
35th European Modeling & Simulation Symposium20th International Multidisciplinary Modeling & Simulation Multiconference
2724-0029 © 2023 The Authors.doi: 10.46354/i3m.2023.emss.022

© 2023 The Authors. This article is an open access article distributed under the terms and conditions of the CreativeCommons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

BlockVerify: Privacy-Preserving Zero-Knowledge
Credentials Verification Framework on Ethereum
Theodoros Constantinides1,* and John Cartlidge1
1Department of Computer Science, University of Bristol, Bristol, BS8 1UB, UK
*Corresponding author. Email addresses: theodoros.constantinides@bristol.ac.uk; john.cartlidge@bristol.ac.uk

Abstract
We present a general purpose, privacy-preserving framework for verifying user attributes. The framework is designed for users (e.g., ajob candidate) to allow a challenger (e.g., a prospective employer) to verify whether the user meets a particular requirement (e.g., doesthe candidate hold a valid driving license?), without leaking any other information about the user. Importantly, the user is an active partof the challenge-verification process, which ensures that challenges cannot be made without the user’s full knowledge andparticipation. The framework is decentralized and requires a public blockchain. A smart contract is used to manage thechallenge-verification process, and zero-knowledge proofs are used to verify challenges in a privacy-preserving manner. Weimplement a simplified version of the framework using smart contracts deployed on the Ethereum blockchain, and we simulate somesimple use cases. All simulation code is available open-source (https://github.com/lifeisbeer/BlockVerify).
Keywords: Blockchain; smart contract; zero-knowledge proofs; privacy-preserving; verification

1. Introduction

People are regularly required to prove certain attributesabout themselves. For example, a candidate for a job mightneed to prove to the hiring company that they have the re-quired visa permissions to work, that they meet a certaineducational requirement such as a degree, etc. Tradition-ally, people use identity documents (such as passports,birth certificates, national identify cards, etc) and otherforms of certification (such as university degree, drivinglicense, pay slip, etc) to prove their attributes. More oftenthan not, these documents are in physical (paper) format,which makes it difficult for someone else to verify them.Even when the document information is available in digitalform (such as a biometric passport), the verifier will oftenneed specialized equipment (such as near field communi-cation (NFC) readers) to access the information, and it maybe necessary to navigate a number of different systemsand processes to verify each document. The verification of

such documents can therefore become a lengthy and error-prone process that requires manual labour and does notscale well. Indeed, the current processes are so complexthat it has led to the establishment of paid services (suchas notaries and screening companies) that carry out veri-fication on behalf of clients. However, this is not ideal, asit incurs unnecessary costs, allows for collusion, does notcompletely eliminate the possibility of fraud (for exampleif someone is able to forge a passport, they could also forgethe seal of a notary), and leads to repeated costly verifi-cation of the same individuals and documents (for exam-ple when a candidate applies for multiple jobs at differentcompanies and each company hires a screening agency toperform their own verification checks).
In this paper, we introduce a new general purpose andprivacy preserving system for verifying user identities andattributes. In our system, every document (e.g., passport,birth certificate, driving licence, university degree, etc) isrepresented by a smart contract running on the Ethereum

https://creativecommons.org/licenses/by-nc-nd/4.0/.
https://github.com/lifeisbeer/BlockVerify

| 35th European Modeling & Simulation Symposium, EMSS 2023
blockchain. In each smart contract, there are a number of
verifiers that are tasked with verifying the authenticity ofthe corresponding document. These verifiers are knownto all users of the smart contract and include issuing agen-cies (e.g., the government, or a public body such as theDriver and Vehicle Licensing Agency) and other indepen-dent trusted bodies (e.g., a Notary). A user who owns adocument can then visit one of the recognised verifiers toget their document verified. The verifier will assign theuser’s blockchain address with a privacy-preserving rep-resentation of the user’s document on the smart contract.This representation contains all the user’s attributes thatare present in the document (such as date of birth, address,etc) in a way that is only meaningful to the user and doesnot reveal any information to other observers. More im-portantly, from that point on, only the user can use thatrepresentation to verify their attributes; everyone else, in-cluding the public body or notary that verified the user’sattributes, cannot. Other users – the challengers (e.g., ahiring company) – can then post challenges to the smartcontract. These challenges could be of binary form (e.g.,does the user have a valid driving licence?) or of ordinalform (e.g., is the user’s age greater than 18?). Each chal-lenge could specify all the fields contained in a document,or any chosen subset. Finally, users see the challenges andare able to respond by providing a Zero-Knowledge Proof(ZKP) that their attributes meet the specified attributes inthe challenge. The smart contract automatically verifieseach submitted ZKP and informs the challenger. The ZKPdoes not reveal the user’s attributes; the only informationrevealed is that the user’s attributes meet the minimum re-quirements set in the challenge. Finally, the challenger cansee who verified each user that responded to the challenge,and decide if they are willing to accept their verificationor not (for example, some challengers might only acceptgovernment verification, while others might be willing tobe less restrictive).

