35t European Modeling & Simulation Symposium
20th International Multidisciplinary Modeling & Simulation Multiconference

2724-0029 © 2023 The Authors.
doi: 10.46354/i3m.2023.emss.028

Performance Comparison of Microsoft’s AutoML API

Philipp Neuhauser* and Stefan Wagner?

Josef Ressel Center for Adaptive Optimization in Dynamic Environments, University of Applied Sciences Upper Austria,
Softwarepark 11, Hagenberg, 4323, Austria

*Corresponding author. Email address: philipp.neuhauser@fh-hagenberg.at

Abstract

In recent years, many software libraries for automated machine learning (AutoML), such as H20 AutoML or Auto-Sklearn, have
become increasingly popular as they propose to significantly simplify the ML workflow and to sustainably reduce the time required for
manual feature engineering, hyperparameter tuning as well as model selection and evaluation. Among the younger and therefore less
well-known representatives is Microsoft’s ML.NET, about whose model builder API only little literature and performance comparisons
exists. This paper summarizes the functionality of such frameworks and discusses general requirements for automated machine
learning in more detail. Finally, several experiments compare ML.NET with already established AutoML libraries based on some datasets
from the field of supervised learning with respect to model quality, the API’s scope of functions and required computational resources.

Keywords: Automated Machine Learning; Microsoft AutoML; Performance Comparison; Hyperparameter Tuning

1. Introduction

Machine learning has become an integral part of many
areas of daily life as it enables us to predict future events
as well as to discover and extract hidden knowledge in a
vast amount of data. However, changes in the underlying
data often require the training of a new or updated
model. Take for example the dynamic environment of
Industrial Internet of Things (IIoT), where data sources
(e.g., sensors, databases, real-time message brokers,
etc.) are added or modified almost on a daily basis, it is
of enormous importance that models are relearned as
quickly as possible in order to continue delivering reliable
results and predictions. There is often not much time for a
laborious and manual training and hyperparameter opti-
mization of precise models. AutoML provides a remedy for
this problem and attempts to train models independently
out of a set of available algorithms (also called trainers)
and corresponding parameters within a given period. It
then automatically selects that model, which achieves the
best results on some provided validation data. Besides
well-known AutoML frameworks such as H20 AutoML

(LeDell and Poirier, 2020) and Auto-Sklearn (Feurer
etal., 2020), ML.NET (Ahmed et al., 2019) is the way to
go for .NET developers. Unfortunately, there is hardly
any literature or benchmark comparisons available for
the software library mentioned last. This paper aims to
address this issue by evaluating the performance, features
and functionality of Microsoft’s AutoML API based on
various datasets in order to assess its practical applicability.

In Section 2 the fundamentals and current state-of-the-
art regarding automated machine learning are summa-
rized and the model builder API of ML.NET (Microsoft Au-
toML) is introduced in more details. Section 3 focuses on a
basic function comparison of the three selected software
frameworks mentioned above. Some benchmark tests
based on several datasets, representing traditional super-
vised machine learning tasks, as well as the further eval-
uation of the performance results are then gathered and
discussed in Section 4. All key findings and a brief outlook
for using Microsoft AutoML in a battle tested, real-world
environment are finally outlined in Section 5.

© 2023 The Authors. This article is an open access article distributed under the terms and conditions of the Creative
Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

https://creativecommons.org/licenses/by-nc-nd/4.0/.

| 35th European Modeling & Simulation Symposium, EMSS 2023

2. AutoML: State of the Art

Data mining, speech processing, deep learning methods,
information discovery and the creation of prediction and
forecasting engines as well as recommendation systems
are very time-consuming, cumbersome and costly chal-
lenges that often require experienced data scientists with
fundamental background knowledge about the respective
application domain (Hutter et al., 2019). This manual ap-
proach is like trying to find a needle in a haystack and
mostly results in an highly iterative trial and error pro-
cess until a satisfying model is found as different algo-
rithms have to be tested and hyperparameters to be tuned.
In order to speed up this process and to overcome expert
knowledge, the field of automated machine learning tries
to create suitable models with a minimum of human in-
tervention (Tuggener et al., 2019).

