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Abstract

Digital twins are high-fidelity computational models vastly used to improve several industrial areas. In most applications, the digitaltwin requires synchronization to the real asset to properly represent the system. However, the expenses associated with theimplementation of current synchronization methodologies for modeling vast industrial systems render such endeavors impracticable.In this work, a methodology to synchronize large-scale industrial digital twins through a snapshot file initialization approach isproposed. The method consists on creating an extensive data-base of snapshots files that represents the full parametric space of thesystem of interest. Each snapshot is linked to a period of measurements, which enables tracking the state of the system. A researchapproach is then applied to find the best snapshot file to initialize the model, synchronizing it to the real system based onmeasurements from the real asset. The methodology is demonstrated on an industrial process to separate zirconium and hafnium. Theresults show that, even if the real measurements are not precise and noisy, the approach can estimate a snapshot file to initialize themodel with a error under 15 %.
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1. Introduction

Over the past decades, and still today, the industry is ex-periencing multiple technological breakthroughs such asArtificial Intelligence (AI), Internet Of Things (IoT), andDigital Twins (DT) (Brosinsky et al., 2019). The latteris the main focus of this article. Digital Twins are high-fidelity computational models that represent a real sys-tem in a complex or reduced form, being able to virtuallycopy or estimate the behavior of a real asset, enabling theevaluation, optimization, or prediction of a system witha reduced cost (Semeraro et al., 2021). Digital twins have

been vastly used in industries, for instance, to design andtest engines for airplanes (Popp and Schmidt, 2012; Enagiet al., 2017), to help the performance and automate indus-trial and manufacturing processes (Pérez Silva et al., 2020;Aguirre et al., 2020), to train industrial operators and re-duce danger risk (Zoleykani et al., 2022), and to do optimalcontrol and predict the behavior of different industrial pro-cesses (Vassal et al., 2022; Xia et al., 2021; Mounaam et al.,2020; Flood and Flood, 2022). Moreover, it has also beenapplied to support effective design of industrial productionlines (Cimino et al., 2023), to improve human robot col-

https://creativecommons.org/licenses/by-nc-nd/4.0/.
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laboration (Ramasubramanian et al., 2022) and to predictfailure for certain types of tools (Luo et al., 2019).

The DT internal models can be based on physical equa-tions (white box models), based on data (black box mod-els), or hybrid (gray box models) (Brosinsky et al., 2019).In this article, a hybrid model is used. For most applica-tions, the DT must correspond to the real asset, not only onthe engineering and design properties but also on the stateresponse of the system, requiring synchronization (Eck-hart and Ekelhart, 2018). For instance, predictive controland optimization applications demand a DT synchronizedto the real system, while operator training applications donot. Therefore, the research for methods to adjust modelshas increased over the past years, showing that most ofthe available synchronization techniques require primaryknowledge from the system of interest, i.e. historical datafrom the system key variables (Boyd, 2001). For instance,parameter identification techniques have been vastly ap-plied to calibrate DT for industrial fields, such as for powersystems (Chen et al., 2022), or for industrial redundantmanipulator robots (Urrea and Pascal, 2017). Furthermore,the synchronization of DT with industrial plants has beendeveloped through techniques such as state observers de-sign (Zipper and Diedrich, 2019), Artificial Intelligence,and Neural Networks (Akbarian et al., 2020; Brosinskyet al., 2019).
Remark 1: It is worth stressing that in this work, synchro-

nization refers to all methods that drive a DT to the same
behavior as the one of the real asset, while calibration is an
approach where parameters are automatically estimated to
make the system behavior gets closer to the expected one.

