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Abstract 

Modeling and analysis of complex flow behavior of impingement jets is a problem of significant importance in many engineering 
applications. Due to the nonlinear nature of these flows, traditional modeling methods often struggle to provide accurate 
representation of the flow features. Therefore, the goal of this work is to build a data-driven model for the available data to 
uncover the hidden features of the underlying dynamics, and to improve analysis and modeling of impinging jets. The available 
data consist of experimental velocimetry results of a circular impinging jet at a Reynolds number of 1260. The time-resolved 
particle image velocimetry (TR-PIV) technique was used to obtain velocity field data. An Autoencoder (AE) which is a special type 
of convolutional neural network is used for data compression and thus to learn the hidden features of the jet. The accuracy for 
reconstruction purposes was evaluated for various dimensions of the AE latent vector. According to the findings, the flow field 
image can be reconstructed using only one variable in the latent vector, which corresponds a reduction to 0.0015% in the size of 
the original flow image. The analysis of the spectral content of the AE variables revealed two primary frequency peaks, which 
coincided with those identified in the transverse velocity spectrum extracted from the main vortices' path. This suggests a 
connection between the AE variables and the vortical structures. 
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1. Introduction

Impinging jets have been extensively researched in the 
past 50 years due to their various industrial 
applications such as cooling of turbine blades, paper 
drying, annealing of glass, and more. Understanding 
vortex dynamics in different regions of the impinging 
jet is crucial both fundamentally and practically to 
study the heat transfer performance in such 
configurations. Many studies have been conducted to 

explore the physics of impinging jet flow (El Hassan et 
al., 2012, 2013) and analyze the importance of different 
flow parameters. Some studies have analyzed the flow 
field associated with jet impingement on a flat surface, 
including those conducted by  (Fabris et al., 1996; 
Orlandi & Verzicco, 1993). A feedback phenomenon that 
controls high-speed subsonic impinging jets at the 
nozzle exit was found and studied by (Assoum et al., 
2014; Assoum, Hamdi, Abed-Meraïm, El Hassan, 
Hammoud, et al., 2017; Assoum, Hamdi, Hassan, et al., 
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2020).  In solar energy technologies, solar collectors 
often face challenges such as overheating and 
inadequate heat transfer, which can limit their 
performance. To tackle this issue, cooling techniques, 
such as jet impingement cooling, have been proposed 
to enhance heat transfer rates and boost performance 
(Eng Ewe et al., 2022). Additionally, impinging jets 
have found applications in cooling electronic devices, 
including computer chips and power electronics. 
During operation, electronic devices generate heat, 
which can impair their performance and even cause 
damage if not dissipated effectively.  

Describing and analyzing the fluid dynamics of flows 
such as those of impinging jets can be achieved using 
computational fluid dynamics (CFD) simulations or 
through experimental measurements. Due to the high 
cost associated with memory and CPU time, efficient 
reduced order models (ROMs) were developed for 
complex systems. ROM involves finding a low-
dimensional approximation of high fidelity, where the 
high-fidelity data may be obtained either 
experimentally or numerically. The reduction is 
achieved by identifying a subspace that is defined by a 
small number of basic functions (typically around ten) 
on which the ROM is constructed. One common 
approach to finding the reduced space is proper 
orthogonal decomposition (POD) (Lumley, 1967) 
through singular value decomposition (SVD) of the 
high-fidelity data. The ROM is then defined by a linear 
combination of the most essential basis functions, with 
the associated coefficients referred to as reduced 
coefficients. 

There are two main types of ROM techniques: 
intrusive and non-intrusive methods. In intrusive 
methods, the reduced coefficients are determined by 
solving ordinary differential equations after projecting 
the full order model (FOM) (Benner et al., 2015; Berner 
et al., 2020) onto the reduced space. On the other hand, 
non-intrusive methods approximate the reduced 
coefficients using a regression model without needing 
access to the governing equations of the FOM. Artificial 
neural networks have been shown to be effective 
regression models for non-intrusive methods. 

