
© 2023 The Authors. This article is an open access article distributed under the terms and conditions of the Creative
Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

35th European Modeling & Simulation Symposium
20th International Multidisciplinary Modeling & Simulation Multiconference

2724-0029 © 2023 The Authors.
doi: 10.46354/i3m.2023.emss.020

A parallel proposal with message passing for the
implementation of a Pipeline in the development of the
video game SIMON

Mario Rossainz-López1,*, Liosbel Cabrera-Hernández1, Bárbara Sánchez-
Rinza1 and Manuel Capel-Tuñon2

1 Faculty of Computer Science, Autonomous University of Puebla, Av. San Claudio and 14 Sur Street, San Manuel,
Puebla, México, C.P. 72570
2Software Engineering Department, College of Informatics and Telecommunications ETSIIT, University of
Granada, Daniel Saucedo Aranda s/n, Granada 18071, Spain

*Corresponding author. Email address: mrossainzl@gmail.com

Abstract
The design and development of the inter-process communication pattern called Pipeline is presented as a proposal of Parallel
Object Composition to solve simple way problems that can be solved with this same parallel control structure. A particular class
library called JPMI (Java Passing Message Interface) is used for parallel programming with message passing and to implement an
original and particular version of the well-known video game called SIMON with the objective, on the one hand, to show the
usefulness of this design within Structured Parallel Programming and, on the other hand, that this proposal serves to guarantee
good performance in the execution of real time applications. An example of this type of applications is precisely video games. The
parallel algorithm implemented as a Composition of Parallel Objects is based on the development and use of a methodology where
the algorithmic design represents the parallel control structure common to a given algorithmic technique that can use the
pipeline communication pattern, generating a generic and abstract parallel program from which programs that solve specific
problems using the same communication pattern can be derived. The implementation of this proposal within structured parallel
programming tries to facilitate to the novice programmer in parallelism the reusability, genericity, and uniformity of code
abstract enough to be suitable for any problem that can be solved with a pipeline offered implemented with a parallel message
passing structure. This particularized proposal for the implementation of the SIMON video game is compared with another using
a thread library called boost and ZeroC Ice for remote invocation of distributed objects. The execution times and speedups of both
proposals are compared to identify how similar or different they are in their respective performances with training tests using AI
modules with sequences of 500000 colors in a cluster of 2 Intel Xeon CPUs of 8 cores each and 2 nodes, each with 2 NVIDIA cards
of 5760 CUDA cores each and a RAM memory of 128 GB.

Keywords: Structured Parallel Programming, HLPC, Pipeline, Message Passing, CSP, JPMI, Videogame, SIMON

1. Introduction

Structured Parallel Programming is based on the
modeling, design, construction, and development of

communication patterns between the processes defined
in an application (McCool et-al, 2012). By achieving this,
we can obtain a generic parallel communication pattern
that through the use of the object-oriented paradigm we

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mrossainzl@gmail.com

| 35th European Modeling & Simulation Symposium, EMSS 2023

can particularize to the solution of a problem that can be
solved with this pattern through properties such as
reuse, inheritance, and polymorphism. This leads to the
second objective, which is to facilitate the novice
programmer in the "automatic" programming of the
parallel part of his algorithmic proposal, focusing his
effort on the design and coding of the sequential
algorithms of his solution (McCool et-al, 2012). There are
currently several communication patterns that represent
solution models in the interaction between processes
such as Pipelines, Farms, Trees, Cubes, Hypercubes,
Mesh, etc., and that are used in different areas and
disciplines. The High-Level Parallel Compositions or
HLPC model is intended to be a generic model for the
design of process communication patterns, which is
adapted to a particular pattern in the solution of a
sequential problem that can be parallelizable (details can
be found in Hoare, 2003). Based on this idea, the HLPC
Pipe is created as a communication pattern that
implements a Pipeline of processes to solve problems
that are decomposed into a series of successive tasks so
that the data flows in a certain direction through the
process structure and each task is completed one after
the other. The problem that is solved by this HLPC model
is the development of the video game known as SIMON
which consists of the user having to be able to memorize
and repeat a sequence of colors that is generated by the
application through a pipeline that defines a sequence of
colors. The video game is used not only as entertainment
or recreational applications but also as applications that
help to improve the cognitive skills of people (Simone
and López, 2008) as can be the video game presented
here. That is why this paper focuses its effort on
explaining how structured parallel programming
through the HLPC Pipe model can be useful to develop a
particular proposal for the implementation of the SIMON
video game where the use of the pipeline is inherently
natural to use in this parallel development proposal,
using message passing programming through a class
library that implements the process algebra of Hoare's
CSP called JPMI.