Contribution: We introduce a general purpose privacy-preserving system for verifying user attributes usingsmart contracts deployed on the Ethereum blockchain.Our system, simplifies and combines many of the bestelements of previous systems, while introducing new de-sign choices that provide some clear benefits for the appli-cations we are interested. We implement a proof of con-cept system, and through simulation of some example usecases, demonstrate system use and performance. All sys-tem code is made available open source for research andeducation.
2. Structure of the paper

In the following sections, we first introduce the relevantliterature and the state of the art in section 3. We splitthis section into subsection 3.1 which contains literaturerelated to anonymous credential systems, subsection 3.2which is focused on blockchain based systems and sub-section 3.3 which specifies the aim of our paper. Then we

present our implementation in section 4. Our results arepresented in section 5. Finally, section 6 is a conclusionthat summarizes our finding and presents our plans forfuture work.
3. Literature review of state of the art

3.1. Anonymous credential systems

The problem of anonymous credentials that are owned byindividual users and are transferable between differentorganizations/applications was first proposed in the 1980sby Chaum (Chaum, 1985). Chaum’s anonymous credentialsystem consisted of organizations that know their usersby their pseudonyms only, and issue credentials to thosepseudonyms. Under a different pseudonym, the user canthen prove ownership of that credential to a different orga-nization, thus providing an anonymous credential system.Zero-Knowledge Proofs (ZKP) (Goldwasser et al., 1989)were invented to allow a party (the prover) to prove a state-ment to another party (the verifier) without revealing any-thing apart from the statement that is being proven. Oneof the first applications of ZKPs was to solve the identifi-cation problem. The first zero knowledge identificationscheme (Fiege et al., 1987), allowed a user to verify theiridentity to a challenger by replying to several challengesposted by the challenger. In this system, the verifier learnsnothing about the identity of the user, and crucially thechallenger is unable to impersonate the user even after theuser has verified themselves to the challenger. Thus, thissystem allows for the creation of unforgeable identities.Initially, ZKPs were interactive, meaning that theprover had to communicate with the verifier. This changedwith the introduction of non-interactive zero-knowledge(NIZK) proofs, and especially with zero-knowledge suc-cinct non-interactive argument of knowledge (zk-SNARK)(Bitansky et al., 2012). Variations of NIZK proofs are nowcommonly used, particularly in decentralized blockchain-based credential systems, where non-interactive argu-mentation is required. We consider these in Section 3.2.In recent years, there has been a big shift in creating cre-dential systems that are not only of academic interest, butalso of practical use. In the past, credentials were usuallyenvisioned as single access tokens along with methods toprove ownership of such tokens. In contrast, more modernsystems allow for credentials that contain multiple userattributes and allow for more complex processes. A mile-stone was IBM’s idemix system (Camenisch and Van Her-reweghen, 2002). In idemix, users obtain credentials fromorganizations under pseudonyms that contain arbitraryattributes. An idemix credential is defined as a certificateshowing that a pseudonym has certain attributes, alongwith a signature of that certificate from the issuing organi-zation. Users owning such credentials can then use ZKPsto prove to other organizations that they own a certificatewith certain attributes, and that the certificate was signedby the issuing organization, without revealing anythingelse (such as their pseudonyms with different organiza-

T. Constantinides and J. Cartlidge |

tions or other attribute details). The main innovation ofthis system is the signature scheme used (Camenisch andLysyanskaya, 2001), which is efficient for ZKPs.
3.2. Decentralised blockchain-based systems

Blockchain technology to achieve anonymous credentialswas first used in (Garman et al., 2013). This not only pro-vided anonymous, but also decentralized credentials. Inthis system, a user sends their identity attributes, a publicidentity assertion, a commitment of their attributes, anda proof that the commitment matches their attributes to anetwork of parties (i.e., blockchain nodes) who verify thecommitment proof, verify (using an external procedure)the user’s identity, and if correct add the user’s commit-ment to a set containing all other commitments. At a laterpoint, the user can produce a ZKP that they know how toopen one of these commitments and any other statementabout their attributes that are contained in the commit-ment. This system also demonstrated that it was possibleto switch from blind signature to ZKPs as the main com-ponent of an anonymous credential system.
The previous application required the participation ofblockchain nodes in the verification. With the introductionof general purpose blockchain systems that support smartcontracts (e.g., Ethereum), this participation of nodes is nolonger needed. This has allowed for more general applica-tions of anonymous credentials and self-sovereign identi-ties. Examples of these include Know Your Customer (KYC)checks (Biryukov et al., 2018; Pauwels, 2021), safe ride-sharing (Li et al., 2020), and car-sharing (Gudymenkoet al., 2020). More importantly, it has allowed for moregeneral and flexible credential and identity managementsystems (Sonnino et al., 2020; Mukta et al., 2022; Luongand Park, 2023; Namazi et al., 2022; Lee et al., 2021; Rosen-berg et al., 2022).
Coconut (Sonnino et al., 2020) is a selective disclosurecredential system that is based on a threshold issuancesignature scheme, i.e., in order for a user to obtain a cre-dential in coconut, a set number of different authoritiesfrom the set of all authorities must issue a partial creden-tial (signature) to the user. The user can then collect therequired number of shares and establish their credential,in the form of a valid signature that some attributes belongto them. The user can then disclose part of their attributesor some statement about them using a ZKP to a verifier. AnEthereum implementation of the Coconunt smart contactlibrary is available: coconut-ethereum. Another selectivedisclosure identity management system (Luong and Park,2023) allows for anonymous identities while allowing thesystem to trace users who violate the system’s policy.
CredTrust (Mukta et al., 2022) is a credentials platformbuilt on top of a blockchain. Unlike the other applica-tions we have described, CredTrust is not concerned withanonymity of users. Rather, it is concerned with building atrust propagation method where higher authorities, start-ing from an official issuer of credentials, endorse other

