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Abstract
As the digital transformation of industry continues, more and more data is being collected to gain insights into and further improve
existing processes, known as prescriptive analytics. Among the enabling technologies for prescriptive analytics is simulation-based
optimization. To accelerate the execution of simulations, the approach can be coupled with machine learning methods to create so-called
surrogate models. However, this can lead to a loss of modeling accuracy if processes can only be inadequately mapped to such models.
In this work, we present a new domain specific language, to model complex systems as a directed graph of smaller, communicating
system components. With this language, surrogates may be developed more flexible, i. e., only for those parts, where it is meaningful.
Further on, the execution of modeled components can be distributed to gain speedup. We provide an overview of the created language
syntax, development process and support. We also show the applicability of the language in a case study: in terms of parsing speed, the
language performs at the same level as comparable markup languages, while it outperforms them in terms of brevity, showing that it is
more expressive. Finally, we outline additional features and the future application context of the language.
Keywords: Domain Specific Language, Modeling and Simulation Software, Surrogate Modeling, Prescriptive Analytics

1. Introduction

For decades, computer simulation is used in a multitudeof domains to model complex, dynamic systems and facil-itate experimenting with them. Inside the digital environ-ment, simulation provides an inexpensive playground totest what-if scenarios without the risks and limitationsof real-world setups. The research branch simulation-based optimization is dedicated to combine simulation

with suitable algorithms for purposeful experimenting(Gosavi et al., 2015). Therefore, problem-specific opti-mization criteria (e. g., minimum cost, maximum resilience,etc.) must be defined, which subsequently guide the al-gorithms’ exploration through the hypothesis space fora most optimal solution. In this context, simulation isutilized as a parameterizable fitness function to evaluatesolution candidates, while one candidate represents a set

https://creativecommons.org/licenses/by-nc-nd/4.0/.
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Figure 1. A conventional model-based optimization approach: A real-worldsystem is digitally modeled either as simulation model by simulation ex-perts using domain knowledge (left branch) or as data based model bymachine learning algorithms using recorded data (right branch). A data-based surrogate model may also be created, using collected data from anexisting simulation. Subsequently, an optimization system can call one ofthe models as fitness function to evaluate solution candidates to a certainoptimization goal (e. g., a cost-optimal production or logistics schedule),which may be transferred back in to the physical world ultimately.

of parameters to setup the system (e. g., a production orlogistics schedule). Ultimately, such a digitally generatedoptimization result may be transferred back to the physicalworld for real improvements.
This conventional simulation-based optimization ap-proach is depicted in Figure 1 including the extensionby so-called surrogate models (Koziel and Leifsson, 2013):Computer simulation is a practical way to transfer domainknowledge to a user-friendly, i. e., comprehensible, digitalmodel, often including graphical interfaces. However, inthe context of optimization, not usability, but execution-speed is a major performance indicator of simulation mod-els, since the exploration for an optimal solution may takenumerous iterations and thus, fitness evaluations (Pitzerand Kronberger, 2015). By using machine learning meth-ods on data, recorded from previous simulation runs, sur-rogate models can be trained. If these models achieve goodestimation quality, they can be used as a substitute for theoriginal simulation in the optimization process, since theyare much faster to run. According to Werth et al. (2019), inaddition to a suitable and optimally configured machinelearning method, the "right" choice of abstraction levelis an important factor on the efficiency of surrogate mod-els for optimization. With the "right" abstraction level,a good tradeoff between execution speed and modelingaccuracy can be found and furthermore, overfitting can beavoided, which enables well generalizing models.