2. State of the art

The industry offers parallel hardware platforms such as
GPUs, multi-core processors and the cloud, to speed up
data processing with respect to uniprocessor contention.
For all these platforms performance and optimization of
sequential algorithms is reaching its limit. One
alternative is to opt for parallel and concurrent
programming algorithms at a high level of abstraction by
using patterns of communication/interaction between
processes. In (Collins, 2011), the effectiveness and
applicability of automatic techniques has been explored.
FastFlow is a C++ parallel programming framework
intended to propitiate high-level, pattern-based parallel
programming, as the research work of (Torquati et al,
2014; Aldinucci et al, 2014) pointed out. The framework
provides several predefined, general purpose,
customizable and composable parallel patterns or
algorithmic skeletons such as the pipeline parallel

pattern as described in the work of (Torquati et al., 2014).
There are currently projects that develop frameworks
and offer to users constructs, templates and parallel
communication patterns between processes, such as the
ParaPhrase project. (Torquati et al., 2015) aimed at
developing a new structured design and implementation
process for heterogeneous parallel architectures. A more
conventional approach to framework-based parallel
programming provides application programmers with
the possibility of obtaining loop parallelization from
sequential code, with a relatively small amount of
programming effort. This is the approach followed in
(Danelutto and Torquati, 2014) with the ‘ParallelFor’.
The work carried out in (Ernsting and Kuchen, 2012)
offers the library skeleton ‘Muesli’ that offers a
simplified framework to perform parallel programming
helps to find correct solutions to general problems.
‘Muesli’ skeleton also allows us to write one application
that can be executed with no change across a variety of
parallel machines ranging from simple shared-memory
multi-core processors to clusters of distributed-memory
multi- and many-core processors, multi-GPU systems
and GPU clusters. MALLBA (Alba et al., 2007) is another
software tool intended for assisting in the solution of
combinatorial optimization problems using generic
algorithmic skeletons implemented in C++. Some
environments of parallel programming, as the one called
SklECL (Steuwer et al., 2011), are based on skeletons and
wrappers that make up the fundamental constructs of a
coordination language, defining modules that
encapsulate code written in a sequential language and
three classes of skeletons: control, stream parallel, and
parallel data. Finally, OpenMP and Intel TBB are
frameworks that facilitate the automatic parallelization
of loops and offer common communication structures
between processes such as pipelines.

3. Programming with Message Passing in JAVA

Given the importance of having current tools in Java
that provide programming with message passing, this
paper shows the use and usefulness of the JPMI (Java
Passing Message Interface) class library that
implements Hoare's CSP process algebra to improve
the performance of applications that can be
parallelized using this scheme. The JPMI library
provides classes to generate processes, communication
channels, and sequential, parallel, and alternative
compositions of processes, to communicate and
synchronize them. The antecedents of this library are
shown in the University of Twente project that resulted
in what is known as CTJ (Communicating Threads for
Java) (Hiderink et-al, 2000; Hiderink-2 et-al, 2000)
and in the University of Kent project that culminated in
the proposal of the JCSP (Communicating Sequential
Process for Java) class library (Welch et-al, 2007). The
advantage of JPMI over CTJ and JCSP is that it shows an
updated version of the latter, which are now obsolete,
and the programmer has a comprehensive set of rules
that help eliminate undesirable conditions of
parallelism during the design and implementation

 Rossainz-López et al. |

phases, such as strict alternation, lack of mutual
exclusion, interlocking and infinite waiting. Processes
are shown as active objects with the ability to execute
on themselves and with other processes by creating a
composition of them, while channels are passive
objects that serve as a means of communication
between the processes that use them. The general
communication model is shown in Figure 1. It identifies
the fundamental elements involved in communication
in message-passing systems (a sending process, a
receiving process, a communication channel, the
message to be sent/received, and the sending and
receiving operations) (Fujimoto, 2000; Palma, 2003).