lower-level issuers of credentials. This builds a “chain oftrust” where users who interact with those lower-levelissuers can be sure that they are legitimate as they havebeen verified by a more trusted authority.zkFaith (Namazi et al., 2022) is a protocol where usershave their documents verified by an authority and createcommitments of their attributes, which are signed by anissuer. The issuer in this protocol also maintains a list of allrevoked credentials. Users can then prove they are eligiblefor a service by using a ZKP to prove that they hold the rightattributes, that they have a valid signature, and that theyare not part of the revoked credentials list. Additionally, theprotocol allows users to update their records by repeatingthe above procedure. Importantly, the zkFaith protocoluses a smart contract to verify ZKPs, which means thatthe verification process is automatic and does not requirea challenger to run specialized software.Another system (Lee et al., 2021) follows the same ap-proach as zkFaith. This system has a similar design butintroduces a verifiable data registry where all credentialsare stored. A user who holds credentials in this system,can then prove to a verifier some statement about their at-tributes using a zk-SNARK. The zk-SNARK takes as publicinput the credentials that are stored in the public registry,which can eliminate any signature checks. The authorsalso use a different version of zk-SNARKs, the Commit-and-Prove zk-SNARKs (CPSNARKs) which are more ef-ficient for this application as they remove the need forcommitment checks in the circuit.zk-creds (Rosenberg et al., 2022) is an anonymous cre-dential system that uses ZKPs instead of blind signaturesas its basis. Users of the system first convince a credentialissuer that they own certain attributes that form their cre-dential, which in this system is represented by a commit-ment to those attributes. The issuer then adds the user’scommitment to a Merkle tree (or Merkle forest) which ispublicly available. The user can then prove an arbitrarystatement about their attributes by providing a ZKP thattheir commitment is included in a Merkle tree and that itmeets the criteria set in the statement.
3.3. Research Aim

The aim of this paper is to introduce a new credential sys-tem, BlockVerify, which simplifies and combines many ofthe best elements of previous systems, while introducingsome new design choices that provide some clear benefits.Similar to the systems mentioned so far, BlockVerify usesZKPs as its main building block, a distributed ledger (ablockchain) as a public registry of issued credentials, anda smart contract to automatically verify ZKPs. As such,BlockVerify allows for multi-attribute credentials, multi-ple credential issuers, easy revocation of credentials, anddoes not require endorsement from official issuers.Additionally, BlockVerify provides users and chal-lengers the option to re-use previous proofs, for example auser who has proven that they are an adult in the past does

https://github.com/musalbas/coconut-ethereum

 | 35th European Modeling & Simulation Symposium, EMSS 2023

Smart Contract

Verify User

Create Challenge

Add Verifier

View Challange

Respond

Owner

4) Documents for verification [User Attributes (A)],
User ID (U), User Address (aU)

1) Verifier Address

7) C, aU

User
(Challenger)

Verifier

C
lie

nt
-s

id
e

Generate Certificate

5) U, A

6) Certificate (C)

Monitor
Challenges

User

2) Password (P), Salt (S)
C

lie
nt

-s
id

e

Generate User ID

Generate ZKP

3) User ID (U)

10) ZKP

9) P, S, A, C, mA

8) Minimum
Attributes (mA)

11) ZKP

Figure 1. System overview showing the smart contract, system actors and their client-side processes. Multiple actors of each kind and multiple smartcontracts can exist in real usage.

not have to prove that statement again in the future. Whilere-use of proofs might be possible in previous systems, itwould require additional work to store exchange of proofinformation outside the system, or work to search for thisinformation, and replay it. In contrast, proof re-use is builtinto the design of the BlockVerify framework.Finally, we release our implementation open source.
4. Materials and Methods

