
35th European Modeling & Simulation Symposium20th International Multidisciplinary Modeling & Simulation Multiconference
2724-0029 © 2023 The Authors.doi: 10.46354/i3m.2023.emss.028

© 2023 The Authors. This article is an open access article distributed under the terms and conditions of the CreativeCommons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Performance Comparison of Microsoft’s AutoML API
Philipp Neuhauser1,* and Stefan Wagner1
1Josef Ressel Center for Adaptive Optimization in Dynamic Environments, University of Applied Sciences Upper Austria,Softwarepark 11, Hagenberg, 4323, Austria
*Corresponding author. Email address: philipp.neuhauser@fh-hagenberg.at

Abstract
In recent years, many software libraries for automated machine learning (AutoML), such as H2O AutoML or Auto-Sklearn, havebecome increasingly popular as they propose to significantly simplify the ML workflow and to sustainably reduce the time required formanual feature engineering, hyperparameter tuning as well as model selection and evaluation. Among the younger and therefore lesswell-known representatives is Microsoft’s ML.NET, about whose model builder API only little literature and performance comparisonsexists. This paper summarizes the functionality of such frameworks and discusses general requirements for automated machinelearning in more detail. Finally, several experiments compare ML.NET with already established AutoML libraries based on some datasetsfrom the field of supervised learning with respect to model quality, the API’s scope of functions and required computational resources.
Keywords: Automated Machine Learning; Microsoft AutoML; Performance Comparison; Hyperparameter Tuning

1. Introduction

Machine learning has become an integral part of manyareas of daily life as it enables us to predict future eventsas well as to discover and extract hidden knowledge in avast amount of data. However, changes in the underlyingdata often require the training of a new or updatedmodel. Take for example the dynamic environment ofIndustrial Internet of Things (IIoT), where data sources(e.g., sensors, databases, real-time message brokers,etc.) are added or modified almost on a daily basis, it isof enormous importance that models are relearned asquickly as possible in order to continue delivering reliableresults and predictions. There is often not much time for alaborious and manual training and hyperparameter opti-mization of precise models. AutoML provides a remedy forthis problem and attempts to train models independentlyout of a set of available algorithms (also called trainers)and corresponding parameters within a given period. Itthen automatically selects that model, which achieves thebest results on some provided validation data. Besideswell-known AutoML frameworks such as H2O AutoML

(LeDell and Poirier, 2020) and Auto-Sklearn (Feureret al., 2020), ML.NET (Ahmed et al., 2019) is the way togo for .NET developers. Unfortunately, there is hardlyany literature or benchmark comparisons available forthe software library mentioned last. This paper aims toaddress this issue by evaluating the performance, featuresand functionality of Microsoft’s AutoML API based onvarious datasets in order to assess its practical applicability.
In Section 2 the fundamentals and current state-of-the-art regarding automated machine learning are summa-rized and the model builder API of ML.NET (Microsoft Au-toML) is introduced in more details. Section 3 focuses on abasic function comparison of the three selected softwareframeworks mentioned above. Some benchmark testsbased on several datasets, representing traditional super-vised machine learning tasks, as well as the further eval-uation of the performance results are then gathered anddiscussed in Section 4. All key findings and a brief outlookfor using Microsoft AutoML in a battle tested, real-worldenvironment are finally outlined in Section 5.

https://creativecommons.org/licenses/by-nc-nd/4.0/.


 | 35th European Modeling & Simulation Symposium, EMSS 2023
2. AutoML: State of the Art

Data mining, speech processing, deep learning methods,information discovery and the creation of prediction andforecasting engines as well as recommendation systemsare very time-consuming, cumbersome and costly chal-lenges that often require experienced data scientists withfundamental background knowledge about the respectiveapplication domain (Hutter et al., 2019). This manual ap-proach is like trying to find a needle in a haystack andmostly results in an highly iterative trial and error pro-cess until a satisfying model is found as different algo-rithms have to be tested and hyperparameters to be tuned.In order to speed up this process and to overcome expertknowledge, the field of automated machine learning triesto create suitable models with a minimum of human in-tervention (Tuggener et al., 2019).
2.1. Basic Workflow of AutoML Tools

