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Abstract

Digital twins are high-fidelity computational models vastly used to improve several industrial areas. In most applications, the digital
twin requires synchronization to the real asset to properly represent the system. However, the expenses associated with the
implementation of current synchronization methodologies for modeling vast industrial systems render such endeavors impracticable.
In this work, a methodology to synchronize large-scale industrial digital twins through a snapshot file initialization approach is
proposed. The method consists on creating an extensive data-base of snapshots files that represents the full parametric space of the
system of interest. Each snapshot is linked to a period of measurements, which enables tracking the state of the system. A research
approach is then applied to find the best snapshot file to initialize the model, synchronizing it to the real system based on
measurements from the real asset. The methodology is demonstrated on an industrial process to separate zirconium and hafnium. The
results show that, even if the real measurements are not precise and noisy, the approach can estimate a snapshot file to initialize the
model with a error under 15 %.
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1. Introduction been vastly used in industries, for instance, to design and

. . . test engines for airplanes (Popp and Schmidt, 2012; Enagi
Over the past decades, and still today, the industryisex- et a1 2017), to help the performance and automate indus-
periencing multiple technological breakthroughs suchas i3] and manufacturing processes (Pérez Silva etal., 2020;
Artificial Intelligence (AI), Internet Of Things (IoT),and  agyirre et al., 2020), to train industrial operators and re-
Digital Twins (DT) (Brosinsky et al., 2019). The latter gy ce danger risk (Zoleykani etal., 2022), and to do optimal
is the main focus of this article. Digital Twins are high~  ¢ontro] and predict the behavior of different industrial pro-
fidelity computational models that represent a real sys-  cegges (Vassal et al., 2022; Xia et al., 2021; Mounaam et al.,
tem ina complex or reduced form, being able to virtually  54,0: Flood and Flood, 2022). Moreover, it has also been
copy or estimate the behavior of a real asset, enabling the  3551ied to support effective design of industrial production

evaluation, optimization, or prediction of a system with i ag (Cimino et al., 2023), to improve human robot col-
areduced cost (Semeraro et al., 2021). Digital twins have
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laboration (Ramasubramanian et al., 2022) and to predict
failure for certain types of tools (Luo et al., 2019).

The DT internal models can be based on physical equa-
tions (white box models), based on data (black box mod-
els), or hybrid (gray box models) (Brosinsky et al., 2019).
In this article, a hybrid model is used. For most applica-
tions, the DT must correspond to the real asset, not only on
the engineering and design properties but also on the state
response of the system, requiring synchronization (Eck-
hart and Ekelhart, 2018). For instance, predictive control
and optimization applications demand a DT synchronized
to the real system, while operator training applications do
not. Therefore, the research for methods to adjust models
has increased over the past years, showing that most of
the available synchronization techniques require primary
knowledge from the system of interest, i.e. historical data
from the system key variables (Boyd, 2001). For instance,
parameter identification techniques have been vastly ap-
plied to calibrate DT for industrial fields, such as for power
systems (Chen et al., 2022), or for industrial redundant
manipulator robots (Urrea and Pascal, 2017). Furthermore,
the synchronization of DT with industrial plants has been
developed through techniques such as state observers de-
sign (Zipper and Diedrich, 2019), Artificial Intelligence,
and Neural Networks (Akbarian et al., 2020; Brosinsky
etal., 2019).

Remark 1: It is worth stressing that in this work, synchro-
nization refers to all methods that drive a DT to the same
behavior as the one of the real asset, while calibration is an
approach where parameters are automatically estimated to
make the system behavior gets closer to the expected one.

Nevertheless, to the best authors’ knowledge, most of
the available bibliography focuses on small-scale systems,
processes, or machinery models (e.g. turbines, motors,
boilers), which are simpler when compared to an entire
plant, such as a refinery or a nuclear power plant. At a
plant scale, the synchronization methodologies proposed
for small systems might encounter several computational
limitations, such as the computational cost and time to
find a solution. One may also note that, for all of the avail-
able methodologies, the system of interest has a DT which
equations are assumed to be known or available to be simu-
lated coupled with the synchronization methods. However,
for large-scaled nonlinear systems, which is the focus of
this work, it is not feasible to presume that the model-
ing equations used on the DT are fully known, available,
or even easy to simulate coupled with optimization algo-
rithms due to their complexity.