4.1. System design

Figure 1 presents an overview of the system. There is onlyone smart contract in the figure but, in real usage, everydocument (e.g. UK passport, Cypriot driving licence, etc)would have its own smart contract. The system has fouractors, described below:
Owner: Smart contract owner. Deploys the smart contractand adds the verifiers. We envision the contract owneras the entity who originally issued the document, e.g.,DVLA for UK driving licences; GRO for UK birth ormarriage certificates; DBS for UK criminal records,etc. This is however not a requirement, and in practiseanyone can be the contract owner.
Verifier: An entity that can provide verification of userattributes. The contract owner can also be a verifierif they wish to. Other verifiers could be typical doc-ument verifiers, such as screening companies andnotaries. As before, in practise anyone can be regis-tered as a verifier.
User: An individual with documents that require verifi-cation (e.g., a driving license, a birth certificate, acriminal record check).
Challenger: A user, such as an employer, that wants to

check whether another user, e.g., a potential em-ployee, meets some requirement (e.g., user can drive,is aged over 18, has no criminal record).
Obviously, the contract owner should be someone thatis generally trusted. That is why we have envisioned thecontract owner as the issuing authority of the document.However, even if the contract owner is not trusted, chal-lengers can still be sure about the validity of documentsas long as they trust the individual verifier that verifieda user’s document. The reverse is also true, challengersshould not trust the validity of user documents if they donot trust the verifier that verified them, even if they trustthe contract owner.This design choice makes the system more flexible andpractical for real-life use. First, it allows the implementa-tion of such a system without the involvement of the issu-ing authority of a document, as we assume that in manycases it would be difficult to get the issuing authority toparticipate. Second, it also allows individual challengersto decide if they trust a certain verifier and accept or rejectthe users they have verified. Challengers can also tailorthe level of trust they are willing to accept based on the usecase. For example, for a very important document or for ahigh-risk user, the challenger might only accept verifica-tion by a government authority; while for a less importantdocument or for a less risky user, the challenger might bemore relaxed and accept verification from a third party.Finally, it is more convenient for users, as they can getthe same document verified multiple times by differentverifiers. For example, a user can get a document verifiedsomewhere locally or somewhere that they do not haveto wait for a long time if they know that this verificationwill be acceptable for their use case. In this way, simplerand/or less important tasks can avoid more formal (and

https://www.gov.uk/government/organisations/driver-and-vehicle-licensing-agency
https://www.gov.uk/order-copy-birth-death-marriage-certificate
https://www.gov.uk/request-copy-criminal-record

T. Constantinides and J. Cartlidge |

more lengthy) processing.The contract owner first adjusts a constant that defineshow many user attributes are present in the system. Forexample, a birth certificate might only have one attribute,the date of birth, while a university degree might have four,the type (certificate, diploma, bachelors, etc), the grade,the issuing date, and the issuing body. Note that it is alsopossible to have a tailored instance that is a combination ofmany documents, but this is likely to be less reusable andwill make it more difficult for users to get verified. Thecontract owner then deploys the system’s smart contracts.The following steps (also annotated on figure 1) de-scribe how the system works:
1 The contract owner adds a verifier. This step can berepeated for as many verifiers as the contract ownerwants to allow.
2-3 Each user of the system creates a User ID (U). A userfirst selects a password and a random number (thepassword salt). The hash of the password and thesalt acts as U. A user can use the same ID betweendifferent instances of the system, or can choose touse different ones. Note that U is generated off-chainfor privacy.
4 The user gets their document verified by one of theapproved verifiers. The user provides the verifier with

U and a blockchain address (aU) they wish to use. Im-portantly, the user does not reveal their password andsalt, but just U.
5-7 The verifier verifies the authenticity of the provideddocument and constructs a certificate (C) that incor-porates U and all the attributes of the user’s document(A). In practise, C is the hash of U along with all ele-ments of A and is done off-chain. Then, the verifierassigns this certificate to the user’s address (aU) onthe smart contract. Note that any observer looking at

C is not able to extract any of the user’s attributes. Averifier, also has the ability to revoke any certificatesthey have issued.
8 The challenger creates a challenge on the smart con-tract by posting a list of minimum attributes. Thechallenge can then be answered by multiple usersthat fulfil these criteria. A challenger can monitor thesmart contract for replies. Note that multiple chal-lengers and multiple challenges from the same chal-lenger can exist simultaneously on the smart contract.
9-11 Users can monitor the smart contract for new chal-lenges. Any user can then reply to a challenge by firstcreating a zero-knowledge proof (ZKP) proving thata certificate (C) they hold, meets the minimum re-quirements set by the challenge. Note that if the userholds multiple certificates, they can select which oneis used. Then, the user provides the ZKP to the smartcontract, which verifies it. If the ZKP is valid, theuser’s address along with the address of the verifierwho verified them are added to a list of replies to thatparticular challenge.