Under the hood, AutoML libraries always follow a simple,iterative mental model that is presented in Figure 1. De-pending on the quality and structure of the provided inputdataset it must be decided if any preprocessing steps (e.g.,data cleaning and transformation tasks or feature extrac-tion and selection aspects) have to be applied and to whatextent. Next, an appropriate machine learning algorithmmust be chosen in order to solve the particular ML task.After that, a combination of hyperparameters must be ex-plored and evaluated for the selected algorithm in orderto receive an optimized, well-performing model withina fixed timespan and computational budget, such as CPUand memory usage (Feurer et al., 2015). Finally, the datascientist is responsible for selecting and deploying the bestgenerated model to production or creating an ensembleout of a subset of best performing models. By creatingmultiple models out of a variety of different algorithms,AutoML can also be used at an early stage to determine ifthe provided dataset is suitable for solving a certain ma-chine learning task at all or if none of the generated modelsperforms better than the baseline (Tuggener et al., 2019).
2.2. Common AutoML Optimization Techniques

Looking at the machine learning workflow in Figure 1,one can add automation for any pipeline step. Waringet al. (2020) provided an excellent overview over thepossible AutoML disciplines in their article which arebriefly summarized for the sake of completeness.
Automated feature engineering is the process of au-tomatically identifying the most relevant variables orgenerating entirely new variables by combining existingones, that are predictive of the outcome of interest withthe overall goal to improve the model quality. As this istypically a very time-consuming task for a data scientist,many different approaches have emerged. Kanter andVeeramachaneni (2015) introduced the "expand-reduce"

Figure 1. The basic iterative AutoML workflow for automatically creatingmodels with a minimum of human intervention, given a fixed timespanand computational budget (CPU and memory usage).

method, where a set of transformations is applied at onceto a feature vector, followed by a feature selection andhyperparameter tuning step. Other approaches makeuse of genetic programming, reinforcement learning,hierarchical greedy search or meta learning.
Automated hyperparameter optimization is a highlycomplex discipline where different selection mechanismstry to find an optimal combination for a training algo-rithm’s "steering parameter" values that optimize (i.e.,maximize/minimize) a certain performance metric forthe machine learning task at hand. One possible approachis using unguided strategies that make no assumptionsabout the search space, e.g., Grid Search (brute-force) orRandom Search (given a user-defined search space forhyperparameters). As these previous kinds of methodsdo not make use of past performance evaluations, betterstrategies can be found by using so-called "optimizationfrom samples" methods. Evolutionary algorithms (Bäck,1996) or the particle swarm optimization (Kennedyand Eberhart, 1995; Escalante et al., 2009) exchangeinformation of good hyperparameter combinationswithout losing diversity. Nevertheless, Bayesian opti-mization has emerged as the state-of-the-art in thisAutoML discipline by using a surrogate model and anacquisition function that try to optimize a mapping ofvarious hyperparameter configurations to their achieved



Neuhauser et al. | 

performance. The surrogate model is used to approximatethe objective function, while the acquisition function isused to determine which hyperparameters to evaluatenext.
Pipeline optimization techniques go one step further asthey try to improve the entire AutoML process and not onlyspecific aspects. One common approach is to tackle theso called "Combined Algorithm Selection and Hyperpa-rameter optimization" (CASH) problem (Thornton et al.,2013). AutoML algorithms try to select an appropriatealgorithm out of a list of available solvers that is thensteadily optimized to score the highest validation perfor-mance amongst all algorithm-hyperparameter combina-tions (Tuggener et al., 2019). Again, this can be done byexploiting Baysian optimization methods, like in the Auto-WEKA platform that utilizes the SMAC (Sequential Model-based optimization for general Algorithm Configuration)tuner (Hutter et al., 2010). Auto-sklearn introduced twoessential improvements to solve the CASH problem evenmore efficiently by using a meta-learning mechanism to"warmstart" the optimization with AutoML pipeline con-figurations that worked well for similar datasets. Anothertechnical refinement is the automated ensemble construc-tion of models evaluated during the tuning process thatmakes a pipeline configuration generally more robust andless prone to overfitting. Other optimization techniquesmake use of reinforcement learning or genetic program-ming (TPOT - Tree-based Pipeline Optimization Tool, Ol-son and Moore (2016)) for constructing sophisticated Au-toML pipelines.