For unsteady flows, Galerkin-projection ROMs have 
been developed in the intrusive context (Deane et al., 
1991; John et al., 2010). Some of these studies have also 
developed parameter-dependent ROMs (Amsallem & 
Farhat, 2008), although these ROMs can sometimes be 
unstable and require post-processing fitting to the 
original data. Petrov-Galerkin is an alternative 
projection-based technique that can be used to develop 
more accurate and long-term stable ROMs (Reineking 
et al., 2022). Meanwhile, in non-intrusive methods, 
neural networks have emerged as a useful tool for 
predicting the temporal evolution of reduced 
coefficients (Pawar et al., 2019). Some authors have 
utilized long short-term memory (LSTM) neural 
networks in the non-intrusive framework (Maulik et 
al., 2021).  

While experimental methods, such as particle image 
velocimetry (PIV), have improved our understanding 
about impinging jets, the underlying hidden feature 
dynamics is still not fully explored. This problem has 
been addressed using data-driven techniques, such as 
POD. However, POD is restricted to linear space 
approximation, which may not capture the nonlinear 
properties in these flows. Therefore, the aim of this 
study is to employ a non-intrusive neural network 
technique for nonlinear dimensionality reduction to 
further apprehend the flow dynamics of impinging jets. 
The autoencoder (AE) neural network technique was 
employed to learn the underlying characteristics of the 
jet and to reconstruct the flow. The accuracy of the 
reconstruction was evaluated for different dimensions 
of the AE latent vector, and its spectral content was 
displayed with transverse velocity at a location where 
the primary vortices of the flow pass. 

The remainder of this paper is organized as follows. 
Section 2 introduces the experimental setup. In section 
3, the data-driven model is presented. Section 4 
presents the results obtained. Finally, conclusions are 
provided in section 5. 

Figure 1. The experimental setup, which consists of several 
components. circular disk (1), cylindrical tube (2), pump (3), 
reservoir (4), laser head (5), camera (6), support (7), and cooling 
coil (8).  

Figure 2. Snapshot of the derived vorticity.  
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2. Experimental data

In Fig. 1 the experimental setup that was designed for 
obtaining the two velocity components of an impinging 
jet using PIV is presented. The circular jet is generated 
by a nozzle fed with water from a reservoir using a gear 
pump. The water jet impinges on a circular disc with a 
fixed ratio of L/D = 2.08, where L is the nozzle to plate 
distance and D represents the jet exit diameter (D = 7.8 
mm). The Reynolds number, based on D and the exit 
velocity, is Re = 1260. The PIV system consisted of a 
Nd:YLF NewWave Pegasus laser with a wavelength of 
527 nm and 10 mJ energy, and a Phantom V9 camera 
with a resolution of 1200×1632 pixels². Small glass 
spheres measuring 9-13 μm in diameter were used as 
tracers for the PIV measurements. 500 pairs of images 
were acquired during 1 second. The camera and laser 
synchronization was established by a LaVision High-
Speed Controller, and the acquired data was processed 
using DaVis 8.0 software. The final grid size used for 
processing the images comprised of 32×32-pixel size 
interrogation windows with 50% overlap, resulting in a 
spatial resolution of 0.65 mm. The longitudinal and 
transverse velocity components are referred to as Vy 
and Vx, respectively. The total error, which was 
obtained by accumulating the root mean square and 
bias errors, was found to be 3.7% of the mean axial 
velocity. Fig.2 shows a snapshot of the obtained 
measured velocity field and the derived vorticity. 

3. Autoencoders for data-driven modeling

Fig. 3 shows the data driven model that is based on the 
convolutional AE. AEs are special type of neural 
networks used for data compression and thus they are 
suited well for learning hidden features in images. 
Essentially, they allow to find a compressed version of 
the image in an intermediate layer. This compressed 
representation is in general known as latent vector. 
Once the AE has been determined, it accepts as its input 
a flow field image and returns the reconstructed image 
as its output. More specifically, an AE consists of an 
encoder and decoder function. The encoder function 𝑓 
maps the input image 𝑋 to the latent vector 𝑧, i.e., 

𝑧 = 𝑓(𝑋), (1) 

while the decoder function reconstructs the original 
image given the latent vector 𝑧, i.e., 

𝑋′ = 𝑔(𝑧) = 𝑔(𝑓(𝑋)). (2) 

The functions 𝑓 and 𝑔 are typically learned during the 
training phase of the AE by minimizing the loss function 
between the original image 𝑋 and its reconstructed 
output 𝑋′. This process involves optimizing the 
network’s parameters, i.e., weights and biases, in order 
to obtain the most accurate reconstruction of the input 
image. The AE utilized in this study is based on the U-
Net architecture, which is designed with skip 
connections (see Fig. 3) to preserve important 
information between the encoder and decoder. This 
allows for more effective feature extraction and 
reconstruction of the input data. 

