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Abstract 

The aim of this paper is to discuss the theoretical concepts and the preliminary steps required for the implementation of a Digital 
Twin for a manufacturing company that would integrate data from a Manufacturing Execution System (MES) with Discrete Event 
Simulation (DES) to improve production planning. The Digital Twin would aim to represent material flows in the production 
department, in order to improve the monitoring and the control of production scheduling, allowing the timely identification of 
deviations from the plan and a more responsive and informed management of any delay alerts; the final goal is to provide a 
conceptual framework to improve the synchronization of material flows and enhance punctuality towards the final customer. 
This contribution also discusses the level of integration required among the following enterprise systems, with which the Digital 
Twin would interface: the MES (Manufacturing Execution System) for constant updates on production status and order progress; 
the ERP (Enterprise Resource Planning) for resource planning data; the PLM (Product Lifecycle Management) regarding products 
design and their production cycle; the GPS (Global Planning System) regarding order scheduling. These data streams, following 
adequate data preparation steps, will feed into the Discrete Event Simulator (DES) 
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1. Introduction and literature review

In recent years, the term Digital Twin (DT) has been 
increasingly mentioned not only in the literature 
related to Industry 4.0, but it has also started to appear 
more frequently in conversations within large 
companies, particularly in the IT and digital sectors. 
The fact that the term “Digital Twin” is very evocative 
and, although in an approximate and undefined way, 

sufficiently self-explanatory, has two effects: the first 
is that the concept has gained popularity across various 
application fields, transcending the boundaries of the 
areas in which it was initially developed, i.e. aerospace 
engineering, robotics, manufacturing sector, and IT 
(Negri et al., 2017); the second is that there is no 
agreement on the exact definition of what it actually is, 
or on what the “minimum requirements” are to be able 
to talk about it. 
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As shown in Fig. 1, the publications indexed on 
Scopus featuring “Digital Twin” in the title have 
increased markedly over the past few years, exceeding 
5000 in 2022 (and over 10,000 in 2022 on Google 
Scholar). It is also possible to note that approximately 
17% of the publications indexed on Scopus are not 
inherently related to the traditional application fields 
of the Digital Twin, that is, the production-engineering 
and Computer Science (CS) areas. Some of the other 
most common fields are the medical, chemical, energy, 
biological, and agricultural sectors. This transversality 
of application makes DT a very flexible tool, but as 
mentioned, this entails a general lack of agreement on 
an exact definition, thus difficulties to identify the 
requirements. 

Figure 1. Number of Scopus publications per year that contains 
“Digital Twin” in their title. 

For the preliminary work to implement a Digital 
Twin in a manufacturing company, the following 
elements of the literature have been taken as reference, 
in order to outline the characteristics required for this 
technology. 

Formally, the first to present the concept underlying 
the DT was Grieves, who, within the scope of product 
lifecycle management, presented the idea of a real 
space and a virtual space, connected/interconnected by 
bidirectional flows of data and information. The idea 
was named “mirrored space models” (Grieves, 2005). 

The first actual definition of Digital Twin, including 
its nomenclature, can be found in the final release of 
the NASA Modeling, Simulation, Information 
Technology & Processing Roadmap (2010 and 2012) 
where it is described as “an integrated multi-physics, 
multi-scale, probabilistic simulation of a vehicle or 
system that uses the best available physical models, 
sensor updates, fleet history, etc., to mirror the life of 
its flying twin. It is ultra-realistic and may consider one 
or more important and interdependent vehicle 
systems.” 

In subsequent periods other terms were identified to 
express the concept just expressed or to read variations 
of the same: it is relevant to mention the Digital 

Surrogate, the Digital Shadow, and the Virtual Twin to 
provide the reader with references and possible 
directions for comparison and deeper understanding. It 
is in fact relevant to clarify that the nomenclatures 
presented may refer to a system that has many features 
assimilable to those of a Digital Twin, or a system with 
few substantial differences, in which however both the 
thought behind the system described by Grieves, that is 
a real world and a virtual world connected by a 
bidirectional flow of data and information, and the 
concept of Nasa's ultra-realistic multi-scope simulator 
are maintained. The key functionality of a Digital Twin, 
according to the NASA publication, are prediction, 
monitoring, and analysis of unpredicted disturbances. 