2.3. Introduction of the ML.NET AutoML API

As an integral part of the constantly evolving ML.NET(Microsoft.ML) library (Ahmed et al., 2019), the AutoMLextension is relatively new and therefore less known inthe automated machine learning community. Althoughthere is an official CLI tool as well as an intuitive graphicaluser interface in Visual Studio for generating strongmodels without the need of writing any code, we focussolely on the AutoML model builder API which consists ofsome essential aspects. The following is a brief summaryof the well prepared and detailed step-by-step tutorial,found on the official Microsoft website (Microsoft, 2023).The interplay of all required API classes is illustrated as acode snippet in Figure 2.
The first step for using ML.NET is initializing the

MLContext which creates a new machine learning en-vironment. Several operations and actions within themachine learning workflow can be generated withthis instance in a catalog-based manner. In order toaccess the AutoML functionalities, one has to install anadditional NuGet package. Next, the input data mustbe loaded from either a text file, a database, or evenin-memory-collections. Microsoft AutoML is also capable

Figure 2. Basic usage of Microsoft AutoML for solving a regression machinelearning task.

of inferring the corresponding data types and columns byusing the InferColumns method. The class TrainTestSplitcan then be used to separate the integrated data into atraining and test (validation) set.
The next step is the definition of the machine learn-ing pipeline which is represented as an instance of

SweepablePipeline. That is basically a collection of
SweepableEstimator that is a combination of an Estimator(untrained transformer) instance with a corresponding
SearchSpace (range of available hyperparameters). Withthe Featurizer API one can automatically define basicdata preprocessing steps by using the inferred columninformation. The resulting numeric feature vector isthen used for model training by appending a trainer(algorithm) to the SweepablePipeline. Currently AutoMLsupports default trainers and search space configurationsfor binary classification, multi-class classification andregression machine learning tasks.

One last task to do is to define an AutoMLExperiment



| 35th European Modeling & Simulation Symposium, EMSS 2023
where the following components are chained together.The previously created SweepablePipeline defines how theinput (training) dataset has to be properly transformed.Over that, an evaluation metric (e.g., area under ROCcurve for binary classification tasks) must be definedwhich the pipeline tries to optimize during the AutoMLprocess. Finally, one must specify a maximum timelimit in seconds or a maximum number of models forthe experiment to run. A Trial is described as a singlehyperparameter optimization run and a trial runner isa component that uses the AutoML pipeline and trialsettings to generate a TrialResult.

Optionally, Microsoft AutoML also offers the opportu-nity to configure the algorithm that is used for hyperpa-rameter tuning. By default, the ECI Cost Frugal Tuner(Wang et al., 2021) for hierarchical search spaces is used.This can be changed by setting the experiment’s Tuner toCost Frugal Tuner (for concerning training cost) (Wu et al.,2020), SMAC (Bayesian optimization) (Hutter et al., 2010),Grid Search (recommended for small search spaces) orRandom Search. Next, the question arises as to how thissoftware library now compares directly to other AutoMLframeworks in order to assess its practicality.
3. Functional Comparison of AutoML Libraries

After having described the fundamental aspects for au-tomated machine learning frameworks, this section willfocus on a detailed comparison of Microsoft AutoML (.NET)based on some important requirements. Although thereare many different automated machine learning librariesavailable that Microsoft AutoML could be compared with,the choice fell on H2O AutoML (Java) and Auto-Sklearn(Python) as they are very popular, similar in their con-crete usage and based on different runtimes. First, thethree frameworks are evaluated for meeting the AutoMLrequirements mentioned in Section 3.1. After that, theyare tested on some datasets for solving different machinelearning tasks in the next Section 4.
3.1. Basic Requirements for AutoML Libraries

With modern AutoML APIs come several requirements,requests and limitations. On the one hand, such librariesshould be able to solve a variety of common machine learn-ing tasks by applying a single mental programming model.Over this, it should be possible to load data from many dif-ferent sources and to automatically infer the column anddatatype information. Nevertheless, manual ETL opera-tions and optional data preprocessing steps must also beapplicable to a machine learning pipeline. For every singlemachine learning task, there should be offered numeroustraining algorithms as well as different hyperparametertuning mechanisms, which at best also can be enabledand disabled or entirely exchanged. Furthermore, it is alsodesirable to bring in some expert knowledge by manually

adjusting the search space. For debugging, evaluation anddeeper analysis of the trained models, there must be inte-grated possibilities for logging and monitoring. In times ofBig Data and IIoT, support for huge data sets is becomingincreasingly important. Online processing of data win-dows is the desired way to go instead of keeping the entiredataset in memory. Sufficient performance, frameworkupdates on a regular basis and mechanisms to evaluate thefeature importance are also fundamental requirements forAutoML libraries. Finally, it should be technically possibleto somehow limit the available memory, CPU and trainingtime in order to make the AutoML framework applicableto less powerful machines or edge devices.
3.2. Comparison Based on AutoML Requirements