2.1. Basic Workflow of AutoML Tools

Under the hood, AutoML libraries always follow a simple,
iterative mental model that is presented in Figure 1. De-
pending on the quality and structure of the provided input
dataset it must be decided if any preprocessing steps (e.g.,
data cleaning and transformation tasks or feature extrac-
tion and selection aspects) have to be applied and to what
extent. Next, an appropriate machine learning algorithm
must be chosen in order to solve the particular ML task.
After that, a combination of hyperparameters must be ex-
plored and evaluated for the selected algorithm in order
to receive an optimized, well-performing model within
a fixed timespan and computational budget, such as CPU
and memory usage (Feurer et al., 2015). Finally, the data
scientist is responsible for selecting and deploying the best
generated model to production or creating an ensemble
out of a subset of best performing models. By creating
multiple models out of a variety of different algorithms,
AutoML can also be used at an early stage to determine if
the provided dataset is suitable for solving a certain ma-
chine learning task at all or if none of the generated models
performs better than the baseline (Tuggener et al., 2019).

2.2. Common AutoML Optimization Techniques

Looking at the machine learning workflow in Figure 1,
one can add automation for any pipeline step. Waring
et al. (2020) provided an excellent overview over the
possible AutoML disciplines in their article which are
briefly summarized for the sake of completeness.

Automated feature engineering is the process of au-
tomatically identifying the most relevant variables or
generating entirely new variables by combining existing
ones, that are predictive of the outcome of interest with
the overall goal to improve the model quality. As this is
typically a very time-consuming task for a data scientist,
many different approaches have emerged. Kanter and
Veeramachaneni (2015) introduced the "expand-reduce"

Input Data

Data & Feature
Preprocessing
v

Algorithm
Selection

v

Hyperparameter
Optimization
v

Model
Evaluation

Automated Machine Learning (AutoML)

Model
Selection

Figure 1. The basic iterative AutoML workflow for automatically creating
models with a minimum of human intervention, given a fixed timespan
and computational budget (CPU and memory usage).

method, where a set of transformations is applied at once
to a feature vector, followed by a feature selection and
hyperparameter tuning step. Other approaches make
use of genetic programming, reinforcement learning,
hierarchical greedy search or meta learning.

Automated hyperparameter optimization is a highly
complex discipline where different selection mechanisms
try to find an optimal combination for a training algo-
rithm’s "steering parameter' values that optimize (i.e.,
maximize/minimize) a certain performance metric for
the machine learning task at hand. One possible approach
is using unguided strategies that make no assumptions
about the search space, e.g., Grid Search (brute-force) or
Random Search (given a user-defined search space for
hyperparameters). As these previous kinds of methods
do not make use of past performance evaluations, better
strategies can be found by using so-called "optimization
from samples" methods. Evolutionary algorithms (Back,
1996) or the particle swarm optimization (Kennedy
and Eberhart, 1995; Escalante et al., 2009) exchange
information of good hyperparameter combinations
without losing diversity. Nevertheless, Bayesian opti-
mization has emerged as the state-of-the-art in this
AutoML discipline by using a surrogate model and an
acquisition function that try to optimize a mapping of
various hyperparameter configurations to their achieved

performance. The surrogate model is used to approximate
the objective function, while the acquisition function is
used to determine which hyperparameters to evaluate
next.

Pipeline optimization techniques go one step further as
they try to improve the entire AutoML process and not only
specific aspects. One common approach is to tackle the
so called "Combined Algorithm Selection and Hyperpa-
rameter optimization" (CASH) problem (Thornton et al.,
2013). AutoML algorithms try to select an appropriate
algorithm out of a list of available solvers that is then
steadily optimized to score the highest validation perfor-
mance amongst all algorithm-hyperparameter combina-
tions (Tuggener et al., 2019). Again, this can be done by
exploiting Baysian optimization methods, like in the Auto-
WEKA platform that utilizes the SMAC (Sequential Model-
based optimization for general Algorithm Configuration)
tuner (Hutter et al., 2010). Auto-sklearn introduced two
essential improvements to solve the CASH problem even
more efficiently by using a meta-learning mechanism to
"warmstart' the optimization with AutoML pipeline con-
figurations that worked well for similar datasets. Another
technical refinement is the automated ensemble construc-
tion of models evaluated during the tuning process that
makes a pipeline configuration generally more robust and
less prone to overfitting. Other optimization techniques
make use of reinforcement learning or genetic program-
ming (TPOT - Tree-based Pipeline Optimization Tool, Ol-
son and Moore (2016)) for constructing sophisticated Au-
toML pipelines.