Below, we present a concrete system use-case, where a

challenger (for example an employer) creates a challengeand a user (a prospective employee) responds, provingthat they have certain attributes (for example hold a validdriving licence of a certain vehicle category for more thanthree years), without revealing anything else:
1 DVLA adds verifiers.
2-3 User creates a user ID.
4 User sends their physical driving licence for verifica-tion (assuming by DVLA).
5-6 DVLA verifies the user’s driving licence and create acertificate (C).
7 DVLA assigns C to the user’s address on the smartcontract.
8 An employer creates a challenge, requesting someminimum requirements (e.g. user can drive a truck,has licence for more than 3 years etc). This can berepresented as vehicleCategory > 1, issuingDate <1589065200 (for date and time we use Unix times-tamps)
9-10 User creates a ZKP that minimum attributes are met.
11 User provides the ZKP to the smart contract. Theemployer will now be able to see the user’s response.
4.2. System Components

The system relies on multiple components includingarithmetic circuits, smart contracts, and some auxiliaryJavaScript code. All the code is open-source and availableon our code repository: BlockVerify.
4.2.1. Arithmetic CircuitsAll arithmetic circuits were built using Circom, a domain-specific language for writing arithmetic circuits.We are using three fairly simple circuits for this applica-tion: one to calculate user IDs, one to calculate documentcertificates, and the final one to calculate the constraintsthat a certificate meets some minimum requirements foruse by the ZKPs. All circuits rely on the Poseidon hash func-tion (Grassi et al., 2019). This hash function was chosenas it was designed to work efficiently with zk-SNARKs.The first arithmetic circuit is used to compute the userIDs. The input signals to the circuit are a user’s passwordand a password salt. The circuit hashes both and outputsthe result. A salt is used to prevent rainbow table attackson the user ID (i.e., protect against pre-computed hashes).The second arithmetic circuit similarly performs a hashto compute a certificate. Its inputs are a user ID and a listof attributes from a user’s document. The circuit hashesthese together and outputs the result, which acts as thecertificate.The third circuit is the most complex, as it is respon-sible for the constraints that are used in the ZKP. It takesas input the user’s data (password, salt, and a list of userattributes), the user’s certificate, and the minimum re-quirements (both a list of values and a same size list ofzeros or ones, which indicates if each comparison is a less
than or equal or greater than). The circuit then checks that

https://github.com/lifeisbeer/BlockVerify
https://github.com/iden3/circom

| 35th European Modeling & Simulation Symposium, EMSS 2023

Circom compilerArithmetic
Circuit

Trusted Setup
(Groth16)

Proving Key

Verifying Key Smart Contract
Verifier

Proving Key

Input (Private
& Public)

Proof Generator
(snarkjs) zkSNARK Smart Contract

Verifier

Public Input (stored
on-chain)

Decision
(True/False)

Witness
Generator

Witness
Generator

Figure 2. Simplified zk-SNARK generation and verification procedure. The top half is performed once and its outputs (Witness Generator, Proving Key,and Smart Contract Verifier) are used in the bottom half. The bottom half is performed every time a user wants to create and verify a ZKP.

all user attributes satisfy the minimum requirements, re-computes the certificate, and makes sure it matches theoriginal certificate provided. By requiring the passwordand salt instead of the user ID, we ensure that only the usercan run this operation, as they are the only ones that knowtheir password and salt. This means that even a verifierwho knows the user’s attributes is unable to imitate theuser.
4.2.2. Compiling the Circuits and Trusted SetupThe arithmetic circuits used by this system must be com-piled before a document smart contract is deployed onchain. Additionally, a process known as “trusted setup”must be performed. The whole process is illustrated infigure 2.Documents that contain the same number of attributesuse exactly the same arithmetic circuits. This implies thatcompiling the circuits and performing the trusted setuponce would cover all documents in a document family(i.e., for all documents with one/two/three/. . . attributes).Therefore, in an ideal usage of the system, circuits for anumber of document families would be compiled, a trustedsetup for each family would be performed, and the resultswould be stored somewhere they can be reused.
4.2.3. Smart ContractsAs described before (see Section 4.1), each document isassociated with a different smart contract. Additionally,each smart contract also uses a second smart contractthat verifies the validity of ZKPs. This verifier smart con-tract is produced automatically using the snarkjs libraryat the end of the trusted setup (see Figure 2). There aremany variants of zk-SNARK proving schemes and for ouruse case the choice of scheme is largely arbitrary. We use
Groth16 (Groth, 2016), one of the most popular zk-SNARK