Table 1 compares Microsoft AutoML, H2O AutoML andAuto-Sklearn based on the previously defined require-ments in Section 3.1. All frameworks are able to automat-ically solve classification and regression tasks by usingcross-validation to check model performance, execute ex-periments in parallel and can import data from files orin-memory collections. Moreover, Microsoft.ML is also ca-pable of loading files directly from an SQL server database.Every AutoML framework can cope with datatype infer-ence as well as manually defined ETL operations. Nev-ertheless, the libraries differ in the number of availabletraining algorithms and hyperparameter tuning mech-anisms, where Microsoft AutoML is clearly in the lead,which may turn out to be a big advantage for certain MLproblem tasks. Other striking differences are the requiredsoftware runtimes and supported operating systems. Intimes of virtualization, this should not be a big deal as alllibraries can be deployed or hosted in e.g., Docker con-tainers. Moreover, all frameworks use a maximum timelimit as default stopping criteria. In addition to that, Mi-crosoft AutoML and H2O AutoML also support a maximumnumber of models that should be trained before the pro-cess stops. Furthermore, the development of these twolibraries is driven by renowned companies (Microsoft andH2O.ai), while Auto-Sklearn is more regarded as an aca-demic software solution.
4. Benchmarking Microsoft AutoML

Ferreira et al. (2021) already bench-marked various popu-lar AutoML frameworks and tools. For every traditional su-pervised learning task (binary-/multi-class classificationand regression), they have used the four most downloaded(and sanitized) datasets from OpenML (Vanschoren et al.,2013), that are also shown in Table 2. They are charac-terized by a different number of entries (rows), features(columns) as well as possible values of the target variableto be predicted (labels). For the purpose of direct compari-son, the same datasets are used in this paper.