With regards to these conclusions, in this paper wewant to pick up and further develop the idea of hierarchicaldecomposition and dynamic aggregation of complexsystems by Zenisek et al. (2022). Figure 2 illustrates thisconcept and transfers it into the previously describedoptimization scenario. Its main advantage is the addi-tional flexibility in terms of granularity of simulation andsurrogate modeling. The concept enables that surrogatemodeling can be used where it is meaningful and to stickto the original simulation where not. Surrogates mightbe used for system parts where a certain accuracy canbe reached with machine learning, and/or where theoriginal simulation runtime is relatively high. In casethere are surrogates used for all system parts, the overallexecution speed will at least add up to the same value as amonolithic surrogate would produce, so that no advantageremains. However, having individual surrogates for allsystem parts enables to distribute their execution overmultiple computation nodes for parallelization and thus,creates new speedup potential. One additional benefitof the decomposed modeling approach is that differentsurrogate model types can be used for each componentand level as long as it is possible to aggregate themporperly. Finally, regardless of using surrogates or not,by following this approach, models may be created easierin an iterative-incremental fashion. Apart from theseadvantages, more components also mean more effort forsynchronization. A monolithic optimization system maybe configured on one machine with a few clicks or somelines of code. A decomposed and distributable system,however, needs a full communication technology stackand accordingly, increased configuration effort.
In this work, we present a new domain specific lan-guage, called Structued interaction description language
(Sidl), which enables the definition of a directed com-munication graph to support the proposed modelingapproach. In section 2 an outline of comparable languagesis given, which influenced our design considerations. Thedeveloped language syntax for its core application as wellas the tools for language development and support arepresented in section 3. To demonstrate the applicabilityof our current developments, we show promising resultsfrom runtime tests and discuss the software design of itsplanned utilization in section 4. The final section 5 brieflysummarizes this work and provides our ideas for furtherextending the developed language.
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Figure 2. A modified model-based optimization approach: A real-worldsystem is hierarchically decomposed into smaller, interdependent parts.Each component of the system components is individually, digitally mod-eled, either as simulation (left side in screen symbol) or data based model(right side). The output of components on lower levels represents the inputof those on subsequent levels such that the top-level component representsthe aggregated system. This component, may be called by an optimizationsystem as a fitness function.

2. Related Work

Domain-specific languages (DSLs) are programming lan-guages that are designed to address the specific needs ofa particular domain or problem space. Unlike general-purpose programming languages (GPLs), which are flex-ible and versatile enough to address a wide range of pro-gramming tasks, DSLs are targeted to a specific applica-tion context. DSLs are typically easier to learn and usethan GPLs, as they have a simplified syntax and tend tobe more expressive, which allows developers to realizeideas more clearly and succinctly. DSLs enable to workat a higher level of abstraction and focus on the problemdomain rather than the technical details of the implemen-tation. Miller et al. (2010) provide a detailed descriptionand taxonomy to DSLs and GPLs. In the following, we listseveral existing DSLs that were developed specifically formodeling and simulation. We evaluate their applicability,features, and shortcomings, and explain why we devel-oped a new DSL. After that, we outline several existinglanguages from different domains, which influenced thisdevelopment.

2.1. Modeling and Simulation Languages

Modelica1 is a modeling language specifically designedfor complex cyber-physical systems, including mechani-cal, electrical, thermal, and control systems. It provides apowerful framework for modeling and simulation of multi-domain systems.
Simulink2 is a graphical programming environmentdeveloped by MathWorks. It is widely used for modeling,simulating, and analyzing dynamic systems, particularlyin the fields of control engineering, signal processing, andcommunications.
GPSS (General Purpose Simulation System, Greenberg(1972)) is a discrete-event simulation language used formodeling and simulating systems with discrete events.It provides constructs for modeling entities, resources,queues, and transactions, allowing the simulation of awide range of systems. Nowadays, it only plays a subordi-nate role. Nevertheless, there is still corresponding soft-ware for today’s architectures, e. g., SLX.
SLX (Simulation Language with eXecution, Henriksen(1996)) is a DSL specifically designed for discrete eventsimulation. It combines a high-level modeling languagewith a runtime system that supports the execution of sim-ulation models. SLX is suitable for various simulationdomains, including manufacturing, logistics, and trans-portation.
AMPL (A Mathematical Programming Language,Fourer et al. (1990)) is a high-level modeling languagefor mathematical optimization problems. While it isnot specific to simulation, AMPL is commonly usedin simulation models that involve optimization anddecision-making components.