2.3. Introduction of the ML.NET AutoML API

As an integral part of the constantly evolving ML.NET
(Microsoft.ML) library (Ahmed et al., 2019), the AutoML
extension is relatively new and therefore less known in
the automated machine learning community. Although
there is an official CLI tool as well as an intuitive graphical
user interface in Visual Studio for generating strong
models without the need of writing any code, we focus
solely on the AutoML model builder API which consists of
some essential aspects. The following is a brief summary
of the well prepared and detailed step-by-step tutorial,
found on the official Microsoft website (Microsoft, 2023).
The interplay of all required API classes is illustrated as a
code snippet in Figure 2.

The first step for using ML.NET is initializing the
MLContext which creates a new machine learning en-
vironment. Several operations and actions within the
machine learning workflow can be generated with
this instance in a catalog-based manner. In order to
access the AutoML functionalities, one has to install an
additional NuGet package. Next, the input data must
be loaded from either a text file, a database, or even
in-memory-collections. Microsoft AutoML is also capable

Neuhauser etal. |

// Intitialize ML context
MLContext mlContext = new MLContext();

1
2
3
4 // Infer column information

5 ColumnInferenceResults columnInference = mlContext.Auto().InferColumns
6 (

7 path: "path-to-training-dataset”,

8 labelColumnName: "label",

9)

11 ColumnInformation columnInfo = columnInference.ColumnInformation;

13 // Create text loader

14 TextlLoader loader = mlContext.Data.CreateTextlLoader
15 (

16 columnInference.TextLoaderOptions

17)3

19 // Load data into IDataView
20 IDataView trainData = loader.lLoad("path-to-training-dataset");
21 IDataView testData = loader.lLoad("path-to-test-dataset™);

23 // Define ML pipeline

24 SweepablePipeline pipeline = mlContext.Auto()

25 .Featurizer(trainData, ...)

26 .Append(mlContext.Auto().Regression(labelColumnName: ...));

28 // Configure experiment
29 AutoMLExperiment experiment = mlContext.Auto()

30 .CreateExperiment()

31 .SetPipeline(pipeline)

32 .SetRegressionMetric(RegressionMetric.MeanAbsoluteError, ...)
33 .SetTrainingTimeInSeconds(900)

34 .SetMonitor(new AutoMLMonitor(pipeline))

35 .SetDataset(dataset: trainData, fold: 10)

36 .SetEciCostFrugalTuner();

38 // Run experiment
39 TrialResult experimentResult = await experiment.RunAsync();

41 // Evaluate result
42 Console.WritelLine(experimentResult.Metric);

44 var predictions = experimentResult.Model.Transform(testData);
45 var metrics = mlContext.Regression.Evaluate(data: predictions, ...);

47 Console.WritelLine($"MAE = {metrics.MeanAbsoluteError}");

Figure 2. Basic usage of Microsoft AutoML for solving a regression machine
learning task.

of inferring the corresponding data types and columns by
using the InferColumns method. The class TrainTestSplit
can then be used to separate the integrated data into a
training and test (validation) set.

The next step is the definition of the machine learn-
ing pipeline which is represented as an instance of
SweepablePipeline. That is basically a collection of
SweepableEstimator that is a combination of an Estimator
(untrained transformer) instance with a corresponding
SearchSpace (range of available hyperparameters). With
the Featurizer API one can automatically define basic
data preprocessing steps by using the inferred column
information. The resulting numeric feature vector is
then used for model training by appending a trainer
(algorithm) to the SweepablePipeline. Currently AutoML
supports default trainers and search space configurations
for binary classification, multi-class classification and
regression machine learning tasks.

One last task to do is to define an AutoMLExperiment

| 35t European Modeling & Simulation Symposium, EMSS 2023

where the following components are chained together.
The previously created SweepablePipeline defines how the
input (training) dataset has to be properly transformed.
Over that, an evaluation metric (e.g., area under ROC
curve for binary classification tasks) must be defined
which the pipeline tries to optimize during the AutoML
process. Finally, one must specify a maximum time
limit in seconds or a maximum number of models for
the experiment to run. A Trial is described as a single
hyperparameter optimization run and a trial runner is
a component that uses the AutoML pipeline and trial
settings to generate a TrialResult.