Figure 2. The “Digital Twin 8-dimension model”, Stark et al., 2019

Turning to a more application-oriented standpoint, 
the insight of Rosen and Borschen (Boschert and 
Rosen, 2016; Rosen et al., 2018; Rosen et al., 2019) is 
particularly relevant. They describe the Digital Twin as 
a unification of relevant digital information (design 
data, operational data, lifecycle data) integrated with 
models that can adequately describe the behavior of a 
system. The DT must therefore integrate the concepts 
of system engineering, based on models, and extend 
them coherently to the operational and service phases. 
By this structure, the DT is configured as the "next 
wave of simulation, by means of seamless assistance 
along the entire life cycle". These concepts are central 
to Industry 4.0: it is possible to use DT to create a 
system that can provide new and faster information, 
allowing the decision-maker to intervene in the real 
system while being confident that the system will not 
react inappropriately.  

Finally, Fig. 2 shows the list of the 8 dimensions with 
which a Digital Twin can be classified (Stark et al., 
2019); the author specifies that a higher level in some 
dimensions does not necessarily correspond to a more 
desirable situation, but simply to a different state of 
study. In conclusion, this brief analysis of some of the 
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most relevant sources shows how ambiguity of 
definition, combined with transversality of 
application, makes the concept of Digital Twin 
circumstantial and complicated to manage. 

Regarding the manufacturing field, it is possible to 
find some interesting applications of the digital twin, 
such as the digital twin for an experimental assembly 
system (Židek et al., 2020) and recently, (Eunike et al., 
2022) a DT was also implemented for an adaptive 
scheduling process for the assembly of a component on 
four stations. 

In general, a framework that presents how a DT can 
be integrated with enterprise information systems in 
order to support the planning process is not widely 
present in the literature yet. 

The purpose of this paper is to start developing such 
a framework in case the DT needs to capture the 
multidimensionality and complexity of a large number 
of processes, which will need to be simulated with a 
discrete-event simulator. The connection with the MES 
is subdivided into two conceptual phases: in the first 
one, there will be the analysis of historical MES data, 
and in the second one would be monitoring the 
production with the MES data, but with a higher 
frequency. in this way, historical MES data will lead to 
statistical distributions to be fed into the DES for the 
simulations and the predictions, and with the day-to-
day date it will be possible to monitor and control the 
progress. 

The paper will be structured as follows: in Section 2, 
the interrelationships of business information systems 
will be presented; in Section 3, the integration of DT 
within business information systems will be discussed; 
in Section 4, the advantages over traditional solutions 
will be presented; conclusions will then follow. 

2. Standard manufacturing information
systems

Having provided the starting definitions, it is now 
possible to delve into some possible real applications of 
the DT: the ultimate goal of this research would be the 
implementation of a Digital Twin focused on 
production and internal logistics, in order to improve 
the current method of production planning and to 
better the monitoring the operational processes, with 
the ultimate goal of being able to improve the customer 
service and, in particular, to be able to improve the 
delivery time estimate and improve the punctuality 
indices. In a dynamic environment, punctuality 
management strategies are of extreme interest, 
because in companies it is common practice to 
overestimate delivery times in order to make them 
easier to meet. 

The purpose of structuring a Digital Twin is not only 
to support planning activities, but also to enable more 
in-depth, advanced, and reactive analysis in the face of 
the scenario presented. An example of this analysis is 

simulation optimization: with a suitable Digital Twin 
structure, it would be possible to accurately evaluate 
the rescheduling options when a disruptive event 
occurs, such as prolonged machine stops, numerous 
defectiveness in lots previously synchronized for 
assembly, supplier delays in input; even the 
optimization objective could vary: it could be marked as 
the objective to minimize inventory accumulations or 
the minimization of subsequent delays to the final 
customer. The benefits of the Digital Twin are therefore 
those of trying to aim at the stability of the planning 
performances under unforeseen circumstances and to 
propagate disruptive events along the entire internal 
process if they cannot be corrected. The project thus 
aims to cover a series of subsequent and transversal 
needs concerning the series of operations. 