Figure 1. Process Communication Model with Message Passing

3.1. Types of communication between processes
(Fujimoto, 2000; Palma, 2003)

• Direct Communication: The sender explicitly
identifies the receiver of the message in the
sending operation and vice versa for the receiving
operation by the receiver.

• Indirect Communication: The sender and receiver
processes are not explicitly identified.
Communication is carried out by depositing
messages in an intermediate store (mailbox) that is
assumed to be known by the processes involved in
the communication.

3.2. Synchronization between processes (Fujimoto,
2000; Palma, 2003)

• Asynchronous communication. The sending
process can perform the sending operation without
it being necessary for it to coincide in time with the
receiving operation by the receiving process.

• Synchronous Communication. There must be a
coincidence (appointment or meeting) in the time
of the sending and receiving operations by the
sending and receiving processes.

3.3. Channel and message characteristics (Capel and
Rodriguez,2012)

• Data Flow. The data flow passing through a
communication channel between two processes
can be unidirectional or bidirectional.

• Channel Capacity. The ability of channel to store
messages sent by the sending process when they
are not immediately picked up by the receiving
process.

• Message size. Messages can be of fixed or variable
length.

• Channels with type or without type. Some
communication schemes require defining the type
of data that will flow through the channel, so we
can have typed or untyped channels.

• Passing by copy or by reference. The information
sent by the sender process to the receiver process
through a channel is done by making an exact copy
of the data (message) or simply sending and
receiving the address in the address space where
the message is located.

3.4. The JPMI class library

JPMI (Java Passing Message Interface) is a package of
classes that implements Hoare's CSP Process Algebra
and is used to create processes, process compositions,
and inter-process communication channels. JPMI has
to implement the Jpmi Process interface and provide an
implementation for its run() method which will contain
the task that the process wants to carry out when this
method is invoked by another one within a composition
that can be of one of the allowed types: sequential,
parallel, or alternative. The constructor of the process
specifies the input channels, output channels, and
additional parameters to initialize the state of the
process. The run() method is the only public method
that a process can invoke directly on another process.
Figure 2. shows its architectural design with a class
diagram in UML.

Figure 2. Architectural design of JPMI class library

In JPMI the channels are unidirectional, zero-capacity,
untyped (generic), and with send and receive message
operations which are of variable length and passed by
copy. JPMI is intended to be a bridge between CSP
theory and its application in JAVA (for details see
Rossainz et-al, 2019).

4. CSP: Communicating Sequential Processes

It is a Process Algebra proposed by Hoare as a formal
algebraic language that is used to describe the
communication behavior between processes by
message passing that can be verified and demonstrated
(Davies and Schneider, 1995). With CSP, the behavior
pattern of a process can be described in terms of
communication events, operators, and other processes.
To include events in a process description, the prefix
operator is used (see details in Hoare, 2003). There are
several types of process composition in CSP. Given two
processes P and Q, they can be communicated through:

| 35th European Modeling & Simulation Symposium, EMSS 2023

• (P; Q). Sequential Composition: It is a process that
behaves as P until this component is finished and
then it behaves as Q.

• (P||Q). Parallel Composition: is a process where P
is capable of executing in any of its events and Q is
capable of executing in any of its events. The two
processes can cooperate to carry out any common
event.

• (P|||Q). Parallel Composition (with
interpolation): where the two processes P and Q
execute independently without cooperation
between them on each occurrence of any of their
events.

• (PQ). Alternative Composition: It behaves as P if
the first action of this process can be executed,
otherwise it behaves as Q if the first action of this
process can be executed. If both actions can be
performed, then the choice between them is made
non-deterministically.

• (PПQ). Alternative Composition (non-
deterministic): The choice between P and Q is
based on an arbitrary selection, without the
knowledge of the external environment.

• STOP. It is a process that never executes in any
event. Describes blocked process behavior.

• SKIP. It is a process that does nothing but
terminates completely.