Nevertheless, to the best authors’ knowledge, most ofthe available bibliography focuses on small-scale systems,processes, or machinery models (e.g. turbines, motors,boilers), which are simpler when compared to an entireplant, such as a refinery or a nuclear power plant. At aplant scale, the synchronization methodologies proposedfor small systems might encounter several computationallimitations, such as the computational cost and time tofind a solution. One may also note that, for all of the avail-able methodologies, the system of interest has a DT whichequations are assumed to be known or available to be simu-lated coupled with the synchronization methods. However,for large-scaled nonlinear systems, which is the focus ofthis work, it is not feasible to presume that the model-ing equations used on the DT are fully known, available,or even easy to simulate coupled with optimization algo-rithms due to their complexity.
Developing DT for large-scale industrial processes is achallenge itself, since such systems usually have severalcoupled components, low confidence and unknown pa-rameters, are complex, highly non-linear, and have fewand uncertain data available from the real asset (Schweigeret al., 2020). Nevertheless, the benefits that a DT bringsto process engineering are such that the research on mod-eling solutions is an ongoing work. On the industrial pro-cess modeling, for instance, the physical-based model of

a natural gas steam reforming plant (Salem et al., 2021),developed on ASPEN Hysys, has been used to generate pro-cess data to identify the optimal condition to maximize realproduction. (Salem et al., 2021) used a model at design con-dition, validated through steady state real data. In (Carraraet al., 2010) the steady state simulation of a steam reform-ing hydrogen production plant has been developed usingASPEN Plus commercial code (physical based model), cou-pled with field data from the plant, to theoretically studythe energetic performance of the process. However, suchworks do not focus on dynamic simulations or how to vali-date the model behavior under real process charges.
Accordingly, for small scaled systems, it has been seenpreviously that parameter identification and synchroniza-tion techniques can be applied, nevertheless, for large-scaled DT such methods usually do not apply. Using thepreviously presented techniques, such as calibration orobservers methods, demands coupling the DT equationswith the observer, or extensively exploiting the parametricspace for the unknown parameters, thus mapping the sys-tem behavior. However, most industrial high-fidelity DTare developed in software where equations are not avail-able, and considering thousands of variables (physical andcomputational ones), such that these methods do not ap-ply.
Inspired by such a problem, this work proposes an ap-proach to synchronize large-scale nonlinear industrial DTthrough a snapshot initialization: the idea is to synchronizea DT by finding the best point to initialize it, such that thelarge-scale physics-based DT dynamics is similar to thereal system. The approach is based on real measurementscoming from the plant and already existing data from theDT. In the next sections of this paper, the proposed ap-proach is detailed and tested for a real industrial plant. Insection 2, the problem is stated, and section 3 presentsthe proposed methodology to address it. Section 4 thenillustrates its application through an industrial exampleand results, while section 5 concludes the paper.

2. Problem Statement

The modeling of industrial processes through differentphysics-based simulation software (INDISS Plus, Mod-elica, Hysys, etc) is more and more applied in industrialfields (Schweiger et al., 2020). However, as previously dis-cussed, there are several difficulties linked to the propersetup of a DT for a real industrial large scaled system. Inthis article, a DT for a zirconium purification process fromFramatome (Barberis, 2016) is considered as an example. Amodel of the process developed with INDISS Plus softwarefrom CORYS is used. It is based on P&ID (Process & Instru-mentation Diagram), control narrative, and equipmentdatasheest. The available model has been initially devel-oped for operator training purposes, i.e., to teach operatorshow to handle the plant in the best possible way. Such atype of model presents hypothetical scenarios of the plant,and is not synchronized to the real behavior. For this work,
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the same model is used for engineering applications, suchas state prediction, failure detection, etc. Consequently,the model must be synchronized to the plant through theplant’s available information.
Figure 1 gives a scheme of the proposed synchroniza-tion solution, which is divided into three phases; (1) dataextraction, (2) offline synchronization and (3) real and DTmeasurements comparison. In the first phase (1) informa-tion is extracted from the real plant, and a data treatmentmethod is applied to make the real data homogeneousand clean. The second phase (2) is the synchronization ofthe system based on the available measurements. In thisphase, an optimization methodology is applied to find thebest initialization for the DT, such that the measurementsfrom the plant and the model are as close as possible. Thethird phase (3), thus, is the validation of the DT based onthe behavior of the measurement from the DT and the realasset. In this phase, the data from the real plant (blue line)and the DT (red dotted line) are compared, as exemplifiedin the plot.