Optionally, Microsoft AutoML also offers the opportu-
nity to configure the algorithm that is used for hyperpa-
rameter tuning. By default, the ECI Cost Frugal Tuner
(Wang et al., 2021) for hierarchical search spaces is used.
This can be changed by setting the experiment’s Tuner to
Cost Frugal Tuner (for concerning training cost) (Wu etal.,
2020), SMAC (Bayesian optimization) (Hutter et al., 2010),
Grid Search (recommended for small search spaces) or
Random Search. Next, the question arises as to how this
software library now compares directly to other AutoML
frameworks in order to assess its practicality.

3. Functional Comparison of AutoML Libraries

After having described the fundamental aspects for au-
tomated machine learning frameworks, this section will
focus on a detailed comparison of Microsoft AutoML (.NET)
based on some important requirements. Although there
are many different automated machine learning libraries
available that Microsoft AutoML could be compared with,
the choice fell on H20 AutoML (Java) and Auto-Sklearn
(Python) as they are very popular, similar in their con-
crete usage and based on different runtimes. First, the
three frameworks are evaluated for meeting the AutoML
requirements mentioned in Section 3.1. After that, they
are tested on some datasets for solving different machine
learning tasks in the next Section 4.

3.1. Basic Requirements for AutoML Libraries

With modern AutoML APIs come several requirements,
requests and limitations. On the one hand, such libraries
should be able to solve a variety of common machine learn-
ing tasks by applying a single mental programming model.
Over this, it should be possible to load data from many dif-
ferent sources and to automatically infer the column and
datatype information. Nevertheless, manual ETL opera-
tions and optional data preprocessing steps must also be
applicable to a machine learning pipeline. For every single
machine learning task, there should be offered numerous
training algorithms as well as different hyperparameter
tuning mechanisms, which at best also can be enabled
and disabled or entirely exchanged. Furthermore, it is also
desirable to bring in some expert knowledge by manually

adjusting the search space. For debugging, evaluation and
deeper analysis of the trained models, there must be inte-
grated possibilities for logging and monitoring. In times of
Big Data and IIoT, support for huge data sets is becoming
increasingly important. Online processing of data win-
dows is the desired way to go instead of keeping the entire
dataset in memory. Sufficient performance, framework
updates on a regular basis and mechanisms to evaluate the
feature importance are also fundamental requirements for
AutoML libraries. Finally, it should be technically possible
to somehow limit the available memory, CPU and training
time in order to make the AutoML framework applicable
to less powerful machines or edge devices.

3.2. Comparison Based on AutoML Requirements

Table 1 compares Microsoft AutoML, H20 AutoML and
Auto-Sklearn based on the previously defined require-
ments in Section 3.1. All frameworks are able to automat-
ically solve classification and regression tasks by using
cross-validation to check model performance, execute ex-
periments in parallel and can import data from files or
in-memory collections. Moreover, Microsoft.ML is also ca-
pable of loading files directly from an SQL server database.
Every AutoML framework can cope with datatype infer-
ence as well as manually defined ETL operations. Nev-
ertheless, the libraries differ in the number of available
training algorithms and hyperparameter tuning mech-
anisms, where Microsoft AutoML is clearly in the lead,
which may turn out to be a big advantage for certain ML
problem tasks. Other striking differences are the required
software runtimes and supported operating systems. In
times of virtualization, this should not be a big deal as all
libraries can be deployed or hosted in e.g., Docker con-
tainers. Moreover, all frameworks use a maximum time
limit as default stopping criteria. In addition to that, Mi-
crosoft AutoML and H20 AutoML also support a maximum
number of models that should be trained before the pro-
cess stops. Furthermore, the development of these two
libraries is driven by renowned companies (Microsoft and
H20.ai), while Auto-Sklearn is more regarded as an aca-
demic software solution.

4. Benchmarking Microsoft AutoML

Ferreira et al. (2021) already bench-marked various popu-
lar AutoML frameworks and tools. For every traditional su-
pervised learning task (binary-/multi-class classification
and regression), they have used the four most downloaded
(and sanitized) datasets from OpenML (Vanschoren et al.,
2013), that are also shown in Table 2. They are charac-
terized by a different number of entries (rows), features
(columns) as well as possible values of the target variable
to be predicted (labels). For the purpose of direct compari-
son, the same datasets are used in this paper.

