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Abstract 
This work deals with the problem of optimizing the routing of electric vehicles (EVs) for logistics operations. An optimization 
approach solves the Electric Vehicle Routing Problem and is formulated as an Integer Linear Programming problem. The objective 
is minimizing the charging/discharging cost considering the shortest path for each EV that must deliver freight to a group of 
customers. Moreover, to validate the performance of the proposed optimization method, we adopt SUMO software to model and 
simulate the EVRP problem solution. To demonstrate the efficacy of the method, a real case study in Apulia region (Italy) is 
considered. Additionally, different traffic scenarios are simulated in SUMO environment, and the results show the impact of 
traffic on the travelling times.  
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1. Introduction

Today many companies integrate electric vehicles 
(EVs) into their fleets (Fanti et al., 2018) for logistics 
operations. Hence, the Electric Vehicle Routing 
Problem (EVRP) has gained significance in logistics to 
introduce EVs that reduce carbon emissions (Felipe et 
al., 2014). A single EV serves each client node in the 
EVRP, and each charging station can be made available 
for more than one EV (Lin et al.,2016; Paz et al.,2018).  

It is necessary to avoid that the battery State of Charge 
(SoC) of EVs goes beyond a lower bound. Smart-
Charging is a new method that enables the charging 
and discharging of energy in the battery to establish 
balance and avoid exceeding energy peaks (Kucukoglu 
et al., 2021; Conrad et al., 2011). When discharging 
occurs, the EV battery is supplying energy back to the 
grid.  A multi-objective optimization approach is used 

to solve the EVRP in (Sadeghian et al., 2022). 

Additionally, a two-stage simulation-based heuristic 
for the EVRP is proposed in (Keskin et al., 2021), which 
determines EV routes in the first stage by considering 
the expected waiting time at the charging stations, 
while the second stage corrects the infeasible solutions 
by penalizing the time-window violations and late 
returns to the depot.  

Also, simulation tools are today largely used to assess 
and optimize the trip of conventional and EVs. One 
example is SUMO (Simulation of Urban Mobility) that is 
a microscopic, open-source traffic simulation software 
that can simulate individual vehicle movements and 
their interactions within a road network (Behrisch et 
al., 2011).  

Researchers have been using SUMO to study various 
aspects of EVRP, such as optimizing charging station 
locations and developing efficient routing algorithms. 
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For example, in (Xu et al., 2022), the authors proposed 
a new algorithm to optimize the locations of charging 
stations by simulating vehicle movements and 
analyzing the charging demands of the vehicles.  

In recent years, researchers have extended the 
capabilities of SUMO to include the modelling of 
electric vehicle charging behavior and the integration 
of renewable energy sources into the charging 
infrastructure. For instance, in (Canizes et al., 2019), 
the authors developed a framework for simulating the 
charging behavior of electric vehicles in a public 
transportation system using SUMO. These studies 
demonstrate the versatility of SUMO as a platform for 
testing different routing algorithms.  

This paper starts from the smart charging strategies to 
address the EVRP for logistics applications developed 
in the previous work of (del Cacho et al., 2022), that 
determines the optimal routing for an EV fleet while 
considering customer demand and power grid 
requirements. The network comprises customer nodes 
serviced by connected EVs and several charging 
stations. Each EV can be charged or discharged during 
the trip based on the battery level and requirements of 
the grid. An intelligent charging approach is used, in 
which an EV is charged when its SoC is inadequate to 
reach the next node and discharged when the power 
grid requires it. In order to validate the solutions 
obtained in (del Cacho et al., 2022), this paper presents 
a real case study using SUMO, which addresses the 
complexities of the problem by incorporating various 
features like road and traffic condition.  

In the proposed model, EVs possess a variety of 
properties, including energy capacity, charging rates, 
and cargo capacities. There are many categories of 
clients with differing delivery schedules and load 
weights. In addition, the charging and discharging 
schedules of EVs are subject to time-varying power 
rates. In addition, charging stations have a maximum 
amount of energy they can deliver over a specific time. 
Furthermore, the charging stations belong to distinct 
energy districts with varying maximum energy values 
they may deliver over a certain time. By addressing 
these complexities, the proposed method offers a more 
comprehensive and realistic solution to the EVRP 
problem for logistics applications. 