Figure 1. Problem scheme.

The main objective is to do an offline synchronizationof the DT with the plant by finding the best state to ini-tialize the DT, such that it leads to a behavior similar tothe plant’s behavior. On the modeling software, however,there are hundreds of internal variables, parameters, andstates which are not fully known or accessible. Thus, amethodology based on snapshot files is proposed. Let usnow take an overview of INDISS Plus and its main charac-teristics.
2.1. INDISS Plus

INDISS Plus is a high-fidelity process simulation platformthat is based on fluid dynamics, rigorous thermodynamicsand physical models (Thiabaud et al., 2011). The softwaremodel relies on first principles, such as the conservationof mass, momentum, and energy. INDISS Plus enables themodeling of any fluid industrial process from the mainequipments to the safety system, covering the full projectlife cycle within the same platform. The process controlsystem can be either modeled into INDISS Plus with dedi-cated libraries or imposed by a DCS (Distributed ControlSystem) connected to it via OPC (Open Platform Commu-

nications). It includes processes, instruments, and safetysystems, forming a virtual plant used for design, training,or other engineering applications (CORYS - INDISS PlusTeam, 2022).Even though INDISS Plus is a software for dynamic sim-ulation and most of the physical parameters, variables, andboundary conditions are available, many internal statesand parameters are hidden in the simulation, and can notbe directly accessed. Such hidden values are, however, cru-cial for the simulation convergence. If a model from thesoftware needs to be created but such values are not con-sidered, the simulation will most likely diverge from theexpected behavior. To overcome such limitations, the soft-ware gives the option to save information on a SnapshotFile (SF). An SF is a large binary file that contains all in-formation linked to the DT at the instant the snapshot issaved, i.e., the value of all variables, parameters, and inter-nal states. Such a file can then be loaded into the softwareto restart the simulation at the same state as the one savedinto the SF (CORYS - INDISS Plus Team, 2022).Moreover, INDISS Plus enables the user to extract thevalue of model measurements over time. Also, the soft-ware outputs the name of the SF linked to each instant ofsimulation, such that, each time a new SF is saved duringthe simulation, the user can track when the snapshot wassaved and the measurement values linked to each SF. Itis worth stressing that the model output is what enablestracking the snapshot files during the simulation, with-out the need of opening the file and interpreting it. Theinterpretation of a snapshot file would demand a high costconcerning industrial large-scale processes, since hun-dreds of variables and parameters, and hundreds of hiddenstates would have to be decoded. Dynamically speaking,the cost of decoding SF for each saved instant is unfeasible.This work proposes a methodology based on the snap-shot files and the extracted output from INDISS Plus. Inthe following section, the industrial test case and the DTare presented.
2.2. Industrial Problem

The test case here is the industrial Framatomejarrie plant, which operates at the front end ofthe global process of converting zirconium (Zr)ore into nuclear and other industrial products(https://www.framatome.com/en/implantations/jarrie).The process consists in separating Zr and hafnium (Hf),which is a challenge since the two elements have similarchemical properties. To obtain pure Zr, a distillationprocess is applied, being composed of multiple stepswhich are presented in Figure 2 (Barberis, 2016).The process is composed of four main parts: (1) thefeed preparation (2) the distillation column (3) the liquidbottom collector drum (4) the reboiler. The process is adistillation that separates zirconium chloride and hafniumchloride which are initially mixed together. The distilla-tion must use a solvent to dissolve the Zr and Hf chloride.
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Figure 2. Framatome zirconium process scheme.