Neuhauser et al. | 5
Ta

bl
e

1.
Aut

oM
Lfr

am
ewo

rkc
om

par
ison

R eq
uire

me
nts

Mic
roso

ftA
uto

ML
H2O

Aut
oM

L
Aut

o-S
klea

rn
Su

pp
or

te
d

M
L

Ta
sk

s
Bin

ary
-/M

ulti
-cla

ssC
lass

ific
atio

n,R
egr

essi
on

Bin
ary

-/M
ulti

-cla
ssC

lass
ific

atio
n,R

egr
essi

on
Bin

ary
-/M

ulti
-cla

ssC
lass

ific
atio

n,R
egr

essi
on

Su
pp

or
te

d
D

at
a

So
ur

ce
s

Tex
tFi

les,
SQL

Ser
ver,

In-
Me

mo
ry-

Col
lect

ion
s

Tex
tFi

les,
In-

Mem
ory

-Co
llec

tion
s

Tex
tFi

les,
In-

Me
mo

ry-
Col

lect
ion

s
Au

to
D

at
a

Ty
pe

In
fe

re
nc

e
Yes

Yes
Yes

M
an

ua
lE

TL
Su

pp
or

t
Yes

Yes
Yes

Tr
ai

ni
ng

Al
go

ri
th

m
s

Ave
rag

edP
erce

ptro
n,S

DCA
,Sy

mb
olic

SGD
Lo-

gist
icR

egr
ess

ion
,LB

FGS
Log

isti
cR

egr
ess

ion
,

Lig
htG

BM
,Fa

stT
ree

,Fa
stF

ore
st,

GAM
,Fi

eld
Awa

reF
acto

riza
tion

Ma
chin

e,P
rior

Tra
iner

,Li
n-

ear
SVM

,Lig
htG

BM
Mu

lticl
ass,

SDC
AM

axim
um

Ent
rop

yM
ulti

clas
s,L

BFG
SM

axim
um

Ent
rop

y,
Nai

veB
aye

s,O
neV

ersu
sAl

lTr
aine

r,Pa
irw

iseC
ou-

plin
g,L

BFG
SPo

isso
nR

egr
essi

on,
Lig

htG
BM

Re-
gre

ssio
n,O

LS,
Onl

ine
Gra

dien
tDe

scen
t,Fa

stT
ree

Tw
eed

ie

Dis
trib

ute
dR

and
om

For
est

(DR
F),

Ext
rem

ely
Ran

dom
ized

Tre
es(

XRT
),G

ene
rali

zed
Lin

ear
Mo

del
wit

hre
gul

ariz
atio

n(G
LM

),G
LM

,XG
Boo

st
GBM

,De
epL

ear
nin

g,S
tack

edE
nse

mb
le

Ada
Boo

st,
Ber

nou
lliN

B,D
esc

isio
nT

ree
,Ex

tra
Tre

es,
Gau

ssia
nN

B,G
rad

ien
tBo

osti
ng,

KN
ear

-
est

Nei
ghb

ors
,LD

A,L
ibli

nea
rSV

C,L
ibsv

mS
VC,

ML
P,M

ulti
nom

inal
NB,

Pas
sive

Agg
ress

ive,
QDA

,
Ran

dom
For

est,
SGD

,AR
DR

egr
essi

on,
Gau

ssia
n

Pro
ces

s,G
rad

ien
tBo

osti
ng,

Lib
line

arS
VR,

Lib
-

svm
SVR

Ex
ch

an
ge

ab
le

H
yp

er
pa

ra
m

et
er

Tu
ne

rs
ECI

Cos
tFr

uga
l,C

ost
Fru

gal,
SM

AC,
Grid

Sea
rch

,
Ran

dom
Sea

rch
Ran

dom
Grid

Sea
rch

SM
AC

Ad
ju

st
ab

le
Se

ar
ch

Sp
ac

e
Yes

Yes
Yes

St
op

pi
ng

Cr
ite

ri
as

Ma
x.t

rain
ing

tim
e,M

ax.
#m

ode
lsto

trai
n

Ma
x.t

rain
ing

tim
e,M

ax.
#m

ode
lsto

trai
n

Ma
x.t

rain
ing

tim
e

Va
lid

at
io

n
M

ec
ha

ni
sm

Cro
ssV

alid
atio

n
Cro

ssV
alid

atio
n

Cro
ssV

alid
atio

n
Su

pp
or

tf
or

Pa
ra

lle
lis

m
Yes

Yes
Yes

Op
er

at
in

g
Sy

st
em

Win
dow

san
dLi

nux
Win

dow
san

dLi
nux

Lin
ux

Fr
am

ew
or

k/
Ru

nt
im

e
.NE

T
Java

(Co
reS

DK)
and

Pyt
hon

(AP
I)

Pyt
hon

In
te

gr
at

ed
Lo

gg
in

g
M

ec
ha

ni
sm

s
Yes

Yes
Yes

Table 2. Description of chosen OpenML datasets (Ferreira et al., 2021)
Dataset ML Task Rows Features Classes Values
churn binary 5000 21 2 {0, 1}credit binary 1000 21 2 {0, 1}diabetes binary 768 9 2 {0, 1}qsar binary 1055 42 2 {0, 1}cmc multi-class 1473 10 10 {0 ... 9}dmft multi-class 797 5 6 {0 ... 5}mfeat multi-class 2000 7 10 {0 ... 9}vehicle multi-class 846 19 4 {0 ... 3}cholesterol regression 303 14 152 [126, 564]cloud regression 108 7 94 [0, 6]liver regression 345 6 16 [0, 20]plasma regression 315 14 257 [179, 1727]