5. The Pipeline and its representation as a
Composition of Parallel Objects

The pipeline is a parallel processing technique applicable
to a wide range of problems that are partially sequential.
With this scheme we can solve a problem by
decomposing it into a series of successive tasks so that
data flows in a certain direction through the process
structure and each task can be completed one after the
other (Robbins and Robbins, 1999). In a pipeline each
task is executed by a process as shown in Figure 3. Each
process that makes up a pipeline is called a "stage"
(Roosta and Séller, 1999).

Figure 3. Pipeline Structure

Each stage of the pipeline contributes to the overall
problem and passes the necessary information to the
next stage with which it is connected. This type of
parallelism is seen as a "functional decomposition", as
the problem is divided into separate functions that can be
executed individually and independently (Robbins and
Robbins, 1999; Roosta and Séller, 1999). An algorithm
that solves a given problem can be formulated as a
pipeline if it can be divided into some functions that

could be executed by the pipe stages. Thus, if a problem
can be divided into a series of sequential tasks, the
pipeline approach can provide increased execution speed
for the following three types of computations:

1. When more than one instance of the entire
problem can be executed in parallel.

2. Or a series of data can be processed and each of
these is used in multiple operations.

3. Or if the information demanded by the next
process to start its computation is passed after the
current process has completed all its internal
operations.

With this technique, many of the computational
problems that are carried out sequentially can be easily
parallelized as a pipeline (for more details, see
Rossainz et-al, 2018).

This PipeLine technique has been developed as a
parallel object composition or HLPC (an acronym for
High Level Parallel Composition) applicable to a wide
range of problems that are partially sequential, such
that the HLPC Pipe guarantees code parallelization of
the sequential algorithm using the Pipeline pattern. A
HLPC represents the composition of a set of parallel
objects of three types: A Manager object that represents
the HLPC itself. The Manager controls the references of
a set of objects (a Collector object and several Stage
objects), whose execution is carried out in parallel and
coordinated by the Manager itself. The Stage objects
encapsulate a client-server interface established
between the Manager and the slave objects, which are
passive objects containing the sequential algorithm for
the solution of a problem, and a Collector object, which
is an object in charge of storing in parallel the results
received from the connected Stage objects. The
Manager, Collector, and Stages objects are Parallel
Objects (PO) that can exploit both the parallelism
between objects (inter-object) and their internal
parallelism (intra-object) (Corradi and Leonardi, 1991).

A PO has a structure similar to that of an object in Java,
but in addition includes a scheduling policy that
specifies how to synchronize one or more operations of
the object class that can be invoked in parallel (Corradi
and Leonardi, 1991; Danelutto, 1999). Parallel objects
support single inheritance with multiple interfaces,
which allows for deriving a new PO specification from
an existing one. A HLPC has the following properties:
synchronous, asynchronous, and future asynchronous
communication modes between the parallel objects of
the HLPC, objects with internal parallelism, availability
of synchronization mechanisms; Maximum
Parallelism, Mutual Exclusion and Producer-
Consumer type Synchronization, availability of generic
type control, transparency in the distribution of
parallel applications and satisfactory performance:
Programmability, Portability, and Performance
(Rossainz et-al, 2014). Figure 4 shows the model of the
Pipeline parallel communication pattern as a HLPC.