Table 1. AutoML framework comparison

Auto-Sklearn

H20 AutoML

Microsoft AutoML

Requirements

Binary-/Multi-class Classification, Regression

Text Files, In-Memory-Collections

Yes

Binary-/Multi-class Classification, Regression

Text Files, In-Memory-Collections

Yes

Binary-/Multi-class Classification, Regression

Supported ML Tasks

Text Files, SQL Server, In-Memory-Collections

Yes

Supported Data Sources

Auto Data Type Inference
Manual ETL Support

Yes

Yes

Yes

Distributed Random Forest (DRF), Extremely = AdaBoost, Bernoulli NB, Descision Tree, Extra
Randomized Trees (XRT), Generalized Linear

Light GBM, Fast Tree, Fast Forest, GAM, Field = Model with regularization (GLM), GLM, XGBoost

Averaged Perceptron, SDCA, Symbolic SGD Lo-
Aware Factorization Machine, Prior Trainer, Lin-

gistic Regression, LBFGS Logistic Regression,

Training Algorithms

Trees, Gaussian NB, Gradient Boosting, K Near-

est Neighbors, LDA, Liblinear SVC, Libsvm SVC,

MLP, Multinominal NB, Passive Aggressive, QDA,
Random Forest, SGD, ARD Regression, Gaussian

GBM, Deep Learning, Stacked Ensemble

ear SVM, Light GBM Multiclass, SDCA Maximum

Process, Gradient Boosting, Liblinear SVR, Lib-

svm SVR

Entropy Multiclass, LBFGS Maximum Entropy,

Naive Bayes, One Versus All Trainer, Pairwise Cou-
pling, LBFGS Poisson Regression, Light GBM Re-

gression, OLS, Online Gradient Descent, Fast Tree

Tweedie

SMAC

Random Grid Search

ECI Cost Frugal, Cost Frugal, SMAC, Grid Search,

Random Search

Yes

Exchangeable Hyperparameter Tuners

Yes

Yes

Adjustable Search Space
Stopping Criterias

Max. training time
Cross Validation

Yes

Max. training time, Max. # models to train

Cross Validation

Yes

Max. training time, Max. # models to train

Cross Validation

Yes

Validation Mechanism
Support for Parallelism

Operating System

Linux

Windows and Linux

Windows and Linux

Python
Yes

Java (Core SDK) and Python (API)

Yes

.NET
Yes

Framework/Runtime

Integrated Logging Mechanisms

Neuhauseretal. | 5

Table 2. Description of chosen OpenML datasets (Ferreira et al., 2021)

Dataset ML Task Rows Features Classes Values
churn binary 5000 21 2 {o,1}
credit binary 1000 21 2 {o,1}
diabetes binary 768 9 2 {o,1}
gsar binary 1055 42 2 {o,1}
cmce multi-class 1473 10 10 {o..9}
dmft multi-class 797 5 6 {0..5}
mfeat multi-class 2000 7 10 {o..9}
vehicle multi-class 846 19 4 {0..3}
cholesterol regression 303 14 152 [126, 564]
cloud regression 108 7 94 [o0,6]
liver regression 345 6 16 [0,20]
plasma regression 315 14 257 [179,1727]

4.1. Experiment Setup

All previously introduced datasets are stored in the CSV
format where the first line contains the column headers.
The remaining rows were then shuffled a billion times,
before they were separated into two different files. 80%
of the data was used for training and the remaining 20%
for the later evaluation of the best found model. Moreover,
it was ensured that there were no missing values or other
impurities within the datasets. To ensure a fair compari-
son, the three AutoML libraries must try to solve the tasks
as good as possible using their default pipeline settings.
This means that no expert knowledge is involved. It was
solely up to the respective libraries which algorithms are
used and how their hyperparameters must be configured
subsequently in order to obtain accurate models. For ev-
ery AutoML experiment, the prepared training and test
data files were initially loaded from the file system. The
configured machine learning pipeline only consists of a
featurization step and the definition for the ML task to be
solved. The creation of the feature column that is used for
prediction was done by utilizing the inferred data types
and column names. Since the focus of this paper is on the
comparison of general machine learning methods, Deep
Learning algorithms were therefore disabled in H20 Au-
toML. The expected behavior is a broad horizontal search
through traditional ML approaches. Internally a 10-fold
cross validation was applied to determine the best model
found during the experiment for each AutoML tool and
task whose performance was then evaluated on the un-
seen 20% test data. For the binary classification experi-
ments, the Area Under the Receiver Operating Character-
istic Curve (ROC AUC) was chosen, where 1.0 denotes a
perfectly trained model. The Macro Accuracy score was
the evaluation metric of choice for all multi-class classifi-
cation problems. The closer a specific metric is to 1.0, the
better the learned model can be considered. Finally, the
Mean Absolute Error (MAE) was used for regression tasks
where 0.0 is the best quality result a model can achieve.
All experiments were executed on an 11th Gen Intel Core
i7-1185G7 with 4 cores and 32 GB of RAM.