The listed DSLs all represent quite powerful, butalso complex languages (i. a., concerning syntax), withlarge ecosystem for the eventual application domain (e. g.,science, engineering, production, logistics, etc.). Ourgoal however, is to facilitate the work of many modelingstakeholders by one, more simplistic language, whichis exactly tailored to the pursued modeling approach, asin Figure 2. Several DSLs for modeling and simulationincorporate connections to heuristic optimizers and exactsolvers, e. g., AMPL. This is also necessary for the pursuedoptimization approach in this work. However, at thistime, there is no DSL which supports the componentbased, surrogate modeling idea, we envisaged. Since it

1 https://modelica.org/documents/MLS.pdf, version 3.62 https://www.mathworks.com/products/simulink

https://modelica.org/documents/MLS.pdf
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seemed not suitable to extend one of the listed DSLs forthis purpose, we decided to create a new one.
2.2. Influencing Languages

Markup languages, which enable the definition of key-value pairs, such as Json3, Yaml4, Unix INI-files or manyothers are well suited for most software configurationpurposes. They are easy to learn and hence, used for abroad range of applications, e. g., also as payload formatfor messaging. In order to enable domain specific valida-tion of Json- or Yaml-based configuration files, so-calledschema files can be setup and checked against. Due to theirgeneral-purpose approach, however, these languages lackof problem-specific writing support and texts tend to getverbose.
Lua5 is a general purpose, extensible programming lan-guage, which is regularly used as an embedded scriptinglanguage, e. g., in computer games to specify additional,custom functionality (Ierusalimschy et al., 1996). Due toits brevity and clarity, the Extended Backus-Naur Form(EBNF) of Lua has been the major template regarding thestyle of our DSL’s EBNF and many language structure defi-nitions (e. g., statements, variables, lists, etc.) have beenimitated. Moreover, for future development of the Sidl DSL,we consider the possibility to integrate Lua as embeddedlanguage for programming node functors – minimalisticdata transformations. Besides Lua, also C# and Python areamong the GPLs which inspired the syntax design of ourDSL.
DOT6 is a description language for structure and visualappearance of graphs and part of the open source softwarepackage GraphViz (Gansner and North, 2000). Its syntaxis inspired by the GPL C, but very lean, defined by just 12non-terminal EBNF rules. For our DSL, we imitate theconcise graph description of DOT using an arrow operatorto define edges between nodes.
Cypher7 is a declarative query language for graphdata bases, originally developed for neo4j, but now opensource. It follows the property graph data model: nodesand relationships have properties, which can be queried.This allows to define filters by pattern matching at therelationship-level (graph edges) of entities (graph nodes).We integrated this concept for message routing purposesin the new DSL.

3 https://www.json.org/, ECMA-404 (2017)4 https://yaml.org/, YAML-1.2 (2021)5 https://www.lua.org/6 https://graphviz.org/doc/info/lang.html7 https://opencypher.org/

Apache Kafka8 is a high throughput messaging sys-tem based on a distributed transaction log. The ApacheKafka Streams DSL is an extension, which aims to ease thework with standard data transformations, especially forbeginners. With the DSL one can define the logical dataprocessing workflow of applications. Therefore, DSL usersdefine data input types, planned transformations, and tar-geted output types. By this means, the Kafka Streams DSLfollows a similar basic message-oriented concept as weinsinuated for the Sidl DSL. Although the Streams DSLfacilitates the use of the Streams Processor API, it is sillquite hard to understand for non-software developers asit follows a function chaining approach, comparable to theC# data query language LINQ. Moreover, transformationsare more or less considered to be simple data wrangling op-erations, not the call of runtime-intensive computations.Most importantly however, the Streams DSL is tailored toand only available for Apache Kafka, while our approachis to remain technology/tool-agnostic as far as possible.
3. Method: Developing the Structured Interaction

Description Language (Sidl)

Inspired by the advantages and disadvantages of severalsimilarily situated GPLs and DSLs, as summarized in thelatter section, we decided to develop a new language, tai-lored to the approach outlined in section 1. In the follow-ing, we detail grammar, development process and toolsupport of the language: Structured interaction description
language (Sidl). All presented components, including themost current development progress, are made availableon GitHub9.
3.1. Language Syntax

With the Sidl code listings in this subsection, we want tohighlight the most important syntactic constructs of thedeveloped language. We do not focus on the underlyingEBNF lexer tokens and parser rules, but show sample codeinstead, as it is more expressive. For details regardingthe EBNF, the reader is referred to the stated GitHubrepository. The listings implement a real-world casestudy, drawn from a recent publication of Zenisek et al.(2023). Therein, a small set of private houses, equippedwith photovoltaic panels and battery packs, connected toa public power grid, are modeled as a directed graph ina hard-coded simulation. This prosumer-network has

8 https://kafka.apache.org/9 https://github.com/prescriptiveanalytics/Sidl
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been setup to test several what-if scenarios regardingpotentials and pitfalls of energy communities undervarying conditions and hence, provides a suitable use casefor the Sidl DSL and its future application context.
In Listing 1, we present several language basics, such asnamed scopes (cf. C# namespaces), the assignment ofconstants and the use of comments. Furthermore, thelisting shows how to use atomic and complex types toarrange data using structs.