Developing DT for large-scale industrial processes is a
challenge itself, since such systems usually have several
coupled components, low confidence and unknown pa-
rameters, are complex, highly non-linear, and have few
and uncertain data available from the real asset (Schweiger
etal., 2020). Nevertheless, the benefits that a DT brings
to process engineering are such that the research on mod-
eling solutions is an ongoing work. On the industrial pro-
cess modeling, for instance, the physical-based model of

a natural gas steam reforming plant (Salem et al., 2021),
developed on ASPEN Hysys, has been used to generate pro-
cess data to identify the optimal condition to maximize real
production. (Salem etal., 2021) used a model at design con-
dition, validated through steady state real data. In (Carrara
et al., 2010) the steady state simulation of a steam reform-
ing hydrogen production plant has been developed using
ASPEN Plus commercial code (physical based model), cou-
pled with field data from the plant, to theoretically study
the energetic performance of the process. However, such
works do not focus on dynamic simulations or how to vali-
date the model behavior under real process charges.

Accordingly, for small scaled systems, it has been seen
previously that parameter identification and synchroniza-
tion techniques can be applied, nevertheless, for large-
scaled DT such methods usually do not apply. Using the
previously presented techniques, such as calibration or
observers methods, demands coupling the DT equations
with the observer, or extensively exploiting the parametric
space for the unknown parameters, thus mapping the sys-
tem behavior. However, most industrial high-fidelity DT
are developed in software where equations are not avail-
able, and considering thousands of variables (physical and
computational ones), such that these methods do not ap-
ply.

Inspired by such a problem, this work proposes an ap-
proach to synchronize large-scale nonlinear industrial DT
through a snapshot initialization: the idea is to synchronize
a DT by finding the best point to initialize it, such that the
large-scale physics-based DT dynamics is similar to the
real system. The approach is based on real measurements
coming from the plant and already existing data from the
DT. In the next sections of this paper, the proposed ap-
proach is detailed and tested for a real industrial plant. In
section 2, the problem is stated, and section 3 presents
the proposed methodology to address it. Section 4 then
illustrates its application through an industrial example
and results, while section 5 concludes the paper.

2. Problem Statement

The modeling of industrial processes through different
physics-based simulation software (INDISS Plus, Mod-
elica, Hysys, etc) is more and more applied in industrial
fields (Schweiger et al., 2020). However, as previously dis-
cussed, there are several difficulties linked to the proper
setup of a DT for a real industrial large scaled system. In
this article, a DT for a zirconium purification process from
Framatome (Barberis, 2016) is considered as an example. A
model of the process developed with INDISS Plus software
from CORYS is used. It is based on P&ID (Process & Instru-
mentation Diagram), control narrative, and equipment
datasheest. The available model has been initially devel-
oped for operator training purposes, i.e., to teach operators
how to handle the plant in the best possible way. Such a
type of model presents hypothetical scenarios of the plant,
and is not synchronized to the real behavior. For this work,



the same model is used for engineering applications, such
as state prediction, failure detection, etc. Consequently,
the model must be synchronized to the plant through the
plant’s available information.

Figure 1 gives a scheme of the proposed synchroniza-
tion solution, which is divided into three phases; (1) data
extraction, (2) offline synchronization and (3) real and DT
measurements comparison. In the first phase (1) informa-
tion is extracted from the real plant, and a data treatment
method is applied to make the real data homogeneous
and clean. The second phase (2) is the synchronization of
the system based on the available measurements. In this
phase, an optimization methodology is applied to find the
best initialization for the DT, such that the measurements
from the plant and the model are as close as possible. The
third phase (3), thus, is the validation of the DT based on
the behavior of the measurement from the DT and the real
asset. In this phase, the data from the real plant (blue line)
and the DT (red dotted line) are compared, as exemplified
in the plot.
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Figure 1. Problem scheme.

The main objective is to do an offline synchronization
of the DT with the plant by finding the best state to ini-
tialize the DT, such that it leads to a behavior similar to
the plant’s behavior. On the modeling software, however,
there are hundreds of internal variables, parameters, and
states which are not fully known or accessible. Thus, a
methodology based on snapshot files is proposed. Let us
now take an overview of INDISS Plus and its main charac-
teristics.

