Unit cell model of a terahertz intelligent reflecting surface with Schottky microcontacts
- a Anatoliy Prikhodko ,
- b Terentiy Yaropolov,
- c Alexander Shurakov,
- d Gregory Gol'Tsman
- a,b,c,d Moscow Pedagogical State University, 1/1Malaya Pirogovskaya Str.,Moscow, 119991, Russia
- a,c,d National Research University Higher School of Economics, 20Myasnitskaya ulitsa,Moscow, 101000, Russia
Cite as
Prikhodko, A., Yaropolov, T., Shurakov, A. and Gol'Tsman, G. (2023). Unit cell model of a terahertz intelligent reflecting surface with Schottky microcontacts. Proceedings of the 35rd European Modeling & Simulation Symposium (EMSS 2023). DOI: https://doi.org/10.46354/i3m.2023.emss.019
Abstract
The future of wireless networks is tightly related to the use of the terahertz frequency band. Due to the significant decrease in available power at carrier frequencies in wireless channels, the next-generation communication systems should utilize novel electronic devices for a highly directional and fast beam steering. It can be implemented if revised antenna array solutions are employed for transceiving and routing of terahertz beams. The development of time-efficient and reliable simulation techniques is vital to their designs. In this work, we report on the hybridmodel of a terahertz reflective phase shifter that can be used as a unit cell in intelligent reflecting surfaces. The phase shifter is configured via biasing of built-in Schottky diodes. Explicitly defined impedance-voltage characteristics of the diodes are introduced into the parameterized electromagneticmodel of the phase shifter for the Floquet port analysis. The developedmodel enables rigorous analysis of the intelligent reflecting surface performance beyond 100 GHz. In particular, we use it to develop requirements on planar diodes with Schottky microcontacts suitable for a 140 GHz intelligent reflecting surface with 2-bit unit cells. Themodeling shows that an ideality factor of 1.5, a saturation current of 13 pA, a series resistance of 5 Ω, and an anode shunt capacitance of 3 fF are sufficient to implement such a surface with a reflectance below –2 dB.
References
- Abeywickrama, S., Zhang, R.,Wu, Q., and Yuen, C. (2020). Intelligent reflecting surface: Practical phase shift model and beamforming optimization. IEEE Transactions on Communications, 68(9):5849–5863.
- Basar, E., Di Renzo,M., De Rosny, J., Debbah,M., Alouini, M.-S., and Zhang, R. (2019). Wireless communications through reconfigurable intelligent surfaces. IEEEAccess, 7:116753–116773.
- Costa, F. and Borgese,M. (2021). Electromagnetic model of reflective intelligent surfaces. IEEE Open Journal of the Communications Society, 2:1577–1589.
- Dai, L.,Wang, B.,Wang,M., Yang, X., Tan, J., Bi, S., Xu, S., Yang, F., Chen, Z., Di Renzo,M., et al. (2020). Reconfigurable intelligent surface-based wireless communications: Antenna design, prototyping, and experimental results. IEEE access, 8:45913–45923.
- Giordani,M., Polese,M.,Mezzavilla,M., Rangan, S., and Zorzi,M. (2020). Toward 6G networks: Use cases and technologies. IEEECommunicationsMagazine, 58(3):55–61.
- Jian,M., Alexandropoulos, G. C., Basar, E., Huang, C., Liu, R., Liu, Y., and Yuen, C. (2022). Reconfigurable intelligent surfaces for wireless communications: Overview of hardware designs, channelmodels, and estimation techniques. Intelligent and Converged Networks, 3(1):1–32.
- Jung,W. and Guziewicz,M. (2009). Schottky diode parameters extraction using LambertWfunction. Materials Science and Engineering: B, 165(1-2):57–59.
- Liu, F., Tsilipakos, O., Pitilakis, A., Tasolamprou, A. C., Mirmoosa, M. S., Kantartzis, N. V., Kwon, D.-H., Georgiou, J., Kossifos, K., Antoniades,M. A., et al. (2019). Intelligent metasurfaces with continuously tunable local surface impedance formultiple reconfigurable functions. Physical Review Applied, 11(4):044024.
