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Abstract
In recent years major financial exchanges have introduced Frequent Batch Auctions (FBAs) as a novel automated auction mechanism for matching buyers and sellers of various types of asset, in contrast to the traditional Continuous Double Auction (CDA) that has been the basis of such exchanges since the 18th Century. FBAs have been proposed to mitigate against the ill-effects of High-Frequency Trading (HFT) systems which trade at super-human speeds. In this paper we report on simulation studies of automated trading in FBA-based financial markets: we have extended a long-established open-source simulation model of a CDA market to also allow FBA-based trading; after that, we adapted existing automated trading algorithms initially designed for CDA-based markets so that they could work usefully in the FBA-based exchange. As far as we know, this is the first paper to be published on the extension of these automated trading algorithms to operate on a FBA-based exchange. By conducting more than 1.7M simulation experiments, we examine the pairwise dominance relationships of six well-known trading algorithms, evaluating each A/B pair of algorithms across a range of different ratios of A:B. Our research hypothesis was that the profitability of the minimally-simple SHVR trading algorithm, ‘a tongue-in-cheek model of contemporary high-frequency trading’, would decline significantly due to FBAs being designed to curb the advantage of HFTs. The results of our simulation studies reveal that, surprisingly, a minor modification of SHVR was able to maintain profitability in short batch intervals. In fact, we show here that in FBAs SHVR dominates both AA and GDX, two well-known trading algorithms that have previously been proven to out-perform human traders. Further to this, we show here that the dominance hierarchy of CDA trading algorithms first established in a paper published at EMSS2020 was disrupted by the switch to FBAs: surprisingly, the algorithm GVWY rose to the top of the hierarchy, demonstrating an unexpected effectiveness in the FBA. Python source-code for the simulation experiments reported here is being made available on GitHub, for other researchers to use.
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1. Introduction

1.1. Market Developments

Over the past twenty years major international finan-cial markets such as those for stocks & shares, curren-cies, bonds, and commodities, have undergone signifi-cant changes, with many human traders being replacedby machines, computerized automated algorithmic trad-
ing systems, often referred to as “robot traders”. In manysuch markets it is now entirely commonplace, indeed it

is very often true of the vast majority of transactions, forthe buyer and seller counterparties of a transaction to eachbe robots rather than human traders. This “rise of therobots” was facilitated by the fact that by the end of the20th Century almost all major exchanges had switched tobeing entirely electronic, with no need for human tradersto gather and interact with one another on a physical trad-ing floor: instead, they could connect remotely, using trad-ing software running on a personal computer/workstation.Moreover, once algorithmic trading systems were firmly

https://creativecommons.org/licenses/by-nc-nd/4.0/.
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established as trusted technology, they enabled new formsof trading strategy that were unlike anything that humantraders had ever done before. The most contentious ofthese new developments was the rise of firms engagingin high-frequency trading (HFT), where robot traders wereprogrammed to buy and sell at very high speed, often with
hold times (the period between the trader buying somequantity of an asset and then selling the same quantity ofthat asset to a buyer) of only a few seconds, or less, andyet could still return a small positive average profit onsuch transactions. The ability of automated HFT systemsto operate at super-human speeds, making thousands ormillions of transactions per day while generating a steadystream of profits for the HFT operators, attracted muchcriticism (see, e.g., Arnuk and Saluzzi (2012); Patterson(2013), and Bodek and Dolgopolov (2015)) and the effect ofHFTs on market dynamics has been the topic of detailedscientific research (see, e.g. Johnson et al. (2011); Cartlidgeet al. (2012); Cartlidge and Cliff (2013)).

In recent years, major financial exchanges such as theLondon Stock Exchange (LSE) have started to offer newtrading services, re-engineering the way in which tradersinteract with the electronic exchange, in an attempt toeliminate the pure-speed advantage of HFTs. One suchnew trading service is known as the Frequent Batch Auction(FBA) and in this paper we present results from what is,as far as we can determine, the first simulation-study ofautomated trading systems for FBA-based financial ex-changes. The automated trading systems we evaluate wereall previously developed and tested for traditional non-FBAfinancial exchanges, which we explain further below.
1.2. Two Styles of Auction: CDA and FBA

Prior to the introduction of innovations such as FBAs, al-most all electronic exchanges offered a service which wasbased on what economists refer to as the continuous double
auction (CDA), a process in which any buyer can issue a
bid order at any time, and any seller can issue an ask orderat any time – for either type, the simplest form of orderwould indicate the quantity being bought or sold, and theprice per unit. Orders are received by the exchange’s cen-tral matching engine which matches newly-arrived buyorders with any pre-existing compatible sell orders, andmatches newly-arrived sell orders with pre-existing com-patible buy orders: when a match is identified, the counter-parties to the trade (i.e. the relevant buyer(s) and seller(s))are notified that their order has been transacted (or filled,in the language of the markets) and the transaction isrecorded on the exchange’s tape, its time-stamped se-quential linear record of market events. In a CDA-basedexchange, the exchange’s list of pre-existing buy and sellorders is referred to as the Limit-Order Book (LOB), andan anonymized summary of the LOB (i.e., what quantityis available to buy/sell at each possible price, but withoutany identification of which trader issued which order) ispublished to market participants by the exchange each