1 basics { # begin of scope
2 name = "ProducerPowerGrid (PPG)"
3 host = "localhost"
4 ... # port, connection details etc.
5 } # end of scope
6 ...
7 typedef string datetime # type alias
8

9 struct position { float lat, float lng }
10 struct weatherData {
11 float globalRadiation,
12 float airTemperature, float humidity
13 }
14 struct inverterData { float pvPowerProduced,
15 float powerConsumed, float batterySOC }

Listing 1. Basic language data structures: line 1: named scopes, line 2:assigning values to basic constants, line 7: type aliasing, line 9: datacontainers.
With Listing 2 we already focus on the Sidl specifics: First,we set up message containers, which may be used to com-municate between nodes, i. e., the edges of the envisagedgraph. Next, using the nodetype statement, we show howto define node classes, which represent the template ofsimulation or surrogate models.

1 import "https://spa.io/reps/ppg/basics.sid"
2 ...
3 message forecastRequest { position pos, datetime dt }
4 message weatherReport { weatherData rep,
5 topic int zip }
6 message inverterReport { inverterData rep }
7 ... # messages for simulationSetup and trafo
8

9 nodetype weatherService {
10 input forecastRequest fr
11 output weatherReport wr
12 property string provider
13 }
14

15 nodetype inverter {
16 input weatherReport wr
17 output inverterReport ir
18 property position pos
19 property int zip
20 ... # more system properties

21 }
22 ... # nodetypes for simulationSetup and trafo

Listing 2. Graph component type definitions: line 1: import statementto include other Sidl texts at this point, line 3: message type (i. e., edge)definitions, line 9: node type defintions.
In Listing 3 the previously defined nodetypes are now in-stanciated using the node keyword, the nodetype name,an instance name and a named value list for all nodetypeproperties. With the arrow operator (––>) connections be-tween compatible nodes can be established. By this means,output messages from the left-hand side node are from nowon transferred to the input of the right-hand side node.

1 import "https://spa.io/reps/ppg/types.sid"
2 ...
3 node weatherService wsMain (provider = "zamg")
4 node inverter system1 (
5 pos=system1Position,
6 zip = 4470, ...)
7 node inverter system2 (...)
8 ... # instantiations for simulationSetup and trafo
9

10 sim --> wsMain
11 wsMain --> system1, system2, system3
12 system1 --> trafo
13 system2, system3 --> trafo

Listing 3. Graph component instantiations: line 3: node instantiations,line 10: node connections (i. e., edge instantiations).
With the latter listing the core graph model is complete.In order to enable surrogate modeling we introduce a ma-chine learning method scope via an import statement ontop of Listing 4. By selecting a library method via the dotoperator, defining a surrogate name and using the imitatekeyword, a surrogate for a particular node instance can bemandated. Within an optional scope one may provide pa-rameters for the underlying machine learning algorithm.

1 import "https://spa.io/reps/ppg/instances.sid"
2 import "https://spa.io/reps/methods:latest" as m
3 ...
4 m.symReg surrogate1 imitate system1
5 m.symReg surrogate2 imitate system2 {
6 treeSize = 50,
7 grammar = "[+, -, *, /, log, htan]"
8 }
9 m.privacyPreservingRFReg surrogate3 imitate system3 {

10 m = 0.5,
11 r = 0.3,
12 trees = 100,
13 obfuscationRuns = 10
14 }

Listing 4. Surrogate modeling: line 2: importing the latest package versionof machine learning methods, line 4 and 5: command to create a surrogatemodel for an existing node using the symbolic regression ML method, line9: surrogate modeling command using a privacy preserving ML method.
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Figure 3. Software architecture of language development and support: Thedashed-line boxes represent the software environments in which the toolsand packages are run in. The components inside the upper two boxes havebeen used for language development, the lower two correspond to language
support. To understand the implemented architecture from a languagedevelopment perspective, one can follow from grammar development ontop, via the ANTLR software tool, to the generated lexer and parser. Fromthe viewpoint of a language user, one should focus on the lower figurepart, starting with the Sidl-system description, which uses the generatedlexer/parser via a Visual Studio Code extension and a backend service.