The paper is structured as follows. Section II recalls the 
optimization model and Section III provides the real 
case study modelled on SUMO. Finally, Section IV is the 
results section, and Section V provides the conclusions 
and highlights the future work. 

2. EVRP Model Description

The EVRP involves finding the optimal route for a fleet 
of EVs that depart from a depot and must fulfil 
customer demands. The goal is not only to determine 
the most efficient route in terms of distance travelled, 
but also to establish a connection between the EV and 
the customer. Each EV in the set 𝐾 = {1, … , 𝑁𝐾} departs 

from the Depot Node (D) with a full cargo and fully 
charged battery. The EV travels across different nodes 
until it reaches its destination. The goal of the EV is to 
reach its destination while delivering goods to 
customers through the shortest path. If required, the 
battery can be charged or discharged at charging 
stations during the journey. 
In the set of Customer Nodes (CN) 𝑁 = {1, … , 𝑁𝑁}, each 
element denotes the node to which EVs supply goods. 
When an electric vehicle (EV) needs to recharge or 
discharge energy, it approaches at one of the Charging 
Points (CP) in the set 𝑆 = {𝑁𝑁 + 1, … , 𝑁𝑆}. The set 𝑃 =
{1, … , 𝑁𝑃} includes districts. The routing problem is 
addressed considering a daily timeslot forming the set 
𝑇 = {1, … , 𝑁𝑇}. 
To model and elaborate the EVRP problem, a graph 
depicts a network of points that consists of the nodes in 
the set 𝑈 = 𝐷 ∪ 𝑁 ∪ 𝑆 as shown in Figure 1. This network 
defines a departure node (depot), customer nodes, and 
charging/discharging stations. The nodes are linked by 
bidirectional arcs. The goal is to determine the optimal 
routes for the fleet of electric vehicles to meet customer 
demand while implementing an intelligent charging 
strategy to manage battery charging/discharging 
during the journey. Each EV in the fleet has a cargo 
capacity and is employed to service customers while 
participating in the charging/discharging strategy. The 
charging/discharging technique respects the power 
grid requirements, such as power balancing and not 
exceeding the maximum allowed demand peak. The 
energy demand constraints issue is addressed at the 
charging station and district levels. The optimization 
model determines the best charging/discharging 
approach for each EV on the trip while ensuring 
sufficient autonomy is maintained to complete the 
journey. In the proposed scenario, the weight of each 
arc between nodes represents the shortest path 
distance between nodes in kilometers. 

Figure 1. Example of nodes network 
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3. EVRP optimization model

The EVRP is modelled as an ILP problem as presented 
in (del Cacho et al., 2022) and recalled in this work. 
Some necessary parameters and notations are 
described and then the ILP problem is formulated. 

The considered sets of the ILP problem are: 

𝑁 = {1, … , 𝑁𝑁} Set of customer nodes 𝑁 ∈ ℕ 

𝑆 = {𝑁𝑁 + 1, … , 𝑁𝑆} Set of charging station 
nodes𝑆 ∈ ℕ 

𝐷 = {0} Depot node 
𝑈 = 𝐷 ∪ 𝑁 ∪ 𝑆 Set of nodes 𝑈 ∈ ℕ 
𝑇 = {1, … , 𝑁𝑇} Set of time slots 𝑇 ∈ ℕ 
𝐾 = {1, … , 𝑁𝐾} Set of EVs 𝐾 ∈ ℕ 
𝑃 = {1, … , 𝑁𝑃} Set of districts 𝑃 ∈ ℕ. 

The paraments are: 

𝑡𝑑𝑖𝑗 ∈ ℝ+ Distance [km] to travel from 
node 𝑖 to node 𝑗, 𝑖, 𝑗 ∈ 𝑈 

𝑡𝑡𝑖𝑗 ∈ ℝ+ Time to travel from𝑖 to 𝑗, 𝑖, 𝑗 ∈ 𝑈 
[h] 