2.1. INDISS Plus

INDISS Plus is a high-fidelity process simulation platform
that is based on fluid dynamics, rigorous thermodynamics
and physical models (Thiabaud et al., 2011). The software
model relies on first principles, such as the conservation
of mass, momentum, and energy. INDISS Plus enables the
modeling of any fluid industrial process from the main
equipments to the safety system, covering the full project
life cycle within the same platform. The process control
system can be either modeled into INDISS Plus with dedi-
cated libraries or imposed by a DCS (Distributed Control
System) connected to it via OPC (Open Platform Commu-
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nications). It includes processes, instruments, and safety
systems, forming a virtual plant used for design, training,
or other engineering applications (CORYS - INDISS Plus
Team, 2022).

Even though INDISS Plus is a software for dynamic sim-
ulation and most of the physical parameters, variables, and
boundary conditions are available, many internal states
and parameters are hidden in the simulation, and can not
be directly accessed. Such hidden values are, however, cru-
cial for the simulation convergence. If a model from the
software needs to be created but such values are not con-
sidered, the simulation will most likely diverge from the
expected behavior. To overcome such limitations, the soft-
ware gives the option to save information on a Snapshot
File (SF). An SF is a large binary file that contains all in-
formation linked to the DT at the instant the snapshot is
saved, i.e., the value of all variables, parameters, and inter-
nal states. Such a file can then be loaded into the software
to restart the simulation at the same state as the one saved
into the SF (CORYS - INDISS Plus Team, 2022).

Moreover, INDISS Plus enables the user to extract the
value of model measurements over time. Also, the soft-
ware outputs the name of the SF linked to each instant of
simulation, such that, each time a new SF is saved during
the simulation, the user can track when the snapshot was
saved and the measurement values linked to each SF. It
is worth stressing that the model output is what enables
tracking the snapshot files during the simulation, with-
out the need of opening the file and interpreting it. The
interpretation of a snapshot file would demand a high cost
concerning industrial large-scale processes, since hun-
dreds of variables and parameters, and hundreds of hidden
states would have to be decoded. Dynamically speaking,
the cost of decoding SF for each saved instant is unfeasible.

This work proposes a methodology based on the snap-
shot files and the extracted output from INDISS Plus. In
the following section, the industrial test case and the DT
are presented.

2.2. Industrial Problem

The test case here is the industrial Framatome
jarrie plant, which operates at the front end of
the global process of converting zirconium (Zr)
ore into nuclear and other industrial products
(https://www.framatome.com/en/implantations/jarrie).
The process consists in separating Zr and hafnium (Hf),
which is a challenge since the two elements have similar
chemical properties. To obtain pure Zr, a distillation
process is applied, being composed of multiple steps
which are presented in Figure 2 (Barberis, 2016).

The process is composed of four main parts: (1) the
feed preparation (2) the distillation column (3) the liquid
bottom collector drum (4) the reboiler. The process is a
distillation that separates zirconium chloride and hafnium
chloride which are initially mixed together. The distilla-
tion must use a solvent to dissolve the Zr and Hf chloride.
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Figure 2. Framatome zirconium process scheme.

This solvent is a mixture of molten salts. The more volatile
hafnium chloride is collected as a vapor phase at the top of
the distillation column and routed to a condenser. The less
volatile component, the zirconium chloride is extracted
from the liquid coming from the reboiler and routed to a
condenser. The liquid is pumped from the bottom drum
to the top of the column. It is important to note that the
schematic diagram presented herein provides only a broad
overview of the system. The actual industrial plant is com-
posed of numerous additional equipment, which have not
been depicted in this diagram for intellectual property rea-
sons.

This work uses a subsystem from the jarrie plant as
an industrial example. It is composed of the third and
fourth parts of the plant; the bottom of the distillation
column, the bottom drum, the heat exchanger, and the
reboiler. A model for a such subsystem is already available
on INDISS Plus. For the test, a set of 25 measurements
from the real system is given for a period of one week,
where the process behavior varies. It is worth stressing
that such a process has a slow dynamical response, and
thus the measurements are given for a week.

3. Proposed Methodology

Our methodology consists in three main steps, as shown
in Figure 3; (1) extract and pre-process data, (2) search
measurements in the snapshot data library, and (3) returns
the ’best’ snapshot to synchronize the DT. In the following
sections, each step is explained in more detail.