3.2. Language Development and Support

In order to develop our DSL, we utilized several open sourcetools and created extensions to provide language supportfor future users. Figure 3 depicts an overview of the in-stalled toolchain. Therein, ANTLR10, a powerful parsergenerator, represents the development centerpiece in theupper figure part. To define the language grammar, i. e.,lexer tokens and parser rules, we used the ANTLR-EBNFformat G4, which is supported by the available ANTLRextension for Visual Studio Code (VSC)11 – a popular, ver-satile source code editor. Once having developed a validENBF, ANTLR allows to generate respective lexer-/parser-code for a variety of popular programming languages, suchas Java, Python or C#, from which we selected the latter.The lower part of Figure 3 depicts our developmentsfor language support. To work with the new DSL, domainexperts should be able to use a code editor of their choice,which is why we implemented the Language Server Pro-

10 https://www.antlr.org/, Parr and Quong (1995)11 https://code.visualstudio.com/

tocol (LSP)12. LSP enables to pack most parts of languagesupport into a server application, which is tool-agnostic.This server can be subsequently used by arbitrary, tool-dependent clients, which can be kept quite simple, as theyonly translate user actions to server calls. As a first exam-ple, we developed a language client for VSC using Type-Script (TS). Also the agnostic server part is written in Type-Script, so that both can be packed into one VSC extension,although the server could also be run as a standalone, com-municating with another LSP client. As a third component,the extension includes a webview to visualize the writtensystem graph. The language client provides syntax high-lighting and sends the current program text to the serverafter each keystroke of a user. In our particular case, weuse the server to call a central REST service for the actualprogram validation. The server itself is dedicated to pickthe "right" service endpoint and subsequently, translateits response, such that either debug information, codesuggestions, webview updates or similar is displayed. Fig-ure 4 shows a screenshot with the respective graphicaloutput inside the VSC extension. The referenced RESTservice belongs to our developed Sidl backend suite. Thisincludes a linter for static code analysis – the actual pro-gram validator during Sidl writing – and a profiler forruntime analysis. Both create a scoped symbol table – adata structure to persist the state of a program, with allcurrent values. Therefore, both make use of the generatedlexer/parser code, which closes the loop to language devel-opment. The Sidl backend is entirely dotnet-based and canbe run on a remote machine or on the same machine as theVSC extension. One future advantage of a remote backendmight be that new language features could be rolled outwithout the necessity to update the extension. In our cur-rent setup, however, the backend is booted locally whenrunning the VSC extension. For the final version of the ex-tension, we plan to pack and deploy it together with a lean,local version of the Sidl backend. The extension user canthen decide to use the locally available version or configureone that is running somewhere remote.
4. Evaluation and Application

Evaluating a language, whether GPL or DSL, is a non-trivial task. In this section we provide several metrics toquantify language characteristics of Sidl to some extent.We compare the new language, to the configuration lan-guage alternatives Json and Yaml using a set of increasinglylong sample texts and the developed metrics. After that,

12 https://microsoft.github.io/language-server-protocol/
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Figure 4. Screenshot of the Sidl Visual Studio Code extension in action: Lefthand side the language editor with a sample Sidl text is depicted. The editorsupports syntax highlighting and – if connected to the language server– code suggestions and completion (cf. drop-down box), as well as errorhighlighting via underlining. On the right-hand side the graph webviewis shown, which is synchronized with the editor and constantly updatedby the Sidl backend service. In the terminal window on the bottom onecan observe validation feedback from the language server, such as errors,warnings or information messages.

we provide a software design chart regarding the futureSidl application context, we planned. Finally, we criticallyanalyze current limitations of the developed language.
4.1. Experiments and Results