schemes, but this choice can be easily changed in future.Indeed, snarkjs also supports PLONK (Gabizon et al., 2019)and fflonk (Gabizon and Williamson, 2021), so switchingto one of these alternative schemes is trivial.So, for each document, there exist two smart contracts.However, as with circuits, the verifier smart contract isuniversal between all documents that contain the samenumber of attributes. Therefore, this smart contract canbe deployed only once and then be shared by all similardocuments (with the same number of attributes). An in-stance of the verifier smart contract is available on thetestnet: Etherscan.The other smart contract uses the verifier smart con-tract for verification of zk-SNARKs. This smart contractcontains all public data and most of the functionality of thesystem, and thus must be unique for each document. Aninstance of this smart contract is available on the testnet:Etherscan.
4.2.4. Auxiliary FunctionsThe rest of the code is written in JavaScript and is essen-tially used for any user or verifier actions that take placeoff-chain. Specifically, these actions are the creation ofuser IDs, the creation of certificates, and the creation ofZKPs. This code, can be packaged into an application or afront-end in a production-ready application.This implies that ZKPs are produced on the client side,which can be a security risk. Without proper care, a ma-licious user could provide a false certificate or minimumrequirements that do not match the ones set by the chal-lenger on the smart contract. To avoid this, the certificateand the minimum requirements are all set to public inputs,which means that they are populated when a ZKP is veri-fied on the smart contract (as shown in the bottom half ofFigure 2). This ensures that the correct values were used in

https://github.com/iden3/snarkjs
https://sepolia.etherscan.io/address/0xe58bf653e1E37449399bD5f56697fCd8D81EE0fB
https://sepolia.etherscan.io/address/0xeE271636de0f2a7e05515e705285Eee7A53d1c2d

T. Constantinides and J. Cartlidge |
Table 1. Gas, ETH and Monetary Cost of Operations

Operation Gas Cost ETH Cost* USD Cost*
Deploy Verifier SC 1,651,322 0.03303 $59.45Deploy Document SC 2,388,458 0.04777 $85.98Add Verifier 72,629 0.00145 $2.61Verify User 47,141 0.00094 $1.70Create Challenge 153,981 0.00308 $5.54Respond 378,199 0.00756 $13.62

* If the system were to be used on the Ethereum mainnet, using a gas price of 20gwei
and ETH price of $1800.

the creation of the ZKP, as otherwise this mismatch wouldrender the proof invalid, resulting in the smart contractrejecting the transaction.
5. Results and Discussion

We have deployed and tested an instance of our system inthe Sepolia testnet. This particular instance, uses a docu-ment that contains three attributes. Table 1 summarizesthe gas cost associated with each operation in the protocol.The monetary cost of deploying and using this systemon the Ethereum mainnet might be okay for certain ap-plications where traditional verification processes cost alot of money anyway. But the cost associated with usingthe system can be prohibiting for lower value applications.A potential solution that would drastically reduce costswould be to deploy on a different blockchain, sidechain ora layer-2 solution (e.g. Polygon: respond would cost only$0.03).
5.1. Re-use of Proofs and Addresses

Apart from simplicity, assigning certificates to users’ ad-dresses provides one additional benefit. This design choice,allows for the re-use of proofs by users. For example, auser who has responded to a challenge in the past (e.g.,age>18) doesn’t have to prove this again, as a proof of thisstatement is now linked to their address. In the future, ifthey need to prove this statement to a different challenger,they can prove that they own an address (e.g., by signing amessage) which is associated with a reply to this challengeinstead of replying to a new challenge. This reduces thecost for commonly used proofs to a fixed initial cost ratherthan a cost per proof.However, this approach also introduces some potentialdrawbacks. As all proofs are visible and directly linkedto addresses, there is a risk that linking of proofs can beused to expose some attribute information. For example,if a user proves in one challenge that their age>18 and inanother that their age<30, then an observer would be ableto conclude that the user’s age is in the range (18,30). Webelieve that this is not a big issue for the applications weare considering as usually all checks will be in the samedirection (usually a user would only prove that age>12,age>18 etc). Additionally, users need to be careful whenhaving certificates of different documents. If a user uses

the same address across multiple certificates, an observerwould be able to link these certificates together to iden-tify a user. Moreover, even if the user is using differentaddresses between documents, users could be identifiedbetween different documents through network analysis oftheir transactions. However, we believe that enough pri-vacy tools (such as mixers and relayers) are available thatas long as users are careful this risk can be safely avoided.
5.2. Linking Document Issuance to Verification

An interesting use-case of our system is the linking of dif-ferent documents for verification and issuance. The issuerof a secondary document (e.g. car insurance certificate)could be a challenger in a different document (e.g. driv-ing licence). In this way, a user can verify that they holdsome attributes, a valid driving licence in this case, to geta different document, without having to show the actualdocument and reveal their identity completely.
5.3. Age verification for online services

Age verification for online services is a topic of interest forensuring child safety online. We can consider two formsof verification: the “simple” problem of age-checkingfor platform usage restrictions (e.g., verifying a Netflixaccount to be adult/minor); and the “hard” problem ofallowing a user to anonymously prove they are an adultwhile browsing online (e.g., to access age-restricted ser-vices without browsing being traced back to a single user).The current system can handle the simple problem asfollows:
1. The online service provider first issues a challenge in arelevant document (smart contratc) that the user holds.2. A user replies to the challenge once.3. Every time the user wants to access the service, theservice provider asks the user to sign a selected messageusing the address they used to respond to the challenge.Alternatively, the user could connect their wallet with theservice provider’s webpage, as it’s commonly used in manyapplications.4. The user signs the message.5. The service provider checks if the address signing themessage is in the list of replies, and if it is, allows the userto access the service.