3.1. Plant Data Pre-Processing

The first step to enable the synchronization of the DT is to
obtain a set of data from the plant. In this case, 25 measure-
ments are available, but each one has a range of variation,
a different sampling time step, noise and missing data.
Then, it is necessary to clean and homogenize all the avail-
able measurements, i.e., complete the missing data points,
set the same sampling time for all measurements, and
clean the measurements outliers and noise.

Once the data is homogeneous, a Principal Component

Analysis (PCA) is applied to understand the relation be-
tween the different variables, enabling the reduction of the
model complexity by keeping only the variables that have
different behavior. For instance, sometimes similar mea-
sures are taken close to each other, most likely repeating
the same information. The use of PCA enables the under-
standing of the data and existing relations, and also gives
the possibility to take out redundant information from the
data set and to detect errors on the measurements. Such
an approach must be applied when the system of interest
is extensively big, and the number of available measure-
ments is high. For the sake of brevity, the data processing
is not further discussed in this paper.

3.2. Initialization Snapshot Selection

The goal here is, given a set of snapshots generated with
INDISS Plus and a period of measurements from the real
plant, to select the snapshot that better corresponds to the
behavior of the measurement. There are two important
steps here; (1) how to create the snapshot library and (2)
how to find the best snapshot.

Remark 2: In this methodology, the Snapshots are consid-
ered as two-component objects. Each snapshot is composed
of an INDISS Plus snapshot file reference and a set of tempo-
ral measurements, as represented in Figure 3 at step 2. Such
an approach enables to link each snapshot to a state of the
system, characterized by its measurements. Again, the use
of this particular snapshot definition enables the application
of identification methodologies without knowing what is ex-
actly inside a snapshot file, thus facilitating the research and
decreasing the cost compared to other estimation methods.

It is worth mentioning that the model used for the syn-
chronization is assumed to have a behavior close to the
steady state behavior of the plant. When the DT is not rep-
resentative of the steady state behavior of the system, it
is necessary to do a calibration on the model, but this is a
research subject itself, and not the focus of this work.

3.2.1. Creation of Snapshot Library
First, it is necessary to build a database of snapshots. Two
methodologies are proposed; one based on plant com-
mands and the other one on sampling approach.

The plant command approach consists of using infor-

Process Search Return
measurements measurement on ‘best’ snapshot
for period T snapshot library

Snapshot 1 Snapshot i

TH

Figure 3. Method scheme.



mation given by the plant measurements to explore the re-
gions of variation of the inputs, i.e. apply the same bound-
ary conditions and commands given by the plant at the DT.
For that, it is necessary to have extensive historical data
of the plant, with variations, to impose the same values
on the DT. For instance, if two command set-points are
available in between the available measurements, those
values can be used as an imposed input on the DT, as it is
going to be demonstrated in Section 4.

The sampling-based approach is similar to that of the
well know Design of Experiment (DoE), where the vari-
ables that impact the system output are known, and those
are varied in a combined form, assuring that the paramet-
ric space is extensively explored. To apply such a method,
it is necessary to know the limit variation range for each
of the inputs, i.e., if there are n inputs (xo, X1, - - - , Xn—1), it
is necessary to know the range for each of the inputs; i.e.
((xBHm, X19%), (N, XX, -, (Xt x9Y)). For industrial
systems, the knowledge of such values must come from
specialists in the process of interest, such that it remains
a physical and representative value.

Once the ranges are set, a statistical method, such
as regularly spaced or Latin Hypercube Sampling
(LHS) (Stein, 1987), is used to create a list of values for
each variable. The number of created points depends on
the sensitivity to the process of interest, which can be
highly sensitive, thus needing a lot of points, or slightly
sensitive, needing fewer points to map the behavior of the
system. Once each input variable has a set of values, the
DT is run according to those values , varying one input
value at a time. This approach guarantees that all of the
possible behaviors for the system of interest are explored
and can be retrieved in the snapshot search. A further
study of the impact of the SF distribution is a future work
of interest.