 Rossainz-López et al. |

Figure 4. Pipeline model as a parallel object composition or HLPC

6. Implementation of the SIMON video game as
PIPE-HLPC using JPMI

A video game is a real-time graphical application with
an explicit interaction between the user and the video
game itself. The notion of real-time then implies that
the video game must make the user have a continuous
feeling of realism when playing [19],[20]; this is
achieved by generating a 3-step cycle: The user
visualizes a rendered image, the user interacts with the
application based on what he visualizes and based on
that interaction the application responds with an
output. This cycle must be executed quickly and
constantly so that the user feels immersed in the game
and does not have the feeling of seeing static images.
Technically this means that the video game must
generate a certain number of images per second
(frames) based on the interaction with the user and it is
precisely here where parallelism and concurrency can
help to achieve this accelerated and uninterrupted
execution of the video game. The proposal presented in
this paper of using the CPAN Pipe programmed with the
JPMI library can achieve this goal. As a case study, we
show below a proposal for parallelization in the design
and implementation of the well-known SIMON video
game, which consists of the player having to be able to
memorize and repeat a sequence of colors that are
generated by SIMON (see Figure 5). We first created the
artificial intelligence module responsible for the
generation of a video game color sequence; in
particular, we adopted the idea of (Rahman and Bawiec,
2023) to incorporate a genetic and deep learning
algorithm that represents the Slave Object of the HLPC
Pipe model as an instance of the functionality to be
executed by a HLPC Stage. Next, using the Process
interface of the JPMI library we create the parallel
objects of the HLPC Pipe model of Figure 4,
particularized to the design of the video game, that is to
say, the Manager Object of this new HLPC Pipe which
we will call Pipe-HLPC-SIMON is a process that, by a
first input channel, will receive in each opportunity for
the user the sequence of colors that SIMON defines as
the pattern to follow. This sequence will generate the
Pipeline of the model according to the number of colors
that integrate it, a Stage Object of the pipeline for each
color in the sequence generated at the current time
instant.

Figure 5. SIMON video game implemented as CPAN-HLPC

In the beginning, a first Stage is generated with two
input channels and one output channel. The first input
channel is connected to the output channel of the
Manager to receive the user's sequence, which at the
beginning of the game will be of only one color, the one
defined by the first Stage that receives through its
second input channel from its associated slave object
(AI deep learning and genetic algorithm adopted from
Rahman and Bawiec, 2023) and compares it with the
color received from the Manager to verify that the
sequence defined by the user is the same as the one
generated by SIMON and the result of this comparison
will be sent to the Collector object that will be the third
process of the model that receives through its input
channel this comparison result to give response to the
user through the Manager that receives this result
through another input channel and informs the user if
the sequence is correct or not. Again, the same process
is repeated, generating a second Stage connected to the
first one, and then a third Stage connected to the
second one, and so on until the user makes a mistake in
the sequence that must be followed and that is being
dictated by SIMON. The generated pipeline represents
the color sequence created by SIMON that the user must
follow. Each Stage process will pass to the next one
(through the output and input channels connected
between the neighboring Stages) a hit or miss flag
according to the user's progress in the generation of
the sequence, which will be sent to the Collector so that
it can formulate the final result and send it to the
Manager, which in turn will indicate to the user
whether he can continue playing or not. The game will
count the number of correct colors generated by the
user in the generation of the sequence until the latter
fails and will serve for the genetic and deep learning
algorithm adopted from (Rahman and Bawiec, 2023) to
learn from the user and then, in the next game,
generate a more complicated sequence of colors. As can

| 35th European Modeling & Simulation Symposium, EMSS 2023

be seen, the pipeline of the model is dynamic, growing
in real-time as the user's color sequence remains
correct, until the user fails. The Parallel objects of the
Manager, Stages, and Collector are running inside a
Parallel Process Composition generated using the
Parallel class of the JPMI library based on the behavior
that this new process must have, modeled through the
CSP algebra. The new graphical model of the Pipe-
HLPC-SIMON is illustrated in Figure 6 and corresponds
to what has been described so far.

Figure 6. Pipe-HLPC-SIMON model

7. Pipe-HLPC-SIMON Performance Analysis
and Results

To measure the performance of the SIMON video game
implemented with the CPAN model, we took as a
comparative reference the implementation of (Vallejo
and Martín, 2015) of the same video game where it uses
OGRE as a rendering engine and a thread library called
boost and ZeroC Ice for the remote invocation of
distributed objects. Both proposals, the one in (Vallejo
and Martín, 2015) and the one presented in this paper
were executed in a cluster with 2 Intel Xeon CPUs of 8
cores each and 2 nodes, each with 2 NVIDIA cards of
5760 CUDA cores each and a RAM of 128 GB. For the case
of our model, the server node was hosted on a CPU
where the Manager and Collector objects were placed,
while the Pipeline that is dynamically generated
together with the slave objects was hosted as clients on
the CUDA cores of the corresponding GPUs (see Fig.6.).
In both proposals a training was performed to carry out
the corresponding speedup's calculations with color
sequences of 500000 elements which are shown in the
graph in Figure 7.