6 | 35t European Modeling & Simulation Symposium, EMSS 2023

Table 3. Achieved AutoML results for the selected OpenML datasets

Dataset Tool Metric Quality # Models
MS AutoML 0,914 107
churn H20 AutoML ROC AUC 0.931 161
Auto-SKklearn 0.884 32
MS AutoML 0,829 144
credit H20 AutoML ROC AUC 0.837 315
Auto-Sklearn 0.673 81
MS AutoML 0,782 159
diabetes H20 AutoML ROC AUC 0.786 797
Auto-Sklearn 0.674 176
MS AutoML 0,953 183
gsar H20 AutoML ROC AUC 0.963 161
Auto-Sklearn 0.878 74
MS AutoML 0,536 135
cmc H20 AutoML Macro Accuracy 0.543 52/
Auto-Sklearn 0.577 326
MS AutoML 0,261 172
dmft H20 AutoML Macro Accuracy 0.201 916
Auto-Sklearn 0.213 315
MS AutoML 0,722 29
mfeat H20 AutoML Macro Accuracy 0.795 53
Auto-Sklearn 0.718 332
MS AutoML 0,780 38
vehicle H20 AutoML Macro Accuracy 0.785 237
Auto-Sklearn 0.848 285
MS AutoML 0,695 241
cholesterol H20 AutoML MAE 0.658 1071
Auto-SKklearn N/A 0
MS AutoML 0,301 187
cloud H20 AutoML MAE 0.247 2207
Auto-Sklearn 0.141 155
MS AutoML 2,104 192
liver H20 AutoML MAE 2.399 1473
Auto-Sklearn 2.142 266
MS AutoML 0.00 40
plasma H20 AutoML MAE 174.894 1499

Auto-Sklearn 179.426 233

The training time for each experiment was specified with 15 minutes. Each AutoML
framework was configured to use a 10-fold cross validation. All remaining parameters
were specified with their default values. No limitations regarding CPU and memory
were made, so every framework was allowed to use all available hardware resources.

4.2. Results and Discussion

Multiple tests of all selected AutoML libraries with
different training times led to almost always the same
quality results with only a few percentage points between
them, proving that Microsoft AutoML can compete with
already well-established software libraries for automated
machine learning (see Table 3). However, a serious
difference could be observed with Auto-Sklearn because
this framework was sometimes not able to learn models
or model ensembles when the training time was set below
5 minutes. It is also worth mentioning, that the provided
datasets are part of Auto-Sklearn’s metadata but they
were automatically removed before executing the AutoML
experiments.

Generally speaking, all AutoML frameworks achieved
similar model qualities as shown in Table 3 but some
of them exhibited greater proficiency in solving specific