3.2.2. Initialization Snapshot Research Method

Now that the snapshot database is created, the last step is
to find the best snapshot to initialize the DT based on real
measurements taken from the plant. To estimate the ’'best’
SF from the database, a Root Mean Square (RMS) method
isused, such that the smaller distance between the real and
the DT temporal measurements is returned as the snap-
shot to initialize the model. Precisely, suppose that the n

available plant measurements are Y = [YO, Y., Y,
where each measurement Y!, i € [0,n — 1], is a vec-
tor with the temporal variation of the measurement, i.e.,
. o AT )

Y= [y{),y’l, e y’T] , for y; the measurement i for instants
te[o,---,t:]. tis the indexation for each measurement
instant, and < is the number of samples.

The DT measurements have the same structure, be-
ing; ¥ = [?0, I ,?”‘l] , where each ¥’ corresponds to

. o T
a vector of measurements ¥’ = [%,9’1, e ,?’r] , With T

the total number of snapshot samples. To find the best
snapshot to initialize the model, an RMS between the real
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data and the snapshot set of measurements is done for all
of the snapshots, and the minimization of the mean RMS
value for all measures gives the best snapshot. Once the
distance (dist(Y?, ¥')) is computed (Eq. 1), the minimum
value (dist,,;,) is identified.

dist(Y', ¥1) = 2 i RMS(Y', ) (1)

Once the minimum value is obtained, the associated
SF can be automatically selected from the database, and
given to the DT to initialize the model.

Such a method is heavily based on the measurements
that are available from the process of interest. To prop-
erly define and set the measurements from the plant, it is
important to have special technical knowledge of the pro-
cess. It is worth stressing that the choice of the period of
sampling measurements (t) has an impact on the results,
and needs to be chosen based on the system’s dynamic
response time. In this work, a trial and error approach
with industrial knowledge is applied to find the optimal
sampling period, but further analysis of the impact of such
a variable is to be developed.

4. Results

Let us now see the proposed methodology applied to the
industrial plant subsystem, presented in Section 2.2. The
first step is to clean and homogenize the data. Since the
historical data is extensive, the commands and boundary
conditions for the system can be identified, such that the
same conditions are imposed on the DT. Once the com-
mands and boundary conditions are defined, the DT is run
under such inputs, to generate a set of snapshot files and
data measurements, as explained in Section 3.2.1, at the
plant commands approach. In this work, one SF was saved
for each hour of simulation, leading to a total of 150 SE.

For the subsystem of interest, four variables are used as
inputs: the temperature setpoint of the boiler, the bound-
ary conditions of pressure and temperature at the distil-
lation column bottom, and the pressure at the heat ex-
changer output. Then, INDISS plus is simulated with the
imposed inputs and, for the sake of brevity, a subset of
ten measurements is used for comparison and discussion
here.

Figure 4 gives the comparison between the real mea-
surements (blue curve) and the simulated ones (red curve)
for the same imposed inputs. All the measurements are
normalized with respect to the real measurement values,
and the time step on the horizontal axis is given in seconds
[s]. The comparison between the curves helps validate the
model and create the snapshot library. Overall, the behav-
ior of the DT is similar to the real expected one, and few
discrepancies are seen. The difference between data might
have two causes: first, the real measurements come from
transmitters that could have some internal error, leading
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Figure 4. Comparison between the real plant (blue line) and for the DT (red
line) measurements for the same imposed input command values.

to a false measurement value, linked to an offset on the
mean measurement value. However, the dynamic behav-
ior of each measurement can be trusted. Second, the DT
model, in this case, represents a section of the whole sys-
tem, that should interact with the full system, and the
modeled subsystem only represent partially the physical
impact coming from the external sections. Also, the model
presents the ideal physical behavior, and it might underes-
timate some thermal and power losses, which cannot be
controlled in reality. However, it is considered that the sim-
ulated data are close enough to the plant state to proceed
with the snapshot research method described in 3.2.2.

In Figure 4, two of the four imposed inputs are depicted,
representing a specific subset of the measured variables;
the temperature setpoint of the boiler and the pressure of
the bottom of the column, both given at the second row
from the figure top. The corresponding real and DT curves
for the two inputs are superposed, meaning that those
are identical all along the simulation. The Power measure-
ment (top row on the left) and the outlet temperature of the
heat exchanger (fourth row from the top) are the measure-
ments with remarkable differences in comparison to the
real curve. The power given to heat the fluid on the boiler
is higher on the real measurement, and this is due to the

losses that the boiler has, which is ideal in the simulation,
while it is impacted by many factors in reality. That be-
ing said, the mean behavior of the power measurement is
similar. Similar remarks are made about the temperature,
since the heat exchanger modeled presents ideal behavior,
while the real one has other external factors that are not
modeled. Nevertheless, the mean behavior for the temper-
ature is similar. All the other measurements present low
error in comparison to the real data, giving a mean and
dynamic behavior close to reality.