Fig. 3 shows the main information systems in a 
manufacturing company and their interrelationships, 
which are very important factors to evaluate in order to 
understand how a digital twin can fruitfully connect 
with previous information systems. 

Figure 3. main Information systems in a manufacturing company 
and the main data flow among them 

Typically, in a manufacturing company, the main 
three information systems are ERP, MES, and PLM; 
enterprise resource planning (ERP) is a management 
software that integrates all business processes and all 
relevant business functions, e.g., sales, purchasing, 
inventory management, finance, or accounting. It 
integrates all business activities into a single system to 
better support management. Through such a system, 
data from multiple parts of the company are collected 
and managed centrally; applications have been 
developed to help business managers implement this 
methodology in business activities such as inventory 
control, order tracking, customer services, finance, and 
human resources. Usually, as a business starts to grow, 
an ERP is one of the first information technologies 
bought. 

The manufacturing execution system (MES) refers 
to a computerized system whose main function is to 
manage and control the production of a company. The 
management involves the dispatch of orders, quantity 
and time advancements, deposit to stock, as well as a 
direct connection to machinery. So, a MES is a software 
system that is applied to manage a company's 
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production process in an integrated and efficient way, 
through both direct connections to machines 
(PLC/SCADA) and/or manual declarations of the 
operators who are working on a specific machine. This 
information from the floor shop, about progress in 
work orders, is collected in real-time, even though the 
data extraction activity can be quite time-consuming, 
and is fed into the ERP, from which the ERP receives the 
production planning. 

Product lifecycle management (PLM) is a strategic 
approach (as well as information technology) to the 
management of data and information, processes, 
documents, drawings, and resources to support the 
lifecycle of products and services, from their 
conception, development, production, support, and 
retirement. PLM communicates with both ERP and 
MES. In terms of MES, it provides the technological 
cycle of the products, receiving as input the processing 
performed on the floor level; in terms of ERP, PLM 
provides information required to manage the entire 
production side, such as bills of materials, and receives 
information about any revisions and reengineering of 
products from ERP. 

Figure 4. Pyramid of Industrial Automation as per ANSI/ISA95 
standard 

Often, the communication between these three 
elements is not seamless and requires some effort to 
acquire, extract, clean, and transfer data to make it 
usable. This is frequently done at times when the plant 
is at its productive minimum (e.g., overnight). 
However, these three systems are not the only 
information systems that aim to manage, control, 
organize, and simplify production: Fig. 4 depicts the 
"Pyramid of Industrial Automation," as defined by 
ANSI/ISA95 standards. The Industrial Automation 
Pyramid is a hierarchical illustration of the various 
levels of automation and control accessible in the 
industrial production process. 

As shown in Fig. 4, the ERP is the information system 
that operates at the enterprise level, and the other 
systems are hierarchically dependent on it; at the 
second hierarchical level, we have the MES, which, as 
anticipated, operates at the management level. The 
supervisory, control, and field levels are represented by 
SCADA, PLCs, and sensors beneath the MES; structured 

DT concentrates on the higher hierarchical layers of 
this automation pyramid. 

Although the ANSI/ISA 95 standard was designed to 
address a critical industrial business issue, namely 
standardizing integration procedures between 
disparate enterprise and control systems, and although 
this standard is widely accepted and implemented, it 
cannot be assumed that data flows are completely 
seamless in the operation of the individual enterprise; 
on the contrary, it is not uncommon to find at the 
industrial level fragmentation and proliferation of local 
information systems, which creates difficulties in 
managing data flows  

For the company under consideration in this case 
study, for example, the flow of data from the ERP to the 
MES, which includes production planning, goes 
through another enterprise planning support system: 
the Global Planning System (GPS); the automation 
pyramid also lacks an important previously discussed 
element, represented by PLM. 