This solvent is a mixture of molten salts. The more volatilehafnium chloride is collected as a vapor phase at the top ofthe distillation column and routed to a condenser. The lessvolatile component, the zirconium chloride is extractedfrom the liquid coming from the reboiler and routed to acondenser. The liquid is pumped from the bottom drumto the top of the column. It is important to note that theschematic diagram presented herein provides only a broadoverview of the system. The actual industrial plant is com-posed of numerous additional equipment, which have notbeen depicted in this diagram for intellectual property rea-sons.This work uses a subsystem from the jarrie plant asan industrial example. It is composed of the third andfourth parts of the plant; the bottom of the distillationcolumn, the bottom drum, the heat exchanger, and thereboiler. A model for a such subsystem is already availableon INDISS Plus. For the test, a set of 25 measurementsfrom the real system is given for a period of one week,where the process behavior varies. It is worth stressingthat such a process has a slow dynamical response, andthus the measurements are given for a week.
3. ProposedMethodology
Our methodology consists in three main steps, as shownin Figure 3; (1) extract and pre-process data, (2) searchmeasurements in the snapshot data library, and (3) returnsthe ’best’ snapshot to synchronize the DT. In the followingsections, each step is explained in more detail.
3.1. Plant Data Pre-Processing

The first step to enable the synchronization of the DT is toobtain a set of data from the plant. In this case, 25 measure-ments are available, but each one has a range of variation,a different sampling time step, noise and missing data.Then, it is necessary to clean and homogenize all the avail-able measurements, i.e., complete the missing data points,set the same sampling time for all measurements, andclean the measurements outliers and noise.Once the data is homogeneous, a Principal Component

Analysis (PCA) is applied to understand the relation be-tween the different variables, enabling the reduction of themodel complexity by keeping only the variables that havedifferent behavior. For instance, sometimes similar mea-sures are taken close to each other, most likely repeatingthe same information. The use of PCA enables the under-standing of the data and existing relations, and also givesthe possibility to take out redundant information from thedata set and to detect errors on the measurements. Suchan approach must be applied when the system of interestis extensively big, and the number of available measure-ments is high. For the sake of brevity, the data processingis not further discussed in this paper.
3.2. Initialization Snapshot Selection

The goal here is, given a set of snapshots generated withINDISS Plus and a period of measurements from the realplant, to select the snapshot that better corresponds to thebehavior of the measurement. There are two importantsteps here; (1) how to create the snapshot library and (2)how to find the best snapshot.
Remark 2: In this methodology, the Snapshots are consid-

ered as two-component objects. Each snapshot is composed
of an INDISS Plus snapshot file reference and a set of tempo-
ral measurements, as represented in Figure 3 at step 2. Such
an approach enables to link each snapshot to a state of the
system, characterized by its measurements. Again, the use
of this particular snapshot definition enables the application
of identification methodologies without knowing what is ex-
actly inside a snapshot file, thus facilitating the research and
decreasing the cost compared to other estimation methods.It is worth mentioning that the model used for the syn-chronization is assumed to have a behavior close to thesteady state behavior of the plant. When the DT is not rep-resentative of the steady state behavior of the system, itis necessary to do a calibration on the model, but this is aresearch subject itself, and not the focus of this work.
3.2.1. Creation of Snapshot LibraryFirst, it is necessary to build a database of snapshots. Twomethodologies are proposed; one based on plant com-mands and the other one on sampling approach.The plant command approach consists of using infor-