Figure 7. Comparison of speedup scalability found in the Pipe-
HLPC-SIMON vs SIMON video game (Vallejo and Martín, 2015) with

500000 element color sequence training.

The graph shows the population mean of a Normal
Probability distribution, from a training set of both
proposals with correct sequences of 500000 colors and
the use of 1024 to 5120 CUDA cores in increments of
1024. Each color of a sequence produces a delay of 0.2
seconds to be obtained. The average of the sequentially
generated sequences was approximately 50 hrs of
execution, while the average parallel execution times of
the 2 proposals are shown in Table I.

Table 1. Average run times in hours of the SIMON (Vallejo and
Martín, 2015) VS Pipe-HLPC-SIMON video game with 500000

element color sequence training.
CUDA-
CORES

SIMON runtime
(hours) (Vallejo

and Martín,
2015)

Pipe-HLPC-
SIMON

runtime
(hours)

1024 42 40
2048 35 38
3072 22 24
4096 18 17
5120 15 16

As can be seen both in the values of Table 1 and the
graph of Figure 7, the performance of the Pipe-HLPC-
SIMON is almost identical to that shown with the
SIMON video game proposal of (Vallejo and Martín,
2015). The difference in the errors of the comparative in
the graph of Figure 7 of the speedups is very small since
the execution times of both proposals under the same
conditions are very similar (see Table 1).

8. Conclusions

We have presented the design of a composition of
parallel objects to model and implement the Pipeline
communication structure as a High-Level Parallel
Composition or HLPC whose implementation was
carried out using the JPMI library for programming
with message passing, particularly in the case study of
the well-known video game SIMON. The
implementation of this video game was carried out
based on the Pipe-HLPC-SIMON model (see Figure 6)
through a parallel composition of 3 types of processes:
Manager, Collector, and Stages to create a dynamic

 Rossainz-López et al. |

pipeline where each Stage of the Pipe represents a color
that is randomly generated by the video game in a
sequence that must be followed correctly by the user.
The performance analysis of this proposal was made by
comparing both execution times and acceleration with
the proposal proposed by (Vallejo and Martín, 2015), the
results of which are shown in Figure 7 and Table 1 and
illustrate the similarity between these two
implementations even though they were designed and
developed with different models in the design and
coding of algorithms. The performances are considered
good given the conditions of inputs and outputs to and
from the video game and the hardware platform used
(see Section 6 of this paper) for its execution and
speedup. In future work we intend to demonstrate the
genericity of the implemented HLPC, using it and
adapting it to the development of new video games that
require the use of the pipeline for parallelization with
AI techniques, for example, the implementation of
"alphabet soup" or "crossword puzzles".

References

Alba, E., Luque, G., Garcia, J. and Ordonez, G.: MALLBA: a
software library to design efficient optimization
algorithms, International Journal of Innovative
Computing and Applications, Vol. 1, No. 1, pp.74–85.
(2007).

Aldinucci, M., Danelutto, M., Kilpatrick, P. and Torquati, M.:
‘FastFlow: high-level and efficient streaming on multi-
core’, in Pllana, S. and Xhafa, F. (Eds.): Programming
Multi-core and Many-core Computing Systems, Wiley.
(2014).

Capel I. M., Rodriguez V. S: Sistemas Concurrentes y
Distribuidos. Teorìa y Pràctica: Copycentro Editorial:
España (2012).

Collins, A.J.: Automatically Optimising Parallel Skeletons, MSc
thesis in Computer Science, School of Informatics
University of Edinburgh, UK. (2011).

Corradi A., Leonardi L.: PO Constraints as tools to synchronize
active objects. Pp: 42-53. Journal Object Oriented
Programming 10. (1991).

Danelutto, M.; Orlando, S; et al.: Parallel Programming Models
Based on Restricted Computation Structure Approach.
Technical Report-Dpt. Informatica. Universitá de Pisa
(1999).

Danelutto, M. and Torquati, M.: Loop parallelism: a new
skeleton perspective on data parallel patterns, in Proc. of
Intl. Euromicro PDP 2014: Parallel Distributed and
Network-based Processing, Torino, Italy. (2014).