- Long,W., Chen, R.,Moretti,M., Zhang,W., and Li, J. (2021). A promising technology for 6G wireless networks: Intelligent reflecting surface. Journal of Communications and Information Networks, 6(1):1–16.
- Mehdi, I., Siles, J. V., Lee, C., and Schlecht, E. (2017). THz diode technology: Status, prospects, and applications. Proceedings of the IEEE, 105(6):990–1007.
- Nayeri, P., Yang, F., and Elsherbeni, A. Z. (2018). Reflectarray antennas: theory, designs, and applications. John Wiley & Sons.
- Prikhodko, A., Belikov, I., Mikhailov, D., Shurakov, A., and Goltsman, G. (2021). Towardsmultipixel THz Schottky diode detector with a single RF output line. Journal of Physics: Conference Series, 2086(1):012063.
- Shurakov, A.,Moltchanov, D., Prikhodko, A., Khakimov, A.,Mokrov, E., Begishev, V., Belikov, I., Koucheryavy, Y., and Gol’tsman, G. (2023). Empirical blockage characterization and detection in indoor sub-THz communications. Computer Communications, 201:48–58.
- Sze, S.M., Li, Y., and Ng, K. K. (2021). Physics of semiconductor devices. JohnWiley & Sons.
- Tang, A. Y., Drakinskiy, V., Yhland, K., Stenarson, J., Bryllert, T., and Stake, J. (2013). Analytical extraction of a Schottky diodemodel frombroadband S-parameters. IEEE transactions on microwave theory and techniques, 61(5):1870–1878.
- Tang, A. Y., Schlecht, E., Lin, R., Chattopadhyay, G., Lee, C., Gill, J., Mehdi, I., and Stake, J. (2012). Electrothermalmodel formulti-anode schottky diodemultipliers. IEEE Transactions on Terahertz Science and Technology, 2(3):290–298.
- Tarasova, E., Puzanov, A., Bibikova, V., Volkova, E., Zabavichev, I. Y., Obolenskaya, E., Potekhin, A., and Obolensky, S. (2021). The physical topologicalmodeling of single radiation effects in submicron ultrahighfrequency semiconductor diode structures with taking in account the heating of an electron-hole gas in the charged particle track. Proceedings of the 33rd European Modeling Simulation Symposium (EMSS 2021), pages 289–294.
- Vassos, E., Churm, J., Powell, J., Viegas, C., Alderman, B., and Feresidis, A. (2021). Air-bridged Schottky diodes for dynamically tunable millimeter-wavemetamaterial phase shifters. Scientific Reports, 11(1):5988.
- Yang, F., Pitchappa, P., and Wang, N. (2022). Terahertz reconfigurable intelligent surfaces (RISs) for 6G communication links. Micromachines, 13(2).
- Zhu, B. O., Zhao, J., and Feng, Y. (2013). Active impedance metasurface with full 360 reflection phase tuning. Scientific reports, 3(1):3059.
Volume Details
Volume Title
Proceedings of the 35th European Modeling & Simulation Symposium (EMSS 2023)
Conference Location and Date
Athens, Greece
September 18-20, 2023
Conference ISSN
2724-0029
Volume ISBN
978-88-85741-87-4
Volume Editors
Michael Affenzeller
Upper Austria University of Applied Sciences, Austria
Agostino G. Bruzzone
MITIM-DIME, University of Genoa, Italy
Emilio Jimenez
University of La Rioja, Spain
Francesco Longo
University of Calabria, Italy
Antonella Petrillo
Parthenope University of Naples, Italy
EMSS 2023 Board
Francesco Longo
EMSS General Co-Chair
University of Calabria, Italy
Emilio Jimenez
EMSS General Co-Chair
University of La Rioja, Spain
Michael Affenzeller
EMSS Program Co-Chair
Upper Austria University of Applied Sciences, Austria
Antonella Petrillo
EMSS Program Co-Chair
Parthenope University of Naples, Italy
Copyright
© 2023 The Authors. The articles are open access and distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) license.