Figure 3.Method scheme.
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mation given by the plant measurements to explore the re-gions of variation of the inputs, i.e. apply the same bound-ary conditions and commands given by the plant at the DT.For that, it is necessary to have extensive historical dataof the plant, with variations, to impose the same valueson the DT. For instance, if two command set-points areavailable in between the available measurements, thosevalues can be used as an imposed input on the DT, as it isgoing to be demonstrated in Section 4.The sampling-based approach is similar to that of thewell know Design of Experiment (DoE), where the vari-ables that impact the system output are known, and thoseare varied in a combined form, assuring that the paramet-ric space is extensively explored. To apply such a method,it is necessary to know the limit variation range for eachof the inputs, i.e., if there are n inputs (x0, x1, · · · , xn–1), itis necessary to know the range for each of the inputs; i.e.((xmin0 , xmax0 ), (xmin1 , xmax1 ), · · · , (xmin
n–1, xmax

n–1 )). For industrialsystems, the knowledge of such values must come fromspecialists in the process of interest, such that it remainsa physical and representative value.Once the ranges are set, a statistical method, suchas regularly spaced or Latin Hypercube Sampling(LHS) (Stein, 1987), is used to create a list of values foreach variable. The number of created points depends onthe sensitivity to the process of interest, which can behighly sensitive, thus needing a lot of points, or slightlysensitive, needing fewer points to map the behavior of thesystem. Once each input variable has a set of values, theDT is run according to those values , varying one inputvalue at a time. This approach guarantees that all of thepossible behaviors for the system of interest are exploredand can be retrieved in the snapshot search. A furtherstudy of the impact of the SF distribution is a future workof interest.
3.2.2. Initialization Snapshot ResearchMethodNow that the snapshot database is created, the last step isto find the best snapshot to initialize the DT based on realmeasurements taken from the plant. To estimate the ’best’SF from the database, a Root Mean Square (RMS) methodis used, such that the smaller distance between the real andthe DT temporal measurements is returned as the snap-shot to initialize the model. Precisely, suppose that the n
available plant measurements are Υ = [

Y0, Y1, · · · , Yn–1],
where each measurement Y i, i ∈ [0, n – 1], is a vec-tor with the temporal variation of the measurement, i.e.,
Y i = [

yi0, yi1, · · · , yi
τ

]T, for yi
t the measurement i for instants

t ∈ [0, · · · , tτ]. t is the indexation for each measurementinstant, and τ is the number of samples.The DT measurements have the same structure, be-ing; Υ̂ = [
Ŷ0, Ŷ1, · · · , Ŷn–1], where each Ŷ i corresponds to

a vector of measurements Ŷ i = [
ŷi0, ŷi1, · · · , Ŷ i

Γ

]T, with Γ

the total number of snapshot samples. To find the bestsnapshot to initialize the model, an RMS between the real

data and the snapshot set of measurements is done for allof the snapshots, and the minimization of the mean RMSvalue for all measures gives the best snapshot. Once thedistance (dist(Y i, Ŷ i)) is computed (Eq. 1), the minimumvalue (distmin) is identified.

dist(Y i, Ŷ i) = 1
n

n∑
i=0

RMS(Y i, Ŷ i) (1)
Once the minimum value is obtained, the associatedSF can be automatically selected from the database, andgiven to the DT to initialize the model.Such a method is heavily based on the measurementsthat are available from the process of interest. To prop-erly define and set the measurements from the plant, it isimportant to have special technical knowledge of the pro-cess. It is worth stressing that the choice of the period ofsampling measurements (τ) has an impact on the results,and needs to be chosen based on the system’s dynamicresponse time. In this work, a trial and error approachwith industrial knowledge is applied to find the optimalsampling period, but further analysis of the impact of sucha variable is to be developed.