Another aspect of the pyramid representation that is 
not explored in depth is data collection from the 
production department: depending on the level of 
automation implemented on the individual machine 
and on the production floor, data collection can take 
place in two ways: 

• automatically, by utilizing specially placed and
designated systems to collect and pre-process
data, which is then fed into appropriate hardware
and software facilities, from which it will be
extrapolated and analyzed at a later stage.
(Peterson, Daily, 2016)

• manually, for activities with a low level of
automation and/or that are poorly automatable
and where human presence is and will remain an
incompressible or uneconomical factor for an
indefinite amount of time.

Other data flows, despite the Industry 4.0 manifesto 
and the industrial automation principles, are neither 
instantaneous nor real-time: the multitude of systems 
that must be integrated, combined with the varying 
levels of automation already found in the same 
departments, represents the big data challenge applied 
to manufacturing. In any case, each level in the 
hierarchical chain exchanges information with the 
levels preceding and following it, and changes in one 
decision-making plan will result in an influence or 
change of the plans in other decisional levels. 

3. Proposed Framework

After having described the peculiarities of the system in 
question and taking into account the set goal as far as 
this DT is concerned, i.e., to be a valuable support for 
production planning through simulations, with an 
additional focus on monitoring the progress resulting 
from the ESM, it is possible to represent the conceptual 
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framework of the work to be developed as depicted in 
Fig. 5. 

Figure 5. Framework of proposed DT structure and integration 

Two different groups of elements are identified from 
the figure: nodes, which represent the different 
representative systems of the factory; and arcs, which 
indicate the dataflows. 

Regarding the nodes: 

1. ERP PLM: indicates the highest hierarchical
level of information systems and manages the
highest level of information,

2. GPS: is the production planning and scheduling
system, which is interposed as an intermediate
level, as previously shown.

3. Floor: transposes through the MES the plan
established by GPS; represents the actual
production level, characterized by the various
levels of automation presented earlier.

4. MES: an information system for operational
management, which collects data from the
floor and operates an initial unification and
systematization

5. DT: the digital twin is configured as an
autonomous architecture, characterized by
various components: the core is the simulation
system, specifically a discrete event simulator
(DES) was chosen, which allows a level of detail
on inputs and effects that were deemed
necessary in order to provide adequate decision
support.

Regarding the arcs, which represent the dataflows: 

(a) Represents the starting point of the production
system i.e., incoming orders. In node 1, this
information will be combined with inventory
levels, technological cycles, and bills of

materials. 

(b) Represents the net production requirements

(c) Represents data appropriately processed to
identify relevant boundary information to the
DT simulations: particular attention should be
paid to incoming orders, production cycles, 
bills of materials, inventory levels for semi-
finished and finished goods, procurement
times for raw materials, and required
components.

(d2-3) Represents the production plan made by 
production decision-makers. 

(d2-5) Represents the transmission of the plan to 
the DT, to enable control and monitoring 
analyses and possible deviation analyses on 
planned and actual production. 

(e) Represents the data flow of the production
department, which will then be merged and
organized in node 4 (MES).

(f4-1) Represents data on production advances and 
progress. 

(f4-5) Represents one of the most critical and 
delicate points for the implementation of DT: 
data from the MES properly preprocessed will 
be the basis of the statistical distributions as 
input to the discrete event simulator (DES) 
within block 5 (DT). Given the multitude of data 
and given their possible heterogeneity, it is 
critical to pay attention to how these data are 
processed and analyzed. 

(g) Represents the final output of the DT: that is, an
appropriately selected set of information that
can be received by decision-makers in the
production department not only to monitor
production progress but also possibly to be able
to take timely action in the face of certain
warning signs (e.g., a high probability of delay
on one or more orders, or an order deemed as
crucial).

With reference to Fig. 6, it is possible to see a much 
more streamlined representation of the general 
operation of the DT, similar to that proposed by 
Grieves. 