For our experiments we continued with the example fromthe latter section 3: We extended the sample text with anincreasing number of inverter nodes, starting with a singlenode and finishing at 100 000, representing additionalphotovoltaic systems. We connected all of them to thedescribed simulation loop node and the power grid node,forming a large energy community. Obviously, writingthe description of a system consisting of more than e. g.,100 node instantiations by hand is not a usual real-worldtask. However, for future versions of Sidl we consider thepossibility to automatically generate nodes, e. g., with animport routine on a connected data base. Working on such(partly) generated Sidl texts should still be efficient.
After generating the texts, we configured the followingfirst test setup: Each text is parsed 1000 times for whichthe runtime is measured individually. The first 20% ofall runs are declared as "burn-in-phase", i. e., time to letthe computer processor reach an optimal plateau of per-formance (cf. activate a performance core instead of an ef-

ficiency core), and thus, discarded. According to customtests and credited by scientific studies, e. g., Bovet et al.(2018), we assume an average typing speed of 50 Wordsper minute, which is 4.5 characters per second or 175 mil-liseconds per character. Hence, while writing the program

text, the language support backend has to parse the textevery 175 millisecond on average. Therefore, in betweenthe runs, we command the current thread to sleep between150 and 200 milliseconds (uniformly distributed) to simu-late a realistic user-language support interaction scenario.The goal of this initial experiment is to show up to whichcount of nodes, the parsers for the tested languages stillexecute in time (e. g., ≤ 200ms). For Json, we used thenative dotnet parser, for Yaml we installed the very pop-ular YamlDotNet parser from nuget13. Obviously, for Sidlwe used our custom-made language backend for parsing,in particular the Linter which is capable of creating andvalidating a scoped symbol table. In this test, we focuson the parsing time only, while time to transmit the pro-gram texts and call the parsing methods is not considered.The reason for this is that the test is about the languageperformance, and thus only their parsers vary for the ex-periments. The transmission setup remains the same. Inour current setup, with the backend running on the samemachine, transmission and call times do not have a bigimpact on the overall runtime, as we assessed in a series of1000 test runs: We measured ≤ 2ms on average, no matterhow long the text is, which would take only a little shareof the assumed 200ms threshold. However, future testscould include measuring transmission runtime as well asmemory profiling on different backend setups (remote,local, different transport protocols, etc.). The measuredmedian runtimes in milliseconds for Sidl, JSON and YAMLtexts are shown in Figure 5.The runtime of all three language parsers grow almostlinearly with increasing node count, after a brief initial-ization phase: The text basics – i. e., definition of structs,nodetypes, messages etc.– loose importance with increas-ing node count. The dotnet-native JSON parser is thefastest by far. After a minor performance advantage at lownode count for the Sidl parser, both Yaml and Sidl performalmost equally. The horizontal, dashed, black line indi-cates our custom, virtual feasibility threshold. For Yamland Sidl 3000 nodes can be parsed "in time", for JSON thelimit is at about 40 000 nodes.The second language evaluation test is a simple char-acter count for each of the generated sample texts. Theresults are depicted in Figure 6. The plot shows that in thistest category, Sidl outperforms the other two, which havevery similar results. The narrowed focus of the Sidl DSLenables authors to express more terse than with general-purpose configuration languages. This brevity makes Sidlalso interesting as potential payload format for transport
13 https://github.com/aaubry/YamlDotNet/wiki
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protocols, if messages should be serialized in a humanreadable form.
The last calculated metric is an extension to the lat-ter character count: We modified this metric by countingspecial characters only – results are provided in Figure 7.In this test, Sidl clearly outperforms the other languagesagain, with Yaml ranking second and Json third. We didnot count Sidl keywords as special characters, since thenevery Yaml and Json identifier must have been counted aswell. The test should only demonstrate, how "natural" theprogram may be written, by considering special charac-ters (non-alphanumeric) as artificial symbols. Those aremuch more cumbersome to write and read, especially fornon-software developers.
All tests have been performed on a state-of-the-art con-sumer notebook with a 12th Gen Intel Core i7-1265U pro-cessor and single-threaded settings as this represents arealistic working environment for domain experts. Thesoftware application which we developed for these experi-ments, including text generation and the follow-up tests,is available in the stated GitHub repository of the Sidl lan-guage.

