang, L., Ye, F., Xie, K., Gu, P., Wang, X., Laili, Y., Zhao,
C., Zhang, X., Chen, M., Lin, T., et al. (2022a). An inte-
grated intelligent modeling and simulation language for
model-based systems engineering. Journal of Industrial
Information Integration, 28:100347.

Zhang, Y., Gu, P, Chen, Z., and Zhang, L. (2022b). A
method and implementation of automatic requirement
tracking and verification for complex products based
on x language. In China Intelligent Networked Things
Conference, pages 443—455. Springer.



	Introduction
	Related Works
	X language and integrated methodology to system design and simulation
	X language
	System design and simulation integration methodology based on X language

	Case Study for electric vehicles(EV)
	Requirements analysis
	Functional analysis
	Architecture Design
	Design of logical and physical subsystems
	The central control system
	The dynamics system

	Simulation

	Conclusions
	Funding