4. Results

Let us now see the proposed methodology applied to theindustrial plant subsystem, presented in Section 2.2. Thefirst step is to clean and homogenize the data. Since thehistorical data is extensive, the commands and boundaryconditions for the system can be identified, such that thesame conditions are imposed on the DT. Once the com-mands and boundary conditions are defined, the DT is rununder such inputs, to generate a set of snapshot files anddata measurements, as explained in Section 3.2.1, at theplant commands approach. In this work, one SF was savedfor each hour of simulation, leading to a total of 150 SF.For the subsystem of interest, four variables are used asinputs: the temperature setpoint of the boiler, the bound-ary conditions of pressure and temperature at the distil-lation column bottom, and the pressure at the heat ex-changer output. Then, INDISS plus is simulated with theimposed inputs and, for the sake of brevity, a subset often measurements is used for comparison and discussionhere.Figure 4 gives the comparison between the real mea-surements (blue curve) and the simulated ones (red curve)for the same imposed inputs. All the measurements arenormalized with respect to the real measurement values,and the time step on the horizontal axis is given in seconds[s]. The comparison between the curves helps validate themodel and create the snapshot library. Overall, the behav-ior of the DT is similar to the real expected one, and fewdiscrepancies are seen. The difference between data mighthave two causes: first, the real measurements come fromtransmitters that could have some internal error, leading
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Figure 4. Comparison between the real plant (blue line) and for the DT (redline) measurements for the same imposed input command values.

to a false measurement value, linked to an offset on themean measurement value. However, the dynamic behav-ior of each measurement can be trusted. Second, the DTmodel, in this case, represents a section of the whole sys-tem, that should interact with the full system, and themodeled subsystem only represent partially the physicalimpact coming from the external sections. Also, the modelpresents the ideal physical behavior, and it might underes-timate some thermal and power losses, which cannot becontrolled in reality. However, it is considered that the sim-ulated data are close enough to the plant state to proceedwith the snapshot research method described in 3.2.2.
In Figure 4, two of the four imposed inputs are depicted,representing a specific subset of the measured variables;the temperature setpoint of the boiler and the pressure ofthe bottom of the column, both given at the second rowfrom the figure top. The corresponding real and DT curvesfor the two inputs are superposed, meaning that thoseare identical all along the simulation. The Power measure-ment (top row on the left) and the outlet temperature of theheat exchanger (fourth row from the top) are the measure-ments with remarkable differences in comparison to thereal curve. The power given to heat the fluid on the boileris higher on the real measurement, and this is due to the

losses that the boiler has, which is ideal in the simulation,while it is impacted by many factors in reality. That be-ing said, the mean behavior of the power measurement issimilar. Similar remarks are made about the temperature,since the heat exchanger modeled presents ideal behavior,while the real one has other external factors that are notmodeled. Nevertheless, the mean behavior for the temper-ature is similar. All the other measurements present lowerror in comparison to the real data, giving a mean anddynamic behavior close to reality.
Once the model and snapshot library are ready, a set ofmeasurements from the real data is randomly chosen totest the methodology presented in Section 3.2.2. Here, theperiod for taking the plant measurements is of 45 minutes,meaning that, for a sampling time step of 60 seconds, 45instants are taken for each measurement. The choice ofsuch 45 minutes window of measurement is done by trialand error. Here, three validation cases are discussed, fordifferent sets of measurements.

Figure 5. Comparison between plant (blue line) and the DT measurementsfound through the RMS minimization (red line) for the first validationcase.

Generally, all the variables have a good match for theplant and the model measurement, less than 5 % error.
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However, there is a remarkable difference between theplant and DT values for the power and the heat exchangertemperature. Such an error is linked to the transmittermeasurement precision and to the ideal hypothesis thatthe model assumes, as previously discussed. Even thoughthere are measurements that are noisy or not precise, themethod is still able to find the best match of DT measure-ments, since it is computed over a period of measurements,thus accounting for the dynamic behavior of the measure,and because it averages the error between each of the mea-surements. The average error, for this first validation case,is 1 %. The summarized result of the method for the threevalidation cases is given in Table 1.
Table 1. Validation result summary

Case Expected SF Found SF MinimumRMS Expected vsFound error
1 01d03h00m 01d03h00m 1 % 0 %2 02d22h00m 02d18h00m 7 % 0.26 %3 05d10h00m 04d22h00m 13 % 0.32 %