ML tasks than others. For all binary classification ma-
chine learning tasks, H20 AutoML always performed
slightly better than Microsoft AutoML (churn: +0.017,
credit: +0.008, diabetes: +0.004, gsar: +0.010) but in most
of the cases significantly better than Auto-Sklearn (churn:
+0.047, credit: +0.164, diabetes: +0.112, gsar: +0.085).
With regard to the four selected multi-class classification
datasets, no clear winner could be identified as the scored
metrics are very close to each other. For cmc and vehicle
Auto-Sklearn trained the best model with a Macro Accu-
racy of 0.577 and 0.848. Microsoft AutoML reached a score
of 0.261 for the dmft dataset and H20 AutoML a score of
0.795 for the mfeat dataset. Over that, non of the evalu-
ated AutoML framework was always clearly better than
the other ones for regression problem tasks. Although an
achieved MAE of 0.0 on the plasma test dataset is an in-
dicator for overfitting, Microsoft AutoML also obtained
the lowest MAE value (2.104) for the liver dataset. H20
trained the best model for cholesterol (0.658) whereas Auto-
Sklearn had serious difficulties with data preprocessing
and was therefore not able to generate any model. Nev-
ertheless, one can easily see, that Auto-Sklearn achieved
the best MAE quality result of 0.141 for the cloud dataset. A
direct comparison with the results of Ferreira et al. (2021)
also shows that H20 AutoML and Auto-Sklearn slightly
gained in performance with respect to model quality. In
2021, H20 AutoML achieved an ROC AUC score of 0.919 (-
0,012) for churnand 0.803 (-0.034) for credit. Moreover two
years ago, the best multi-class classification model that
was trained with Auto-Sklearn reached a Macro Accuracy
of 0.545 (- 0.032) for the cmc dataset and the best regres-
sion model scored an MAE of 2.329 (+ 0,187) for the liver
dataset. Furthermore, the number of models created or
trial runs also varies greatly. It can be clearly seen that H20
AutoML has often trained a remarkably larger number of
prediction models, especially for the regression examples.
Finally, regarding the required hardware resources it must
be said that H20 AutoML has constantly used nearly the en-
tire CPU power (around 90%) and 1000-1700 MB memory
for running the experiments. Microsoft AutoML (between
4,0-70% and 50-200 MB) and Auto-Sklearn (30-60% and
500-600 MB), on the other hand, were somewhat more
sparing with the provided resources. High resource re-
quirements without any means of limiting them can prove
to be a disadvantage in practice. Despite of limiting the
maximum training time, only Microsoft AutoML and Auto-
Sklearn made full use of the entire 15 minutes. H20 always
stopped a bit earlier as no further improvements could be
made, or additional models be trained.

5. Conclusion and Outlook

In this work, a brief overview of the fundamentals and
current state-of-the art techniques regarding automated
machine learning was given - a discipline that is increas-
ingly getting more important for all research areas as it
aims to generate reliable models with only a minimum

amount of human intervention. The functionality and us-
age of Microsoft AutoML, a model builder API based on
ML.NET, was then described in more detail. Being rel-
atively new, there is limited literature and performance
comparisons with established AutoML libraries, such as
Auto-Sklearn or H20 AutoML. Therefore, this paper aimed
to provide valuable insights into Microsoft AutoML’s capa-
bilities and potential compared to its counterparts. Several
experiments on different datasets clearly proofed, that this
library can easily compete with other popular and well-
established automated machine learning frameworks. An
easy-to-use and intuitive API as well as a variety of appli-
cable and exchangeable training algorithms also speak in
favor of using Microsoft AutoML. Furthermore, the pos-
sibility to leverage a variety of different hyperparameter
tuning algorithms allows scoring better results for diverse
datasets based on ubiquitous supervised machine learn-
ing tasks. Domain-specific expert knowledge can also be
integrated by manually adjusting the search space of a
training algorithm’s available hyperparameters. ML.NET
also handles unbounded data within windows, which can
be very beneficial for Big Data applications. For example,
by combining or extending Microsoft’s powerful and ro-
bust AutoML API with modern message broker systems,
such as Apache Kafka, one can consume real-time data
streams and train multiple machine learning models with
different training algorithms in parallel and increase the
performance by exchanging the hyperparameter tuners
on the fly. However, it is worth mentioning that currently
none of the three AutoML libraries compared support tasks
in the realm of unsupervised learning. Furthermore, the
findings are based on a few different-sized datasets, which
is why more experiments should be conducted in a future
work. A detailed comparison of the different hyperparam-
eter tuners in Microsoft AutoML could also be the content
for another paper. Nevertheless, the first results and eval-
uations of this paper are very promising and clearly ad-
vocate for the usage of Microsoft’s AutoML API, making
it highly recommended not even for developers of .NET
applications.

6. Acknowledgements

The financial support by the Austrian Federal Ministry
for Digital and Economic Affairs and the National Foun-
dation for Research, Technology and Development and
the Christian Doppler Research Association is gratefully
acknowledged.

References

Ahmed, Z., Amizadeh, S., Bilenko, M., Carr, R., Chin, W.-
S., Dekel, Y., Dupre, X., Eksarevskiy, V., Filipi, S., Finley,
T., etal. (2019). Machine learning at Microsoft with ML.
NET. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, pages
2448—-2458.