𝑄𝑘 ∈ ℝ+ Battery [kWh]capacity of 
EV𝑘 ∈ 𝐾 

𝑉𝑘 ∈ ℝ+ Amount of time [h] to fully 
charge EV 𝑘 ∈ 𝐾 

𝑝𝑟𝑡 ∈ ℝ+ Unit electricity buying price 
[€/kW] during time slot 𝑡 ∈ 𝑇 

𝑝𝑑𝑡 ∈ ℝ+ Unit electricity selling 
price[€/kW] during time 
slot 𝑡 ∈ 𝑇 

𝑒𝑛𝑑𝑘 ∈ 𝑈 End node of EV 𝑘 ∈ 𝐾 
𝑒𝑖 ∈ ℝ+ Open hour to start service 

allowed at node 𝑖 ∈ 𝑈 [t] 
𝑙𝑖 ∈ ℝ+ Latest time to start service 

allowed at node 𝑖 ∈ 𝑈 [t] 
𝐶𝑘 ∈ ℝ+ Cargo capacity [kg]of EV 𝑘 ∈ 𝐾 
𝑞𝑖 ∈ ℝ+ Demand[kg]of customer 𝑖 ∈

𝑁 ∪ 𝑆. 𝑞𝑖∈𝑆 = 0 
𝑠𝑖 ∈ ℝ+ Time[h] required by the 

customer for delivery at the 
node𝑖 ∈ 𝑁 

𝛿 ∈ ℝ+ Time slot duration [h] 
𝑃𝑟𝑒𝑘𝑡 ∈ ℝ+ Cost [€/kW] of charging EV 𝑘 ∈

𝐾 during time slot 𝑡 ∈ 𝑇 
𝑃𝑑𝑖𝑠𝑘𝑡 ∈ ℝ+ Cost [€/kW] of discharging EV 

𝑘 ∈ 𝐾 during time slot 𝑡 ∈ 𝑇 
𝑃𝛿𝑖 ∈ ℝ+ Power that charging station 𝑖 ∈

𝑆 can provide at time slot𝑡 ∈ 𝑇 
𝑒𝑚𝑎𝑥𝑖 ∈ ℝ+ Maximum energy [kWh] that 

charging station 𝑖 ∈ 𝑆 can 
provide in each time slot 

𝑒𝑚𝑎𝑥𝐷𝑝 ∈ ℝ+ Maximum energy[kWh] that 
district 𝑝 ∈ 𝑃 can provide in 
each time slot 

𝑑𝑡𝑝𝑖 ∈ {0,1} Binary parameter equal to 1 if 

charging station 𝑖 ∈ 𝑆 belongs 
to district 𝑝 ∈ 𝑃; 0 otherwise. 

The decision variables are the following: 

𝑦𝑖𝑗
𝑘 ∈ {0,1} Binary decision variable equal to 1 if 

EV 𝑘 ∈ 𝐾 travels from node 𝑖 to node 
𝑗(𝑡𝑑𝑖𝑗 > 0). 0 otherwise.𝑖, 𝑗 ∈ 𝑈  

𝑟𝑖𝑡𝑘 ∈ {0,1} Binary decision variable equal to 1 if 
EV 𝑘 ∈ 𝐾 charges its battery at node 
𝑖 ∈ 𝑈 at time slot 𝑡 ∈ 𝑇;0 otherwise. 

𝑑𝑖𝑡𝑘 ∈ {0,1} Binary decision variable equal to 1 if 
EV 𝑘 ∈ 𝐾 discharges its battery at 
node 𝑖 ∈ 𝑈 at time slot 𝑡 ∈ 𝑇;0 
otherwise. 

𝜏𝑘𝑖 ∈ ℝ+ Arrival time[h] of EV 𝑘 ∈ 𝐾 at node 𝑖 ∈
𝑈 

𝑢𝑘𝑖 ∈ ℝ+ ∪ {0} Remaining cargo [kg]in EV 𝑘 ∈ 𝐾 
upon arrival to node 𝑖 ∈ 𝑈 

𝑣𝑘𝑖 ∈ ℝ+ SoC (autonomy) in terms of time[h] 
in EV 𝑘 ∈ 𝐾 upon arrival to node 𝑖 ∈ 𝑈 

The EVRP objective function aims to minimize the EVs 
travel distance, using the shortest route, and the total 
cost of the route. The objective function is described as 
follows:  

𝑓(𝑦𝑖𝑗
𝑘 , 𝑟𝑖𝑡𝑘 , 𝑑𝑖𝑡𝑘) = ∑ ∑ ∑ 𝑡𝑑𝑖𝑗 ∙ 𝑦𝑖𝑗

𝑘

𝑘∈𝐾𝑗∈𝑁∪𝑆𝑖∈𝑈

+

+ ∑ ∑ ∑ 𝛿 ∙ ((𝑟𝑖𝑡𝑘 ∙ 𝑃𝑟𝑒𝑘𝑡) − (𝑑𝑖𝑡𝑘 ∙ 𝑃𝑑𝑖𝑠𝑘𝑡))