The architecture of the encoder consists of six 
convolution layers parametrized with 64 filters each, 
except for the first and last convolutional layers, which 
are equipped with 32 and 16 filters, respectively. The 
size of the kernel used in all the convolutional layers is 
4 × 4, and a stride of 2 is used in both spatial directions 
to reduce the dimensionality. Following every 
convolutional layer, a batch normalization layer is 
applied, accompanied with a leaky rectified linear unit 
(LeakyReLu) as activation function. The encoder path is 
terminated with a flattening layer to obtain the desired 
latent vector. The decoder path starts with a reshape 
layer to obtain the 3D tensorial format of the latent 
vector. It has the same symmetrical structure of the 
encoder, but with using the inverse counterpart 
mathematical operations, i.e., the convolution layer is 
replaces by convolutional transpose layer. The U-net 
structure is obtained by merging the intermediate 
outputs of the encoder with their corresponding 
counterparts in the decoder path. This merging process 
is accomplished using a concatenate layer, which is 
followed by a convolutional layer to adjust the 
dimensionality for further merging connections. The 
output layer of the decoder uses a sigmoid activation 
function to bound the predictions. 

Figure 3. Autoencoder with U-net architecture.  
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4. Results

The U-net AE presented in section 3 is trained using a 
dataset of 500 PIV snapshots. 20% of the frames are 
used to validate the model and prevent overfitting. The 
learning parameters of the AE are optimized by 
minimizing a mean squared error (MSE) loss function 
between the original and reconstructed images. For this 
purpose, we use Adam optimizer with learning rate 
0.002 and batch size 32. The AE is trained for 210 epochs 
using an early stopping criterion. The accuracy of the 
AE is measured in terms of the similarity between 𝑋 and 
𝑋′. An ideal AE would obviously result in 𝑋′ = 𝑋. In this 
case 𝑧 is a perfect, lossless representation of 𝑋 in the 
reduced space. For the evaluation of the AE, we 
compare the PIV images with the reconstructed output 
images produced by the AE.  

The evaluation is in terms of the accuracy with respect 
to the number of matched pixels, i.e., 

Accuracy =
Number of matched pixels

Number of all pixels
× 100.

Figure 7. Dynamics of the latent vector for all time steps (AE10). The 
different lines plotted correspond to the temporal evolution of every 
variable in the latent vector.  

Every image has dimension (256 × 128 × 2), where 2 
represents the number of channels (1 channel for every 
velocity component).  

A predicted pixel matches with the original pixel if 
the relative error between 𝑋 and 𝑋′ is smaller than a 
defined tolerance value 𝜖, i.e., 

|
X′(i, j, k) − X(i, j, k)

X(i, j, k)
| × 100 < 𝜖, (3) 

where i, j, and k represent the indices of the 
corresponding pixel. 

In Tab. 1, the average accuracy is measured for 
different tolerance values and its sensitivity to the 
dimension of the latent vector is performed.  AE10 
means that the corresponding latent vector is assigned 
to have 10 variables.  

Figure 5. Matched pixels with 2% tolerance for AE1 (upper) and AE10 
(lower) for Vy (left) and Vx (left). The results shown correspond to the 
image at time step 50. The pixels in red indicate that the relative 
prediction error in these locations is less than 2%.

Figure 4. Comparison between the original flow image and the 
reconstructed image obtained using AE1 for the normalized Vy (left) 
and Vx (right). The results shown correspond to the image at time step 
50.

Figure 6. Dynamics of the latent vector for all time steps (AE1). 
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Table 1. Average accuracy achieved for all frames using different 
dimensions of the latent vector. The accuracy is measured using (3) 
for different tolerance value 𝜖. 