Once the model and snapshot library are ready, a set of
measurements from the real data is randomly chosen to
test the methodology presented in Section 3.2.2. Here, the
period for taking the plant measurements is of 45 minutes,
meaning that, for a sampling time step of 60 seconds, 45
instants are taken for each measurement. The choice of
such 45 minutes window of measurement is done by trial
and error. Here, three validation cases are discussed, for
different sets of measurements.
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Figure 5. Comparison between plant (blue line) and the DT measurements
found through the RMS minimization (red line) for the first validation
case.

Generally, all the variables have a good match for the
plant and the model measurement, less than 5 % error.



However, there is a remarkable difference between the
plant and DT values for the power and the heat exchanger
temperature. Such an error is linked to the transmitter
measurement precision and to the ideal hypothesis that
the model assumes, as previously discussed. Even though
there are measurements that are noisy or not precise, the
method is still able to find the best match of DT measure-
ments, since it is computed over a period of measurements,
thus accounting for the dynamic behavior of the measure,
and because it averages the error between each of the mea-
surements. The average error, for this first validation case,
is 1 %. The summarized result of the method for the three
validation cases is given in Table 1.

Table 1. Validation result summary

Minimum

Case Expected S Found SF Expected vs
RMS
Found error
1 01do3hoom oidoshoom 1% 0%
2 02d22hoom  02di8hoom 7% 0.26 %
3 o5diohoom  04d22hoom 13 % 0.32 %

Table 1 presents the summary of the results for three
validation cases. It gives the validation case in the first
column, the reference to the expected snapshot in the sec-
ond column, the predicted snapshot reference in the third
column, the minimum error found on the RMS (Eq. 1) on
the fourth column, and the error between the expected
and the found snapshot behaviors on the last column. The
expected and found snapshot references correspond to the
instant where the snapshot is saved during the simulation,
in days (d), hours (h), and minutes (m), such that the ref-
erence looks like: ##d##h##m. For instance, the first val-
idation case expected snapshot corresponds to 01do3hoom
of simulation, i.e. taken after 0.97e5 seconds of simulation.
The expected SF was taken based on the superposition
between the plant and the DT curves; since the same in-
puts (commands and boundary conditions) are imposed
on both systems, each instant of simulation is assumed
to correspond to the same instant of the plant data, thus
being linked to a saved SF from the simulation. The use of
such snapshot reference enables to superficially validate if
the predicted SF from the initialization snapshot research
method is close to the expected one. To quantify the error
between the expected and predicted SF, both snapshots
were loaded and run on INDISS Plus, and their correspond-
ing measurements were compared by computing the RMS
relative error, shown in the fifth column of table 1.

The predicted snapshots for the two first validation
cases are remarkably close to the expected one, and the
minimum RMS error is lower than 10 %. In figure 5, one
may see the comparison between the measurements from
the plant (Y) and from the DT (¥) of the best match for the
first validation case. The difference between most of the
measurements is very little, presenting a good fit with a
relative error of 1 %. Nonetheless, for the Power and the
Temperature of the heat exchanger (fourth row from the
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top), a gap is seen between the two curves, which is due
to the impact of external factors that are not taken into
account on the ideal model used on the DT. Similar be-
havior was seen for the second validation case. The third
validation case, however, presented a slightly higher er-
ror of 13 % for the best distance match. Such an error is
due to the plant measurements which have a non-physical
behavior, presenting a value that does not represent the
real dynamic of the system, but it is not shown here for
the sake of brevity. Such a problem, might be linked to the
lack of precision of a measurement transmitter, and even
if the best match error is higher, the comparison between
the found and expected SF presents an error of 0.32 %.

5. Conclusion

A methodology to synchronize large scale industrial DT
through a snapshot file approch has been proposed. The
method consists in using an existing DT to generate a
database of snapshot files that are linked to a set of mea-
surements. The approach assumes that the DT software
enables the re