𝑡∈𝑇𝑖∈𝑆𝑘∈𝐾

 

(1) 
The problem is defined as follows: 

min
𝑦𝑖𝑗

𝑘 ,𝑟𝑖𝑡𝑘,𝑑𝑖𝑡𝑘

𝑓(𝑦𝑖𝑗
𝑘 , 𝑟𝑖𝑡𝑘 , 𝑑𝑖𝑡𝑘) 

s.t.

∑ ∑ 𝑦𝑖𝑗
𝑘

𝑗∈𝑁∪𝑆𝑘∈𝐾

= 1 

∀𝑖 ∈ 𝑁, 
𝑖, 𝑗 ≠ 𝑒𝑛𝑑𝑘 , 

𝑖 ≠ 𝑗, 
𝑡𝑡𝑖𝑗 > 0 

(2) 

∑ 𝑦0𝑗
𝑘

𝑗∈𝑁∪𝑆

= 1 
∀𝑘 ∈ 𝐾, 
𝑗 ≠ 𝑒𝑛𝑑𝑘 , 
𝑡𝑡0𝑗 > 0 

(3) 

∑ 𝑦𝑖,𝑒𝑛𝑑𝑘

𝑘

𝑖∈𝑁∪𝑆

= 1 
∀𝑘 ∈ 𝐾, 
𝑖 ≠ 𝑒𝑛𝑑𝑘 , 
𝑡𝑡𝑖𝑒𝑛𝑑𝑘

> 0 
(4) 

∑ 𝑦𝑖𝑗
𝑘

𝑖∈𝐷∪𝑁∪𝑆

= ∑ 𝑦𝑗𝑖
𝑘

𝑖∈𝑁∪𝑆

∀𝑗 ∈ 𝑁 ∪ 𝑆, 
𝑖, 𝑗 ≠ 𝑒𝑛𝑑𝑘 , 

𝑖 ≠ 𝑗 
∀𝑘 ∈ 𝐾 

(5) 

𝑒𝑖 ≤ 𝜏𝑘𝑖 ≤ 𝑙𝑖 
∀𝑖 ∈ 𝑈, 
∀𝑘 ∈ 𝐾 

(6) 

𝑟𝑖𝑡𝑘 + 𝑑𝑖𝑡𝑘 ≤ 1 
∀𝑖 ∈ 𝑆, 
∀𝑡 ∈ 𝑇, 
∀𝑘 ∈ 𝐾 

(7) 
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∑ ∑ 𝑞𝑖 ∙ 𝑦𝑖𝑗
𝑘

𝑗∈𝑁∪𝑆𝑖∈𝑁∪𝑆

≤ 𝐶𝑘 ∀𝑘 ∈ 𝐾, 
𝑡𝑡𝑖𝑗 > 0 (8) 

𝜏𝑘𝑗 ≥ 𝜏𝑘𝑖 + 

+ ((𝑡𝑡𝑖𝑗 + 𝑠𝑖) ∙ 𝑦𝑖𝑗
𝑘 ) −

−𝑀 ∙ (1 − 𝑦𝑖𝑗
𝑘 )

∀𝑖 ∈ 𝑁, 
∀𝑗 ∈ 𝑁 ∪ 𝑆, 

∀𝑘 ∈ 𝐾, 
𝑡𝑑𝑖𝑗 > 0 

(9) 

𝜏𝑘𝑗 ≥ (
𝛿 ∙ 𝑡 ∙

(𝑟𝑖𝑡𝑘 + 𝑑𝑖𝑡𝑘) ∙ 𝑦𝑖𝑗
𝑘 ) +

+(𝑡𝑡𝑖𝑗 ∙ 𝑦𝑖𝑗
𝑘 ) −

−𝑀 ∙ (1 − 𝑦𝑖𝑗
𝑘 )

∀𝑖 ∈ 𝑆, 
∀𝑗 ∈ 𝑁 ∪ 𝑆, 

∀𝑡 ∈ 𝑇, 
∀𝑘 ∈ 𝐾, 
𝑡𝑑𝑖𝑗 > 0 

(10) 