Beginning in the physical world, specifically at the 
production site, the logical process continues with 
updating the production systems, specifically with -
but not limited to - MES data. This data is then piped 
into a data flow that leads to the system's virtual 
representation. The first step is to prepare the data that 
will allow simulation and prediction of the physical 
system's performance. To ensure that these operations 
are conducted correctly and optimally, the data must be 
properly prepared by filtering and pre-processing.  

After the simulation, all data deemed useful will be 
represented in a manner suitable for decision-makers, 
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so that these analyses can provide relevant information 
for business decisions, guiding them to seek a global 
optimum for the entire production chain, rather than a 
local optimum, or a solution only good if a single order, 
a machine or a production line is evaluated. 

Once this information is received, choices will be 
made and these decisions will guide subsequent 
production, thereby resuming the cycle. 

Figure 6. Synthetic overview of DT framework 

The DT, therefore, is presented as an autonomous 
architecture that collects, processes, and derives 
information from the operational data and behaviors of 
the simulation models implemented within it. It must 
have access to all the data necessary to establish 
reasonable boundary conditions. It will be possible, if 
necessary, to add new simulative models so that later 
decisions can be supported. 

It is also important to emphasize that DT alone 
cannot replace the information systems in the 
enterprise: integration with these is certainly a crucial 
point, but it is equally certain that production planning 
and control systems will not be replaced by this 
technology, which serves as a hub for collecting and 
unifying the various data sources. 

4. Discussion

In order to enable these analyses, an adequate
deployment of energies and commitment is needed in 
structuring the Digital Twin, which must, on one hand, 
be based on an explicit and mathematically structured 
model, and on the other hand, refer to the historical 
data of what happens in the production department, as 
close as possible to real-time; in addition to the 
structure of a discrete event simulator, the historic data 

of the MES must be added for the most constant 
monitoring possible, the data of the ERP and PLM for a 
reasonable update regarding bill of materials, order 
status, and stock availability, and the plans derived 
from the GPS, in order to be able to evaluate the 
goodness of the output data by monitoring the 
adherence index of the production department. Despite 
it being beyond doubt that the Digital Twin must 
support the production planning decision makers, it 
could be of interest to provide dashboards with 
progress indicators of the batches, to also enable the 
line managers or non-specialists to perceive the 
deviations of actuals compared to the planned 
activities, to allow the timely detection of discrepancies 
and targeted and functional interventions. 

Concerning the indications of Stark (2019), for an 
analysis of the requirements of a digital twin, we can 
summarize the project framework explaining some of 
the most peculiar characteristics of this DT framework 
as follows: 

• Integration breadth: the level of integration
focuses on the entire manufacturing department, 
with adequate information and boundary
conditions regarding business data, which will not
be the decision variables in the optimizations. In
the context of DT in manufacturing, the most
implemented solutions tend to be related to the
individual product or the individual
machine/robotic island (Zheng et al., 2019), and
solutions that manage the entire production
department, with downstream and upstream
linkages, are still scarcely studied. Compared with
previous literature, the scope of action of this DT is
broader.

• Connectivity mode: the interconnection between
real and virtual will have to be bidirectional,
although it is assumed that, for the first period of
use, any information gleaned from simulation and
forecasting will be screened and filtered by people
knowledgeable about the system. The goal for this
dimension is to gradually lean toward an
increasingly automated mode of connection.

• Update frequency: Although close to the Industry
4.0 philosophy, a fully real-time data flow is
currently not feasible and would have an excessive
level of detail to support planning. The update
frequency is primarily determined by the time it
takes to extract data from the MES system. It is
reasonable that data update and analysis related to 
order progression be monitored daily, and any
corrective decisions be dosed appropriately over 
time, in order to avoid an excessive number of
interventions, which have the potential to be
detrimental if too many.

• Simulation Capabilities: discrete-event simulation
is a specific technique for modeling stochastic, 
dynamic, and discretely evolving systems, which 
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means the simulation will not only be dynamic in 
nature, but will also allow timely deviation analysis 
of production progress, and allow a better overview 
to identify the causes. In addition to evaluating 
deviations, it will be able to simulate various order 
distributions to enable more comprehensive 
optimization concerning business objectives and 
overall service levels. 