4.1. Experiment Setup

All previously introduced datasets are stored in the CSVformat where the first line contains the column headers.The remaining rows were then shuffled a billion times,before they were separated into two different files. 80%of the data was used for training and the remaining 20%for the later evaluation of the best found model. Moreover,it was ensured that there were no missing values or otherimpurities within the datasets. To ensure a fair compari-son, the three AutoML libraries must try to solve the tasksas good as possible using their default pipeline settings.This means that no expert knowledge is involved. It wassolely up to the respective libraries which algorithms areused and how their hyperparameters must be configuredsubsequently in order to obtain accurate models. For ev-ery AutoML experiment, the prepared training and testdata files were initially loaded from the file system. Theconfigured machine learning pipeline only consists of afeaturization step and the definition for the ML task to besolved. The creation of the feature column that is used forprediction was done by utilizing the inferred data typesand column names. Since the focus of this paper is on thecomparison of general machine learning methods, DeepLearning algorithms were therefore disabled in H2O Au-toML. The expected behavior is a broad horizontal searchthrough traditional ML approaches. Internally a 10-foldcross validation was applied to determine the best modelfound during the experiment for each AutoML tool andtask whose performance was then evaluated on the un-seen 20% test data. For the binary classification experi-ments, the Area Under the Receiver Operating Character-istic Curve (ROC AUC) was chosen, where 1.0 denotes aperfectly trained model. The Macro Accuracy score wasthe evaluation metric of choice for all multi-class classifi-cation problems. The closer a specific metric is to 1.0, thebetter the learned model can be considered. Finally, theMean Absolute Error (MAE) was used for regression taskswhere 0.0 is the best quality result a model can achieve.All experiments were executed on an 11th Gen Intel Corei7-1185G7 with 4 cores and 32 GB of RAM.



6 | 35th European Modeling & Simulation Symposium, EMSS 2023
Table 3. Achieved AutoML results for the selected OpenML datasets

Dataset Tool Metric Quality # Models
churn MS AutoML 0,914 107H2O AutoML ROC AUC 0.931 161Auto-Sklearn 0.884 32
credit MS AutoML 0,829 144H2O AutoML ROC AUC 0.837 315Auto-Sklearn 0.673 81
diabetes MS AutoML 0,782 159H2O AutoML ROC AUC 0.786 797Auto-Sklearn 0.674 176
qsar MS AutoML 0,953 183H2O AutoML ROC AUC 0.963 161Auto-Sklearn 0.878 74
cmc MS AutoML 0,536 135H2O AutoML Macro Accuracy 0.543 524Auto-Sklearn 0.577 326
dmft MS AutoML 0,261 172H2O AutoML Macro Accuracy 0.201 916Auto-Sklearn 0.213 315
mfeat MS AutoML 0,722 29H2O AutoML Macro Accuracy 0.795 53Auto-Sklearn 0.718 332
vehicle MS AutoML 0,780 38H2O AutoML Macro Accuracy 0.785 237Auto-Sklearn 0.848 285
cholesterol MS AutoML 0,695 241H2O AutoML MAE 0.658 1071Auto-Sklearn N/A 0
cloud MS AutoML 0,301 187H2O AutoML MAE 0.247 2207Auto-Sklearn 0.141 155
liver MS AutoML 2,104 192H2O AutoML MAE 2.399 1473Auto-Sklearn 2.142 266
plasma MS AutoML 0.00 40H2O AutoML MAE 174.894 1499Auto-Sklearn 179.426 233

The training time for each experiment was specified with 15 minutes. Each AutoML
framework was configured to use a 10-fold cross validation. All remaining parameters
were specified with their default values. No limitations regarding CPU and memory
were made, so every framework was allowed to use all available hardware resources.

4.2. Results and Discussion

Multiple tests of all selected AutoML libraries withdifferent training times led to almost always the samequality results with only a few percentage points betweenthem, proving that Microsoft AutoML can compete withalready well-established software libraries for automatedmachine learning (see Table 3). However, a seriousdifference could be observed with Auto-Sklearn becausethis framework was sometimes not able to learn modelsor model ensembles when the training time was set below5 minutes. It is also worth mentioning, that the provideddatasets are part of Auto-Sklearn’s metadata but theywere automatically removed before executing the AutoMLexperiments.
Generally speaking, all AutoML frameworks achievedsimilar model qualities as shown in Table 3 but someof them exhibited greater proficiency in solving specific