𝑢𝑘0 ≤ 𝐶𝑘 ∀𝑘 ∈ 𝐾 (11) 

𝑣𝑘𝑖 = 𝑉𝑘  
∀𝑘 ∈ 𝐾,  

𝑖 = 0 
(12) 

𝜏𝑘𝑖 − (𝑡 − 1) ∙ 𝛿 ≤ 

≤ 𝑀 ∙ (1 − 𝑑𝑖𝑡𝑘 − 𝑟𝑖𝑡𝑘) 

∀𝑖 ∈ 𝑆, 
∀𝑡 ∈ 𝑇, 
∀𝑘 ∈ 𝐾 

(13) 

𝑢𝑘𝑗 ≤ 𝑢𝑘𝑖 − (𝑞𝑗 ∙ 𝑦𝑖𝑗
𝑘 ) +

+𝑀 ∙ (1 − 𝑦𝑖𝑗
𝑘 )

∀𝑖, 𝑗 ∈ 𝑁 ∪ 𝑆, 
∀𝑘 ∈ 𝐾, 
𝑡𝑑𝑖𝑗 > 0 

(14) 

𝑣𝑘𝑗 ≤ 𝑉𝑘𝑖 − (𝑡𝑡𝑖𝑗 ∙ 𝑦𝑖𝑗
𝑘 ) +

+𝑀 ∙ (1 − 𝑦𝑖𝑗
𝑘 )

∀𝑘 ∈ 𝐾, 
∀𝑖 ∈ 𝐷 ∪ 𝑁, 
∀𝑗 ∈ 𝑁 ∪ 𝑆, 

𝑡𝑑𝑖𝑗 > 0 

(15) 

𝑣𝑘𝑗 ≤ 𝑣𝑘𝑖 + ∑ 𝛿 ∙ 𝑟𝑖𝑡𝑘

𝑡∈𝑇

− 

− ∑ 𝛿 ∙ 𝑑𝑖𝑡𝑘

𝑡∈𝑇

− (𝑡𝑡𝑖𝑗 ∙ 𝑦𝑖𝑗
𝑘 ) +

+𝑀 ∙ (1 − 𝑦𝑖𝑗
𝑘 )

∀𝑘 ∈ 𝐾, 
∀𝑖 ∈ 𝑆, 

∀𝑗 ∈ 𝑁 ∪ 𝑆 
(16) 

∑ 𝛿 ∙ 𝑟𝑖𝑡𝑘

𝑡∈𝑇

≤ 𝑉𝑘 − 𝑣𝑘𝑖  ∀𝑘 ∈ 𝐾, 
∀𝑖 ∈ 𝑆 

(17) 

∑ 𝛿 ∙ 𝑑𝑖𝑡𝑘

𝑡∈𝑇

≤ 𝑣𝑘𝑖 ≤ 𝑉𝑘  ∀𝑘 ∈ 𝐾, 
∀𝑖 ∈ 𝑆 

(18) 

0 ≤ 𝑣𝑘𝑖  
∀𝑘 ∈ 𝐾, 

∀𝑖 ∈ 𝑁 ∪ 𝑆 
(19) 

𝑣𝑘𝑗 ≤ 𝑉𝑘 ∙ ∑ 𝑦𝑖𝑗
𝑘

𝑖∈𝐷∪𝑁∪𝑆

∀𝑘 ∈ 𝐾, 
∀𝑗 ∈ 𝑁 ∪ 𝑆 

(20) 

∑ 𝑃𝛿𝑖 ∙ (𝑟𝑖𝑡𝑘 − 𝑑𝑖𝑡𝑘)

𝑘∈𝐾
≤ 𝑒𝑚𝑎𝑥𝑖  

∀𝑖 ∈ 𝑆, 
∀𝑡 ∈ 𝑇 

(21) 

∑ 𝑃𝛿𝑖 ∙ (𝑟𝑖𝑡𝑘 − 𝑑𝑖𝑡𝑘) ∙ 𝑑𝑡𝑝𝑖

𝑘∈𝐾
≤ 𝑒𝑚𝑎𝑥𝐷𝑝 

∀𝑖 ∈ 𝑆, 
∀𝑡 ∈ 𝑇, 
∀𝑝 ∈ 𝑃 

(22) 

The meaning of the constraints is reported in paper 
(del Cacho et al.,2022). 