Table 1 presents the summary of the results for threevalidation cases. It gives the validation case in the firstcolumn, the reference to the expected snapshot in the sec-ond column, the predicted snapshot reference in the thirdcolumn, the minimum error found on the RMS (Eq. 1) onthe fourth column, and the error between the expectedand the found snapshot behaviors on the last column. Theexpected and found snapshot references correspond to theinstant where the snapshot is saved during the simulation,in days (d), hours (h), and minutes (m), such that the ref-erence looks like: ##d##h##m. For instance, the first val-idation case expected snapshot corresponds to 01d03h00mof simulation, i.e. taken after 0.97e5 seconds of simulation.The expected SF was taken based on the superpositionbetween the plant and the DT curves; since the same in-puts (commands and boundary conditions) are imposedon both systems, each instant of simulation is assumedto correspond to the same instant of the plant data, thusbeing linked to a saved SF from the simulation. The use ofsuch snapshot reference enables to superficially validate ifthe predicted SF from the initialization snapshot researchmethod is close to the expected one. To quantify the errorbetween the expected and predicted SF, both snapshotswere loaded and run on INDISS Plus, and their correspond-ing measurements were compared by computing the RMSrelative error, shown in the fifth column of table 1.
The predicted snapshots for the two first validationcases are remarkably close to the expected one, and theminimum RMS error is lower than 10 %. In figure 5, onemay see the comparison between the measurements fromthe plant (Y) and from the DT (Ŷ) of the best match for thefirst validation case. The difference between most of themeasurements is very little, presenting a good fit with arelative error of 1 %. Nonetheless, for the Power and theTemperature of the heat exchanger (fourth row from the

top), a gap is seen between the two curves, which is dueto the impact of external factors that are not taken intoaccount on the ideal model used on the DT. Similar be-havior was seen for the second validation case. The thirdvalidation case, however, presented a slightly higher er-ror of 13 % for the best distance match. Such an error isdue to the plant measurements which have a non-physicalbehavior, presenting a value that does not represent thereal dynamic of the system, but it is not shown here forthe sake of brevity. Such a problem, might be linked to thelack of precision of a measurement transmitter, and evenif the best match error is higher, the comparison betweenthe found and expected SF presents an error of 0.32 %.
5. Conclusion
A methodology to synchronize large scale industrial DTthrough a snapshot file approch has been proposed. Themethod consists in using an existing DT to generate adatabase of snapshot files that are linked to a set of mea-surements. The approach assumes that the DT softwareenables the recording of the model variables and parame-ters through snapshot files, which can be loaded into thesoftware to impose a certain state over the DT. A RMS isused to estimate the best snapshot file to initialize the DTsuch that it is synchronized to the real asset behavior.When applied to real data from the industrial plant sub-system from Framatome, the approach presents remark-able results, even if real data are not precise and containsnoise. Here, the plant command approach is used to gener-ate the snapshot database, since the amount of data fromthe plant is extensive and variable. However, when the his-tory of the plant behavior is small or lacks variability, thesampling-based approach can be used, and the study ofsuch a method is a perspective of this work. Furthermore,it has been seen that the period of measurement comingfrom the plant impacts the result, and thus more attentionshould be given to the choice of the measurement timewindow. Here, a period of 45 minutes of sampling seemsoptimal, and such a relatively long time is linked to theslow dynamics of the studied system.The proposed approach has several advantages in com-parison to existing ones. For instance, the method is notlinked to the DT model or equations, since it is based onSF, and the better distributed and populated the snapshotdatabase is, the better the precision of the results. Also,no training is necessary, different from machine learningtraining algorithms, since the approach is based only onthe minimization of the distance between the plant andthe DT measures. It has also been seen that the more theSF on the database, the more the research method takestime to compute. Thus, the study of other approaches forhighly populated snapshot database is a perspective of thiswork. Moreover, the presented method is now being testedon the full jarrie plant, giving a highly complex systemand DT example.
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