Neuhauser etal. |

Back, T. (1996). Evolutionary Algorithms in Theory and
Practice: Evolution Strategies, Evolutionary Programming,
Genetic Algorithms. Oxford University Press.

Escalante, H. J., Montes, M., and Sucar, L. E. (2009). Parti-
cle swarm model selection. Journal of Machine Learning
Research, 10(2).

Ferreira, L., Pilastri, A., Martins, C. M., Pires, P. M., and
Cortez, P. (2021). A Comparison of AutoML Tools for Ma-
chine Learning, Deep Learning and XGBoost. In 2021 In-
ternational Joint Conference on Neural Networks (IJCNN),
pages 1-8.

Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M.,
and Hutter, F. (2020). Auto-Sklearn 2.0: Hands-free
AutoML via Meta-Learning. arXiv:2007.04074 [cs.LG].

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.,
Blum, M., and Hutter, F. (2015). Efficient and Robust
Automated Machine Learning. In Cortes, C., Lawrence,
N,, Lee, D., Sugiyama, M., and Garnett, R., editors,
Advances in Neural Information Processing Systems, vol-
ume 28. Curran Associates, Inc.

Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2010). Se-
quential model-based optimization for general algo-
rithm configuration (extended version). Technical Re-
port TR-2010—-10, University of British Columbia, Com-
puter Science, Tech. Rep.

Hutter, F., Kotthoff, L., and Vanschoren, J. (2019). Auto-
mated Machine Learning. Springer Nature.

Kanter, J. M. and Veeramachaneni, K. (2015). Deep feature
synthesis: Towards automating data science endeavors.
In 2015 IEEE International Conference on Data Science and
Advanced Analytics (DSAA), pages 1-10.

Kennedy, J. and Eberhart, R. (1995). Particle swarm opti-
mization. In Proceedings of ICNN’95 - International Con-
ference on Neural Networks, volume 4, pages 1942—1948
vol.4.

LeDell, E. and Poirier, S. (2020). H20 AutoML: Scalable
Automatic Machine Learning. 7th ICML Workshop on
Automated Machine Learning (AutoML).

Microsoft (2023). How to use the ML.NET Automated Ma-
chine Learning (AutoML) APL

Olson, R. S. and Moore, J. H. (2016). TPOT: A tree-
based pipeline optimization tool for automating ma-
chine learning. In Workshop on automatic machine learn-
ing, pages 66—74. PMLR.

Thornton, C., Hutter, F., Hoos, H. H., and Leyton-Brown,
K. (2013). Auto-WEKA: Combined selection and hyper-
parameter optimization of classification algorithms. In
Proceedings of the 19th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages
847—855.

Tuggener, L., Amirian, M., Rombach, K., Lérwald, S., Var-
let, A., Westermann, C., and Stadelmann, T. (2019). Au-
tomated Machine Learning in Practice: State of the Art
and Recent Results. In 2019 6th Swiss Conference on Data
Science (SDS), pages 31—36.

Vanschoren, J., van Rijn, J. N., Bischl, B., and Torgo, L.
(2013). OpenML: Networked Science in Machine Learn-

| 35th European Modeling & Simulation Symposium, EMSS 2023

ing. SIGKDD Explorations, 15(2):49—60.

Wang, C., Wu, Q., Weimer, M., and Zhu, E. (2021). Flaml:
A fast and lightweight automl library. Proceedings of
Machine Learning and Systems, 3:434—447.

Waring, J., Lindvall, C., and Umeton, R. (2020). Automated
machine learning: Review of the state-of-the-art and
opportunities for healthcare. Artificial Intelligence in
Medicine, 104:101822.

Wu, Q., Wang, C., and Huang, S. (2020). Cost Effective
Optimization for Cost-related Hyperparameters. CoRR,

abs/2005.01571.

	Introduction
	AutoML: State of the Art
	Basic Workflow of AutoML Tools
	Common AutoML Optimization Techniques
	Introduction of the ML.NET AutoML API

	Functional Comparison of AutoML Libraries
	Basic Requirements for AutoML Libraries
	Comparison Based on AutoML Requirements

	Benchmarking Microsoft AutoML
	Experiment Setup
	Results and Discussion

	Conclusion and Outlook
	Acknowledgements