4. EVRP Simulation model in SUMO

The described system is simulated by SUMO tool. Using

Open Street Maps data sources, SUMO can model the 
roadways, traffic signals, demand, and infrastructure 
of large-scale locations. In addition, SUMO can provide 
a more extensive road structure, generate massive 
traffic scenarios, and simulate intelligent 
transportation systems under various situations. 
Therefore, we use SUMO to simulate a real case study in 
Apulia region (Italy), to validate the proposed 
optimization approach for EVRP. To this aim we 
imported OpenStreetMap data of the Apulia region and 
obtained a simulation map in SUMO. The final map 
findings are displayed in Figure 2. Furthermore, we 
have created a SUMO model of the nodes network and 
routes. 

Figure. 2 Apulia region map in SUMO. 

5. Case Study

5.1. Description of the simulation model 

In the previous work (del Cacho et al.,2022), a real case 
study of a network of customer nodes located in the 
Apulia region is presented. The EVRP ILP was solved 
using CPLEX considering the distance between each 
node regardless road conditions.  

In this study, we simulate the same scenario in 
microscopic traffic simulation considering the same 
traffic conditions; each vehicle is explicitly described, 
has a unique route, and travels independently across 
the network according to EVRP ILP road conditions. 
Additionally, we explored the impact of traffic volume 
on travelling time by adding different traffic levels to 
the simulation. 

The SUMO simulation graphic interface is shown in 
Figure 3. There are four components depicted: the 
Depot of the vehicles (light green color), the customer 
nodes (CN) which are shown in blue color, the charging 
stations (CP) represented in yellow color, and the EVs, 
which are depicted in different colors. The node 
network shown in Figure 3 comprises one Depot Node 
(from which all EVs leave), NN= 15 customer nodes of 
set N = {CN1,..., CN15}, and NS = 5 charging station 
nodes for EVs of set S = {CP1,...,CP5}. 
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Figure.3 SUMO Simulation view. 

Table 1 Distance Between the Connected Nodes 
𝒕𝒅𝒊𝒋 [km] 

CN1 CN7 CN13 
22 59 

CN2 DEPOT CN5 CP2 
38 49 21 

CN3 DEPOT CP3 CP4 
72 63 48 

CN4 CN14 CP3 
29 31 

CN5 CN2 CN14 CP2 
49 27 53 

CN6 CN12 CP4 CP5 
51 19 63 

CN7 DEPOT CN1 CP2 
64 22 38 

CN8 DEPOT CN9 
59 53 

CN9 CN8 CN15 
53 32 

CN10 DEPOT CP4 CP5 
41 67 21 

CN11 DEPOT CN13 CP1 
61 97 51 

CN12 CN6 CP3 CP4 
51 38 59 

CN13 DEPOT CN1 CN11 CP1 
103 59 97 73 

CN14 CN4 CN5 
29 27 

CN15 CN9 CP1 CP5 
32 66 73 

CP1 CN11 CN13 CN15 
51 73 66 

CP2 CN2 CN5 CN7 
21 53 38 

CP3 CN3 CN4 CN12 CP4 
63 31 38 68 

CP4 DEPOT CN3 CN6 CN10 CN12 CP3 
73 48 19 67 59 68 

CP5 DEPOT CN6 CN10 CN15 
51 63 21 73 

The EVs begin their path from the Depot Node and 
travel through the nodes of N and S before arriving at 
the destination, which is included in the set N. The 
distance in km between the connected pairs of nodes is 
shown in Table 1. 

It should be noted that two districts, namely P={1,2}, 
are taken into consideration based on the configuration 
of the electric power grid. The charging station nodes 
CP1 and CP2 are located in district 1, whereas CP3, CP4, 
and CP5 are located in district 2. The problem involves 
satisfying the customers' requests using a set K= 
{EV1,…,EV7} of NK=7 EVs characterized by the 
parameters shown in Table 2. In addition, it is assumed 
that all the EVs in the fleet travel at an average speed of 
100 km/h. 