The same solution can be used for the harder problemif the user is willing to reveal their address. However, inthis case, the address acts as a pseudonym for the userand can be tracked and profiled. A user could change ad-dresses regularly, but this would mean that they need togo through the verification process every time. To addressthe harder problem, the system would need adapting. Thesystem would need to allow users to prove ownership ofa certificate without revealing their address. This can beachieved by storing certificates in Merkle trees. The userin this case would need to respond to the service provider’s

 | 35th European Modeling & Simulation Symposium, EMSS 2023
challenge every time they want to access the service; i.e.,they would provide a ZKP that their certificate is in theMerkle tree and is suitable to access the online content.
6. Conclusions
We have introduced a blockchain-based framework forverifying user credentials in a privacy-preserving manner.Our framework, combines the best parts from previoussystems, and is simple and flexible. Our main contribu-tion, is that our system efficiently allows reuse of proofs.We open-source release a concrete implementation of theframework, and demonstrate how it can be used for taskssuch as checking that a user holds a valid driving licence,without revealing anything else.In future work, we plan to expand our system simula-tion to explore more realistic use cases and will attempt areal-world application for the sharing economy. While thesharing economy offers wider benefits to society (reducingwaste, lowering carbon footprint, etc.), it offers specificbenefits for deprived communities (e.g., areas with highunemployment) where people may have spare time but lit-tle spare money. Users are able to earn tokens in return forperforming simple jobs (e.g., babysitting; cleaning; cook-ing a meal; collecting and delivering groceries; etc.), andthese tokens can then be exchanged for needed goods andservices (e.g., a lift to a medical appointment; rental of apower tool; a loaf of bread at a local store; etc.). Clearly,to enable the sharing economy to work safely, privacy-preserving credential verification is necessary.
References
Biryukov, A., Khovratovich, D., and Tikhomirov, S. (2018).Privacy-preserving KYC on Ethereum. In Proceedings of

1st ERCIM Blockchain Workshop 2018. European Societyfor Socially Embedded Technologies (EUSSET). https:
//dl.eusset.eu/handle/20.500.12015/3165.Bitansky, N., Canetti, R., Chiesa, A., and Tromer, E. (2012).From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again. In
Proceedings of the 3rd Innovations in Theoretical Computer
Science Conference, ITCS ’12, page 326–349. https://
doi.org/10.1145/2090236.2090263.Camenisch, J. and Lysyanskaya, A. (2001). An efficientsystem for non-transferable anonymous credentialswith optional anonymity revocation. In Pfitzmann, B.,editor, Advances in Cryptology — EUROCRYPT 2001, pages93–118. https://doi.org/10.1007/3-540-44987-6_7.Camenisch, J. and Van Herreweghen, E. (2002). Designand implementation of the idemix anonymous creden-tial system. In Proceedings of the 9th ACM Conference on
Computer and Communications Security, CCS ’02, page21–30. https://doi.org/10.1145/586110.586114.Chaum, D. (1985). Security without identification: Trans-action systems to make big brother obsolete. Commun.
ACM, 28(10):1030–1044. https://doi.org/10.1145/