Davies J. and Schneider S.: Real-Time CSP, UK, (1995).

Ernsting, S. and Kuchen, H.: Algorithmic skeletons for multi-
core, multi-GPU systems and clusters, Int. J. of High-
Performance Computing and Networking, Vol. 7, No. 2,
pp.129–138. (2012).

Fujimoto: Parallel and Distributed Simulation Systems:
Wiley-Interscience: USA, (2000).

Hiderink J., Broenink J., Bakkers A.: Communicating Threads
for Java: University of Twente: Draf-Rev 5.: Netherlands
(2000).

Hiderink-2 J., Broenink J., Vervoort W., Bakkers A.:
Communicating Java Threads. University of Twente:
Netherlands (2000).

Hoare C.A.R.: Communicating Sequential Processes: Prentice
Hall, London, UK, (2003).

McCool M., Robison A.D., and Reinders J. Structured Parallel
Programming. Patterns for Efficient Computation.
Morgan Kaufmann Publishers Elsevier. USA. (2012).

Palma J.T., Garrido M. C., et al: Programación Concurrente:
Thomson. España (2003).

Rahman A., Bawiec M., Simon Says. Amazon Web Services.
(2023). Recuperado de:
https://aws.amazon.com/es/deeplens/community-
projects/deeplens_simon_says/

Robbins, K. A., Robbins S.: UNIX Programación Práctica. Guía
para la concurrencia, la comunicación y los multihilos.
Prentice Hall. (1999).

Rossainz M. and Capel M. Design and implementation of
communication patterns using parallel objects. Especial
edition, Int. J. Simulation and Process Modelling, Volume
1, Number 17. (2017).

Rossainz M., Sánchez B., Rangel A., Ballinas A.L., JPMI: Un
paquete de clases en Java para la Programación Paralela
con Paso de Mensajes. Modelado, TIC y Sistemas
Distribuidos: avances y aplicaciones. Dirección General de
Publicaciones. BUAP, México (2019).

Rossainz M., Capel M., Carrasco O., Hernández F., Sánchez B.
Implementation of the Pipeline Parallel Programming
Technique as an HLPC: Usage, Usefulness and
Performance. Annals of Multicore and GPU Programming.
Volume 4, Number 1, Spain (2018).

Rossainz M., Pineda I., Dominguez P.: Análisis y Definición del
Modelo de las Composiciones Paralelas de Alto Nivel
llamadas CPANs. Modelos Matemáticos y TIC: Teoría y
Aplicaciones. Dirección de Fomento Editorial. ISBN 987-
607-487-834-9. Pp. 1-19. México. (2014).

Roosta, Séller: Parallel Processing and Parallel Algorithms.
Theory and Computation. Springer (1999).

Simone B., López C. Breve historia de los videojuegos. Athenea
Digital, Revista de Pensamiento e Investigación Social.
Número 14, Universidad Autónoma de Barcelona
Barcelona España (2008).

Steuwer, M., Kegel, P. and Gorlatch, S.: SkelCL a portable
skeleton library for high-level GPU programming,
Proceedings of the 16th IEEE Workshop on High-Level
Parallel Programming Models and Supportive
Environments, May, Anchorage, AK, USA. (2011).

Torquati, M., Aldinucci, M. and Danelutto, M.: ‘FastFlow
documentation’, Parallel programming in FastFlow,
Computer Science Department, University of Pisa, Italy.
(2014).

Torquati, M., Aldinucci, M. and Danelutto, M.: FastFlow
Testimonials, Computer Science Department, University
of Pisa, Italy. (2015)

Vallejo D., Martín C. Desarrollo de Videojuegos. Un Enfoque
Práctico. Volumen 1. Arquitectura del Motor. Creative
Commons License. España (2015).

Welch P., et al: Integrating and Extending JCSP:
Communicating Process Architectures. IOS Press. (2007).

https://aws.amazon.com/es/deeplens/community-projects/deeplens_simon_says/
https://aws.amazon.com/es/deeplens/community-projects/deeplens_simon_says/