Table 2 Electric Vehicles Data 
Electric Vehicles 

EV1 EV2 EV3 EV4 EV5 EV6 EV7 

𝐵𝑘  3.8 5.5 4.4 2 3.4 3.3 8.3 

𝐶𝑘 300 350 400 250 450 600 300 

𝑄𝑘 58 100 80 52 52 60 100 

𝑔𝑘  43 22 22 22 43 22 43 

𝑒𝑛𝑑𝑘 CN1 CN15 CN6 CN12 CN4 CN14 CN7 

The network model is developed to consider a 12-hour 
time horizon divided into 20-minute time slots, 
resulting in 36 time slots (3 per hour). Within each time 
slot, both recharging and discharging battery prices are 
taken into account for the charging stations nodes. 
Additionally, there are specific time windows defined 
for both the customers and charging stations to start 
their services. The customers are also expected to 
provide information on their freight demand and the 
duration of the service required at their node. 
The first 4 columns of Table 3 report for each vehicle 
EViK the routes obtained by the ILP solution in (del 
Cacho et al., 2022), the travelled distances and the 
corresponding travel times, respectively. 

5.2. Test results 
Now, we perform the simulation test in SUMO 
environment by associating to the EVs the paths 
obtained by the ILP optimization results of (del Cacho 
et al.,2022).  
The simulations are performed by an Intel processor I9 
up to 5.20 GHz, a DDR4 64GB RAM and GPU RTX 3090 
24G and simulation goes to an end in about 2 hours in 
the worst case. 
To simulate the travel of EVs in the studied scenario, 
various parameters such as energy consumption, 
battery SoC, and delivery schedules are considered into 
the SUMO simulation model. The EVs follow the paths 
shown in Table 3 to reach the CNs and deliver their 
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cargo. At the same time, they have to consider their 
energy usage and charging needs at the CPs located 
along their routes. Furthermore, EVs can maintain 
energy usage within the district and CP limits, ensuring 
that energy demand does not exceed supply. 
Even if the traveled distances are the same in the two 
cases, i.e., ILP solution and SUMO simulation, there are 
some differences in the obtained travel times since the 
simulation considers the topology of the routes and the 
traffic conditions. Indeed, the results in the 5th and 6th 
columns of Table 3 compare the travel times in the 
optimization and in the simulation (named Scenario 
S0), when only the topology of the roads are considered 
without traffic. In such a case the travel time values are 
very similar. Moreover, three traffic scenarios are 
simulated considering different traffic conditions 
obtained by randomly assigning vehicles to the routes: 

light traffic (scenario S1 with 1000 vehicles), medium 
traffic (scenario S2 with 2000 vehicles), and intensive 
traffic (scenario S3 with 5000 vehicles). Then results 
show that scenario S1 leads to an increase of the 11% on 
average in travel time compared to scenario S0. As 
traffic volume increases, the travel time also increases: 
scenario S2 exhibits a higher travel time than S1 and 
scenario S3 the travel time increases up to 20% for EV7 
compared to S0.  
Summing up, the results show the basic importance of 
the simulation to test and evaluate the solutions 
obtained by optimization models. Indeed, the topology 
of the roads and the traffic conditions could modify the 
results and require more realistic route planning 
strategies.  

Table 3 Electric Vehicles Optimal Paths 

6. Conclusions

This paper presents optimization and simulation 
approaches to address the problem of optimizing the 
routing of the EVs fleets that have to perform delivery 
operations. The optimization problem was formulated 
and solved in a previous paper by an ILP problem (del 
Cacho et al., 2022) with the objective of minimizing the 
travel distance. Charging and discharging costs for the 
EV logistics fleet are considered also imposing power 
grid constraints. In particular, the EVs must deliver 
freights to customers and their energy demand must 
not exceed imposed bounds at district and charging 
point levels. 
In this paper, we model and simulate the EVRP by using 
SUMO software and we validate and compare the 
optimization solution with the results of the 
simulation. A real case study in the Apulia Italian region 
is considered and different traffic scenarios are 
performed in SUMO. The results shows that the traffic 

and the topology of the road can impact on the 
performance of the system in term of travel time. This 
enlightens how the results of the optimization 
approaches must be validated and, in some case, 
modified with the help of simulation tools. 
Future work will study the route planner of electric 
vehicles by simulating traffic conditions, accidents, 
and weather. To this aim SUMO will be used with Traffic 
Control Interface (TraCi) (Wegener et al., 2008). 
Additionally, the booking of the charging points will be 
considered in the EVRP problem. 
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