4372.4373.Fiege, U., Fiat, A., and Shamir, A. (1987). Zero knowledgeproofs of identity. In Proceedings of the Nineteenth Annual
ACM Symposium on Theory of Computing, STOC ’87, page210–217. https://doi.org/10.1145/28395.28419.Gabizon, A. and Williamson, Z. J. (2021). fflonk: a fast-fourier inspired verifier efficient version of plonk. Cryp-tology ePrint Archive, Paper 2021/1167. https://eprint.
iacr.org/2021/1167.Gabizon, A., Williamson, Z. J., and Ciobotaru, O. (2019).PLONK: Permutations over lagrange-bases for oecu-menical noninteractive arguments of knowledge. Cryp-tology ePrint Archive, Paper 2019/953. https://eprint.
iacr.org/2019/953.Garman, C., Green, M., and Miers, I. (2013). Decentral-ized anonymous credentials. Cryptology ePrint Archive,Paper 2013/622. https://eprint.iacr.org/2013/622.Goldwasser, S., Micali, S., and Rackoff, C. (1989). Theknowledge complexity of interactive proof systems.
SIAM Journal on Computing, 18(1):186–208. https://
doi.org/10.1137/0218012.Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., andSchofnegger, M. (2019). Poseidon: A new hash func-tion for zero-knowledge proof systems. CryptologyePrint Archive, Paper 2019/458. https://eprint.iacr.
org/2019/458.Groth, J. (2016). On the size of pairing-based non-interactive arguments. Cryptology ePrint Archive, Pa-per 2016/260. https://eprint.iacr.org/2016/260.Gudymenko, I., Khalid, A., Siddiqui, H., Idrees, M., Clauß,S., Luckow, A., Bolsinger, M., and Miehle, D. (2020).Privacy-preserving blockchain-based systems for carsharing leveraging zero-knowledge protocols. In 2020
IEEE International Conference on Decentralized Applica-
tions and Infrastructures (DAPPS), pages 114–119. https:
//doi.org/10.1109/DAPPS49028.2020.00014.Lee, J., Choi, J., Oh, H., and Kim, J. (2021). Privacy-preserving identity management system. CryptologyePrint Archive, Paper 2021/1459. https://eprint.iacr.
org/2021/1459.Li, W., Meese, C., Guo, H., and Nejad, M. (2020).Blockchain-enabled identity verification forsafe ridesharing leveraging zero-knowledgeproof. In 2020 3rd International Conference on Hot
Information-Centric Networking (HotICN), pages 18–24.
https://doi.org/10.1109/HotICN50779.2020.9350858.Luong, D. A. and Park, J. H. (2023). Privacy-preservingidentity management system on blockchain using zk-snark. IEEE Access, 11:1840–1853. https://doi.org/10.
1109/ACCESS.2022.3233828.Mukta, R., Paik, H.-Y., Lu, Q., and Kanhere, S. S. (2022).CredTrust: Credential based issuer management fortrust in self-sovereign identity. In 2022 IEEE Interna-
tional Conference on Blockchain (Blockchain), pages 334–339. https://doi.org/10.1109/Blockchain55522.2022.
00053.Namazi, M., Ross, D., Zhu, X., and Ayday, E. (2022).zkFaith: Soonami’s zero-knowledge identity proto-

https://dl.eusset.eu/handle/20.500.12015/3165
https://dl.eusset.eu/handle/20.500.12015/3165
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1145/586110.586114
https://doi.org/10.1145/4372.4373
https://doi.org/10.1145/4372.4373
https://doi.org/10.1145/28395.28419
https://eprint.iacr.org/2021/1167
https://eprint.iacr.org/2021/1167
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2013/622
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://eprint.iacr.org/2019/458
https://eprint.iacr.org/2019/458
https://eprint.iacr.org/2016/260
https://doi.org/10.1109/DAPPS49028.2020.00014
https://doi.org/10.1109/DAPPS49028.2020.00014
https://eprint.iacr.org/2021/1459
https://eprint.iacr.org/2021/1459
https://doi.org/10.1109/HotICN50779.2020.9350858
https://doi.org/10.1109/ACCESS.2022.3233828
https://doi.org/10.1109/ACCESS.2022.3233828
https://doi.org/10.1109/Blockchain55522.2022.00053
https://doi.org/10.1109/Blockchain55522.2022.00053

T. Constantinides and J. Cartlidge |

col. arXiv:2212.12785. https://doi.org/10.48550/
arXiv.2212.12785.Pauwels, P. (2021). zkKYC: A solution concept for KYC with-out knowing your customer, leveraging self-sovereignidentity and zero-knowledge proofs. Cryptology ePrintArchive, Paper 2021/907. https://eprint.iacr.org/
2021/907.Rosenberg, M., White, J., Garman, C., and Miers, I. (2022).
zk-creds: Flexible anonymous credentials from zk-

SNARKs and existing identity infrastructure. Cryptol-ogy ePrint Archive, Paper 2022/878. https://eprint.
iacr.org/2022/878.Sonnino, A., Al-Bassam, M., Bano, S., Meiklejohn, S.,and Danezis, G. (2020). Coconut: Threshold issuanceselective disclosure credentials with applications todistributed ledgers. https://doi.org/10.48550/arXiv.
1802.07344.

https://doi.org/10.48550/arXiv.2212.12785
https://doi.org/10.48550/arXiv.2212.12785
https://eprint.iacr.org/2021/907
https://eprint.iacr.org/2021/907
https://eprint.iacr.org/2022/878
https://eprint.iacr.org/2022/878
https://doi.org/10.48550/arXiv.1802.07344
https://doi.org/10.48550/arXiv.1802.07344

	Introduction
	Structure of the paper
	Literature review of state of the art
	Anonymous credential systems
	Decentralised blockchain-based systems
	Research Aim

	Materials and Methods
	System design
	System Components
	Arithmetic Circuits
	Compiling the Circuits and Trusted Setup
	Smart Contracts
	Auxiliary Functions

	Results and Discussion
	Re-use of Proofs and Addresses
	Linking Document Issuance to Verification
	Age verification for online services

	Conclusions