ML tasks than others. For all binary classification ma-chine learning tasks, H2O AutoML always performedslightly better than Microsoft AutoML (churn: +0.017,
credit: +0.008, diabetes: +0.004, qsar: +0.010) but in mostof the cases significantly better than Auto-Sklearn (churn:+0.047, credit: +0.164, diabetes: +0.112, qsar: +0.085).With regard to the four selected multi-class classificationdatasets, no clear winner could be identified as the scoredmetrics are very close to each other. For cmc and vehicleAuto-Sklearn trained the best model with a Macro Accu-racy of 0.577 and 0.848. Microsoft AutoML reached a scoreof 0.261 for the dmft dataset and H2O AutoML a score of0.795 for the mfeat dataset. Over that, non of the evalu-ated AutoML framework was always clearly better thanthe other ones for regression problem tasks. Although anachieved MAE of 0.0 on the plasma test dataset is an in-dicator for overfitting, Microsoft AutoML also obtainedthe lowest MAE value (2.104) for the liver dataset. H2Otrained the best model for cholesterol (0.658) whereas Auto-Sklearn had serious difficulties with data preprocessingand was therefore not able to generate any model. Nev-ertheless, one can easily see, that Auto-Sklearn achievedthe best MAE quality result of 0.141 for the cloud dataset. Adirect comparison with the results of Ferreira et al. (2021)also shows that H2O AutoML and Auto-Sklearn slightlygained in performance with respect to model quality. In2021, H2O AutoML achieved an ROC AUC score of 0.919 (-0,012) for churn and 0.803 (-0.034) for credit. Moreover twoyears ago, the best multi-class classification model thatwas trained with Auto-Sklearn reached a Macro Accuracyof 0.545 (- 0.032) for the cmc dataset and the best regres-sion model scored an MAE of 2.329 (+ 0,187) for the liverdataset. Furthermore, the number of models created ortrial runs also varies greatly. It can be clearly seen that H2OAutoML has often trained a remarkably larger number ofprediction models, especially for the regression examples.Finally, regarding the required hardware resources it mustbe said that H2O AutoML has constantly used nearly the en-tire CPU power (around 90%) and 1000-1700 MB memoryfor running the experiments. Microsoft AutoML (between40-70% and 50-200 MB) and Auto-Sklearn (30-60% and500-600 MB), on the other hand, were somewhat moresparing with the provided resources. High resource re-quirements without any means of limiting them can proveto be a disadvantage in practice. Despite of limiting themaximum training time, only Microsoft AutoML and Auto-Sklearn made full use of the entire 15 minutes. H2O alwaysstopped a bit earlier as no further improvements could bemade, or additional models be trained.

5. Conclusion and Outlook

In this work, a brief overview of the fundamentals andcurrent state-of-the art techniques regarding automatedmachine learning was given - a discipline that is increas-ingly getting more important for all research areas as itaims to generate reliable models with only a minimum



Neuhauser et al. | 

amount of human intervention. The functionality and us-age of Microsoft AutoML, a model builder API based onML.NET, was then described in more detail. Being rel-atively new, there is limited literature and performancecomparisons with established AutoML libraries, such asAuto-Sklearn or H2O AutoML. Therefore, this paper aimedto provide valuable insights into Microsoft AutoML’s capa-bilities and potential compared to its counterparts. Severalexperiments on different datasets clearly proofed, that thislibrary can easily compete with other popular and well-established automated machine learning frameworks. Aneasy-to-use and intuitive API as well as a variety of appli-cable and exchangeable training algorithms also speak infavor of using Microsoft AutoML. Furthermore, the pos-sibility to leverage a variety of different hyperparametertuning algorithms allows scoring better results for diversedatasets based on ubiquitous supervised machine learn-ing tasks. Domain-specific expert knowledge can also beintegrated by manually adjusting the search space of atraining algorithm’s available hyperparameters. ML.NETalso handles unbounded data within windows, which canbe very beneficial for Big Data applications. For example,by combining or extending Microsoft’s powerful and ro-bust AutoML API with modern message broker systems,such as Apache Kafka, one can consume real-time datastreams and train multiple machine learning models withdifferent training algorithms in parallel and increase theperformance by exchanging the hyperparameter tunerson the fly. However, it is worth mentioning that currentlynone of the three AutoML libraries compared support tasksin the realm of unsupervised learning. Furthermore, thefindings are based on a few different-sized datasets, whichis why more experiments should be conducted in a futurework. A detailed comparison of the different hyperparam-eter tuners in Microsoft AutoML could also be the contentfor another paper. Nevertheless, the first results and eval-uations of this paper are very promising and clearly ad-vocate for the usage of Microsoft’s AutoML API, makingit highly recommended not even for developers of .NETapplications.
6. Acknowledgements

The financial support by the Austrian Federal Ministryfor Digital and Economic Affairs and the National Foun-dation for Research, Technology and Development andthe Christian Doppler Research Association is gratefullyacknowledged.
References

Ahmed, Z., Amizadeh, S., Bilenko, M., Carr, R., Chin, W.-S., Dekel, Y., Dupre, X., Eksarevskiy, V., Filipi, S., Finley,T., et al. (2019). Machine learning at Microsoft with ML.NET. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, pages2448–2458.