Accuracy (%) AE10 AE5 AE1 

Tolerance 1% 95.617 95.613 78.970 
Tolerance 2% 99.394 99.330 99.053 
Tolerance 5% 99.824 99.824 99.846 

       Results show that, if tolerance is fixed to be 2%, 
with only 1 variable in the latent vector we can 
effectively reproduce the flow field image using the AE1 
with a reduction to 0.0015% in size. Fig. 4 shows a 
comparison between the original image and the model 
at a given time step using AE1. 

Fig. 5 presents the matched pixels (shown in red) 
between the original images and the models with a 2% 
tolerance level. The results for AE1 (latent vector 
comprising one variable) and AE10 (latent vector 
comprising ten variables) are presented in this figure. 
It can be observed that in both AE1 and AE10, whether 
for Vx or Vy, the mismatched pixels identified in blue 
color are mainly obtained in the region of radial flow 
after the jet impinges on the wall. It can be also noted 
that the mismatch is more significant for Vy. This zone 
corresponds to the flow separation region, as discussed 
by El Hassan et al., 2013. 

Figs. 6 and 7 show the latent vector dynamics for 
both AE1 and AE10 cases throughout all time steps. A 
sinusoidal pattern is shown in all variables; we 
conjecture these variations are related to the passages 
of vortices. Fig. 8(a) shows the transverse velocity (Vx) 
obtained from a specific point (marked at the top of the 
arrow in Fig. 8(b)) where the vortices pass. The 
transverse velocity evolution, which directly correlates 

with vortex passages, exhibits a sinusoidal pattern. 

In order to examine the correlation between the 
sinusoidal variation of the latent vector in both cases 
AE1 and AE10, the spectral content of the AEs variables 
and the transverse velocity are plotted in Fig. 9(a). It 
can be seen that AE1 and Vx exhibit two dominant 
frequency peaks at 𝐹 = 14 Hz and its harmonic at 2 × 𝐹. 
Fig. 9(b) illustrates the spectra of the 10 variables of the 
latent vector of AE10, showing a similar observation of 
the two frequency peaks at 14 and 28 Hz. These findings 
reveal the association between the AE variables and the 
vortical structures.  

5. Conclusion

In this study, the vortex dynamics of an impinging jet 
were investigated using AEs, which are a type of 
convolutional neural networks that are here used to 
learn about the principal features of the flow. Velocity 
fields were acquired using a Particle Image Velocimetry 
(PIV) system at a Reynolds number of Re = 1260. 

    The results showed that the flow field image can be 
effectively reproduced using the AE with small number 
of variables in the latent vector. Additionally, the 
spectral content of the AE variables presented two main 
peaks of frequency that were the same as those found 
in the spectrum of the transverse velocity extracted 

Figure 8. a) Temporal evolution of the transverse velocity at a 
specific location corresponding to the passage of vortices.  b) 
Snapshot of the flow field showing the location of the tracked point. 

Figure 9. Spectra of: (a) Variable of the latent vector of AE1 and 
transverse velocity Vx, (b) Variables of the latent vector of AE10. 
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where the main vortices pass. This indicates a 
correlation between the AE variables and the vortical 
structures. 

While the developed model shows accurate results, it 
is important to consider the presenting limitations. 
Despite that the identified correlation between the 
hidden features learned and the transverse velocity is 
promising; further analysis is needed to understand the 
physical meaning of these variables. In addition, the 
analysis relies on the availability and 
representativeness of experimental or simulation data 
for representing the flow behavior.     

Based on these findings, it is obvious that the 
prediction is working better in the regions where the 
flow is periodic. The prediction errors are mainly 
located in the flow separation regions for Vy. This 
opens the door to further analysis and improvement to 
the model used. Efforts should be focused on improving 
the model for more accurate prediction in the flow 
separation regions. Furthermore, we aim to extend the 
presented framework to include additional input  
parameters, such as the Reynolds number, to predict 
the corresponding flow field. Additionally, a model 
could be developed to predict the flow dynamics based 
on one sensor input, such as wall shear stress variation. 
Such a model could allow us, based on the flow 
dynamics, to predict heat transfer and energy savings 
in many applications. 
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