4.2. Language Application Context

With the results shown in the last subsection, we wereable to demonstrate the competitiveness of our languagein terms of parsing runtime, brevity and writing simplicity.In this subsection, we aim to detail how these characteris-tics may be beneficially used and present the final applica-tion context of our developments for this purpose. Figure 8
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Figure 7. Special character count comparison: Apart from Figure 5, herethe overall count of used special characters (non-alphanumeric characters)is plotted on the y-axis.

sketches the planned software architecture, which coversSidl language support components, as well as the futureSidl runtime and the Sidl-based integration of simulationand surrogate models. The figure does not show languagedevelopment, which is considered to be done at this point.
Domain experts (e. g., from production industry, cf. bot-tom of Figure 8) as well as modeling experts (i. e., for sim-ulation and machine learning, cf. top of Figure 8) are thetarget users of the Sidl language, while the runtime en-vironment is currently developed by the authors of thiswork (cf. middle of Figure 8). Most of the previously de-scribed language support components represent the do-main experts’ view on Sidl. So far, we detailed a palette of

description features for the planned simulation-, surrogateand optimization system, presented in section 1, which we
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labeled here as prescriptive analytics runtime environment.
In order to use Sidl for actually configuring such a sys-tem, language interpretation is necessary. The softwarecomponents, responsible for this, are currently under de-velopment and shown in the middle figure part. Therein,one can observe a central message broker, which is re-sponsible for the communication between all components.The actual Sidl interpretation is done by the Orchestrator.This component is responsible for booting computationnodes for each of the described models in the Sidl textsand managing them in a repository (cf. Model Repository).Furthermore, it also handles the communication betweenthe models by performing the message subscriptions. Sur-rogate modelling is triggered by the Orchestrator via accessto an arbitrary Machine Learning Library. Furthermore, the

Orchestrator connects the instantiated model graph to an
Optimizer, which enables to perform the envisaged searchfor system improvements.

In addition to the runtime environment, we are cur-rently developing a software library, to support modelingexperts, the second Sidl user group. The library is a leanmessaging client, which shall be used for each model (i. e.,later node) in a Sidl-described graph. By using the library,the nodetype and message information can be derived viatype reflection and the Sidl texts can be generated auto-matically for each model. These model descriptions can be

subsequently used for instantiating and connecting nodesby the domain experts via the Sidl backend in the runtimeenvironment. In summary, with the presented and currentdevelopments, we aim to bridge the gap between domainand modeling experts, i. e., pursuing the principle of In-dustry 5.0: to keep the human in the loop (Emmanouilidiset al., 2019).
4.3. Limitations

Obviously, the pending implementation of the actual lan-guage interpretation and the respective application con-text represents the major current limitation of the devel-oped DSL. At this point, the language, however, may beused as a planning tool for designing the communicationflow in distributed software applications. For this purpose,Sidl and the accompanying language support may replaceUML activity diagrams, as it is more maintainable, than agraphical approach.
Another limitation concerns the sequence of communi-cation: Sidl enables to describe a system as directed graph,i. e., system components and their interactions via mes-sages. But it does not cover the aspect of messaging se-quence or simulation time. This limitation has been madeby choice, mainly because Sidl does not aim to describethe inner workings of system components (i. e., nodes)and hence, cannot be used to define the exact sequence,of when messages will be sent or received. However, fu-ture language applications may lead the development tocover this aspect to some extent. For instance, to enablesurrogate modeling of nodes, one usually has to defineinput features and an output target, which already impliesa certain sequence of messages. Currently, machine learn-ing algorithms would consider all input to model a node’soutput. To enable adjustments, the language needs to befurther developed.

5. Conclusion and Outlook

In this work, we presented a new domain specificlanguage, called Structured interaction description language
(Sidl), to model complex systems as directed graph ofcommunicating system components. The languaguealso enables the definition of machine learning basedsurrogates for individual components. This should accel-erate the evaluation speed of the modeled system graph,when it is used for optimization. The paper includesdetails regarding the language development toolchain,the resulting syntax and the developed support software.Furthermore, we showed the competitiveness of ourlanguage concerning parsing runtime, and its superiority
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concerning language brevity and simplicity comparedto other configuration languages. One major benefit ofthe developed language is that it allows a separation ofconcerns between domain experts and modeling experts,while having a brief, easily extendable syntax, all in onelanguage. The presented and further results are availableas open source software in our GitHub repository:
https://github.com/prescriptiveanalytics/Sidl.
So far, the language enables the description of howa system should be modeled. This process is already wellsupported by the developed software tools. The actual
interpretation of the resulting texts, however, is in thefocus of ongoing work. In the latter section 4, we providea sketch of the software architecture to realize this plan.Apart from language interpretation, we look forward tofurther enhance the language itself: One element missingis the possibility to configure optimization algorithmswith Sidl. With this feature, domain experts shall beenabled to define optimization goals, constraints or amaximum runtime budget, without having to know theoptimization algorithm or tool used.
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