Bäck, T. (1996). Evolutionary Algorithms in Theory and
Practice: Evolution Strategies, Evolutionary Programming,
Genetic Algorithms. Oxford University Press.Escalante, H. J., Montes, M., and Sucar, L. E. (2009). Parti-cle swarm model selection. Journal of Machine Learning
Research, 10(2).Ferreira, L., Pilastri, A., Martins, C. M., Pires, P. M., andCortez, P. (2021). A Comparison of AutoML Tools for Ma-chine Learning, Deep Learning and XGBoost. In 2021 In-
ternational Joint Conference on Neural Networks (IJCNN),pages 1–8.Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M.,and Hutter, F. (2020). Auto-Sklearn 2.0: Hands-freeAutoML via Meta-Learning. arXiv:2007.04074 [cs.LG].Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.,Blum, M., and Hutter, F. (2015). Efficient and RobustAutomated Machine Learning. In Cortes, C., Lawrence,N., Lee, D., Sugiyama, M., and Garnett, R., editors,
Advances in Neural Information Processing Systems, vol-ume 28. Curran Associates, Inc.Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2010). Se-quential model-based optimization for general algo-rithm configuration (extended version). Technical Re-
port TR-2010–10, University of British Columbia, Com-
puter Science, Tech. Rep.Hutter, F., Kotthoff, L., and Vanschoren, J. (2019). Auto-
mated Machine Learning. Springer Nature.Kanter, J. M. and Veeramachaneni, K. (2015). Deep featuresynthesis: Towards automating data science endeavors.In 2015 IEEE International Conference on Data Science and
Advanced Analytics (DSAA), pages 1–10.Kennedy, J. and Eberhart, R. (1995). Particle swarm opti-mization. In Proceedings of ICNN’95 - International Con-
ference on Neural Networks, volume 4, pages 1942–1948vol.4.LeDell, E. and Poirier, S. (2020). H2O AutoML: ScalableAutomatic Machine Learning. 7th ICML Workshop on
Automated Machine Learning (AutoML).Microsoft (2023). How to use the ML.NET Automated Ma-chine Learning (AutoML) API.Olson, R. S. and Moore, J. H. (2016). TPOT: A tree-based pipeline optimization tool for automating ma-chine learning. In Workshop on automatic machine learn-
ing, pages 66–74. PMLR.Thornton, C., Hutter, F., Hoos, H. H., and Leyton-Brown,K. (2013). Auto-WEKA: Combined selection and hyper-parameter optimization of classification algorithms. In
Proceedings of the 19th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages847–855.Tuggener, L., Amirian, M., Rombach, K., Lörwald, S., Var-let, A., Westermann, C., and Stadelmann, T. (2019). Au-tomated Machine Learning in Practice: State of the Artand Recent Results. In 2019 6th Swiss Conference on Data
Science (SDS), pages 31–36.Vanschoren, J., van Rijn, J. N., Bischl, B., and Torgo, L.(2013). OpenML: Networked Science in Machine Learn-



 | 35th European Modeling & Simulation Symposium, EMSS 2023
ing. SIGKDD Explorations, 15(2):49–60.Wang, C., Wu, Q., Weimer, M., and Zhu, E. (2021). Flaml:A fast and lightweight automl library. Proceedings of
Machine Learning and Systems, 3:434–447.Waring, J., Lindvall, C., and Umeton, R. (2020). Automatedmachine learning: Review of the state-of-the-art andopportunities for healthcare. Artificial Intelligence in
Medicine, 104:101822.Wu, Q., Wang, C., and Huang, S. (2020). Cost EffectiveOptimization for Cost-related Hyperparameters. CoRR,abs/2005.01571.


	Introduction
	AutoML: State of the Art
	Basic Workflow of AutoML Tools
	Common AutoML Optimization Techniques
	Introduction of the ML.NET AutoML API

	Functional Comparison of AutoML Libraries
	Basic Requirements for AutoML Libraries
	Comparison Based on AutoML Requirements

	Benchmarking Microsoft AutoML
	Experiment Setup
	Results and Discussion

	Conclusion and Outlook
	Acknowledgements