The proposed work may raise the question of 
whether implementing a new technology, such as a DT, 
is actually necessary to enhance production planning as 
opposed to using existing technology.  To answer this 
question, it is important to keep in mind that the entire 
order process, from the customer's order to the final 
delivery, lacks transparency in manufacturing 
companies, especially small and medium ones. One of 
the reasons for this phenomenon is that information 
systems are frequently insufficiently digitized, 
coordinated, or integrated, and the update of the data is 
often not frequent enough. 

Moreover, other process characteristics, such as 
unanticipated machine failures, intermittent and 
irregular orders, or changing client requirements, are 
also producing additional disturbances in the order 
management process. In this uncertain environment, a 
lot of manufacturing businesses are investing in 
production process optimization and control. However, 
while optimizing, usually the problems are treated 
locally by ad hoc solutions, without considering the 
influence on subsequent stages of the order 
management process. The fundamental difficulty in 
solving these problems brought on by disruptive 
occurrences is identifying appropriate solutions that 
support nearly all corporate goals and enhance the 
overall performance of the production system, rather 
than obtaining a local optimum (Kunath, Winkler, 
2018). 

It should be noted that the quality of any solution is 
determined by the decision maker's experience and the 
available information. Employees with more 
experience may predict the impact of their actions 
more easily than employees with less experience, 
nonetheless, regardless of expertise level, the accuracy 
of manual computation and prediction of event 
probability is quite poor (Takemura, 2014). 

As previously mentioned, there is still a need for 
integrated decision support that can actively anticipate 
the effects of potential solutions on the system and the 
effects on the downstream linkages. The ability to 
simulate various scenarios will enable a traceable and 
transparent decision-making process and should limit 
the selection of locally optimal solutions that, however, 
may have significant effects on the overall system. This 
should lead to a preference for solutions that enhance 
overall synchronization and synergies at the expense of 
solutions that are only locally beneficial. 

Moreover, the use of a DT in this environment 

provides a highly versatile tool for various types of 
'what if' analyses: it is useful not only for production 
planning, but also for potential machine repositioning 
to minimize internal transportation times or for 
maintenance intervention scheduling. 

5. Conclusions

The complete digitization of production processes is a 
critical component of the Industry 4.0 concept: 
appropriate technology must be employed for rapid 
digitization, data transport, data storage, and, lastly, 
data mining. Regarding the potential for digitization, 
the industrial sector has undergone a significant 
transformation, and it is well known that major 
companies like Siemens and Microsoft are launching 
numerous initiatives aimed at a large-scale 
implementation of Digital Twins.  

The DT thus emerges as an innovative and promising 
system, not only to be able to integrate various 
business information, but also and most importantly as 
a tool to be able to work with more useful information 
in dynamic environments where unforeseen events 
occur: the ability to simulate will allow control not only 
in feedback, but the analysis of scenarios will allow to 
be able to see what are the global effects of the possible 
decisions that can be made at the time of planning.  

Critical factors in this innovation will involve 
technologies for transmitting and managing data at the 
enterprise level, as well as finding appropriate 
technologies to pretreat data from information 
systems so that it is valid for use in simulation systems. 

The paper has proposed the framework of a DT that will 
actually be implemented in a production environment, 
so it is possible that some assumptions or solutions 
may be reevaluated or revised. The key challenges 
during the implementation of the DT will be: 

• validate the statistical robustness and significance
of the MES data as a source for historical data to be
fed into the simulator.

• find an adequate aggregation for the presentation
of the result to the decision-makers.

• build the appropriate infrastructure for the
dataflows, allowing an automatic synchronization
that balances a reasonable closeness to the “real-
time” and the feasibility of the synchronization
itself.

• finding the optimal frequency of data update,
which will be characteristic for each and every
source of data (namely: MES historical data
statistically pre-treated and analyzed, MES
updates, PLM information, ERP information, GPS
plans).

 The results that will be obtained within and after the 
implementation of this framework will be the focus of 
future works. 
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