time there is a change to the LOB. In the simplest set-up,whenever a new order arrives at the exchange that can-not be matched with an existing counterparty order onthe LOB, then that new order is itself added to the LOBand waits there “resting at the exchange” until such timeas a compatible counterparty order is newly issued to theexchange, or the trader that sent the now resting order can-cels it. Subtracting the price of the LOB’s current best bidfrom the price of its current best ask gives a value knownas the spread, and if a new order arrives at the exchangewith a price that reduces the spread to zero or lower, thatorder is said to have crossed the spread, and a transactionwill then occur.The CDA has been the basis of financial exchanges sincethe first organised central exchanges were set up in Ams-terdam and London in the 18th Century: the LOB used tobe manually chalked up on a blackboard by the exchange’shuman employees, and the matching was done manually,again by human employees; when markets went electronicin the 1970s and 80s all that happened was software waswritten to implement the CDA as the interface offered bythe exchange’s central server, and the humans employedby the exchange lost their jobs.FBAs, in contrast to CDAs, match orders intermittentlyrather than continuously, with orders submitted duringpre-defined batch periods and then matching taking placeat the end of each batch period. Buyers and sellers canfreely submit, modify, or cancel orders from the exchange,in the same way they can do in a CDA, with all orders beingadded to the LOB. Once the order submission period hasended, matching takes place: if the highest bid price isgreater than the lowest ask price then the array of bidorders is used to compute the demand curve for this batchperiod, and the array of ask orders is used to compute thisbatch’s supply curve. From these two curves, the batch
equilibrium price (denoted here by P∗) is determined as theintersection point of the supply and demand curves, andthis is then the fixed price for all matchable transactions onthe batch’s LOB. If no equilibrium price can be computed,no trades take place in that batch but its orders may becarried over into the next batch period. The batch interval(denoted here by ∆tb) may be a fixed constant duration, orrandomly-varying from batch to batch.As Budish et al. (2014) state, the change from CDA toFBA can have huge effects on a market dynamics and“modifying the market design from continuous-time todiscrete-time substantially reduces the value of tiny speedadvantages” that are exhibited by HFTs. Notable examplesof a FBA-based exchanges include the Taiwan Stcok Ex-change (see e.g. Lee et al. (2020) and the LSE’s Turquoise
Plato platform, which had traded more than =C1.1 trillionin equities by its 5-year anniversary (Smith (2021)). Ingeneral, the implementation and successful use of FBAs bymajor international exchanges like LSE underscores theoverall market’s collective desire for alternative tradingmethods that can level the playing field for all traders.
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1.3. Automated Traders

Once exchanges had switched to electronic markets, thepossibility opened up of writing fully autonomous au-tomated trading systems, i.e. of creating adaptive robottraders. This possibility was made concrete in 2001 whena team of scientists at IBM’s T.J.Watson Research Lab-oratories published a paper in the prestigious biennial
International Joint Conference on Artificial Intelligence (IJ-CAI: Das et al. (2001)) in which they reported on a seriesof laboratory-style controlled experiments that pitchedhuman traders against robot traders on a computerisedCDA-based electronic market. The IBM team reportedthat two trading algorithms consistently outperformedhuman traders in their CDA experiments: these two al-gorithms are known by the acronyms MGD (ModifiedGjerstad-Dickhaut: see Gjerstad and Dickhaut (1998)) andZIP (Zero-Intelligence Plus: see Cliff (1997)). In the ab-stract to their IJCAI paper, the IBM team stated that thefinancial impact of these results could plausibly be mea-sured in the billions of dollars, and the IBM paper is citedby some commentators as being the starting-point of theautomated-trading revolution that then unfolded in theglobal financial markets over the next decade.IBM’s demonstration of the superiority of MGD and ZIPover human traders in CDA-based electronic markets, andthe recent introduction of FBA-based electronic marketsby major exchanges such as LSE, gives rise to the researchquestion that motivates our work reported in this paper:given the long history of developing automated tradingalgoritms for CDA markets, what are the best automatedtraders for FBA markets? Here, we answer that question byrunning extensive sets of simulation experiments. We tooka long-established and widely trusted open-source simu-lation of a CDA-based financial exchange, the Bristol Stock
Exchange (BSE) simulation platform (see Cliff (2012, 2018))and adapted and extended it to also run as an FBA-basedexchange. BSE includes a variety of pre-programmed algo-rithmic trading strategies, including GMD and ZIP, whichhave been used as benchmarks for evaluating various as-pects of CDA-based trading in prior publications by a num-ber of authors, including papers published in EMSS2019(Church and Cliff (2019)), EMSS2020 (Rollins and Cliff(2020)), and EMSS 2022 (Cliff (2022)). Of these, the studyby Rollins and Cliff (2020) of dominance relationships be-tween various trading algorithms in CDA markets is a di-rect inspiration for our current paper because we use thesame approach to experiment design and analysis, butinstead run the algorithms in FBA markets.
1.4. Comparing Robot Traders in FBAMarkets

Specifically, we have taken the Threaded BSE (TBSE) open-source CDA-market simulator introduced by Rollins andCliff (2020) and extended it to run as a FBA-market: thisnew version of BSE is referred to as the Bristol Frequent
Batch Stock Exchange (BFBSE), and is being made availableas an open-source release on GitHub. Both TBSE and BF-

BSE are multi-threaded simulations, where each trader inthe market runs in its own processor thread, and hencethe time taken by each trading algorithm to compute aresponse to changes in the market can be a significantfactor in the profitability (or not) of that trader, just as inreal-world financial markets.
We then used BFBSE to evaluate and compare the samesix algorithmic trading strategies that were tested inRollins and Cliff (2020), but whereas Rollins & Cliff testedthe algorithms in CDA markets, our tests run in FBA mar-kets. The six algortihms are ZIP, as demonstrated by Daset al. (2001) at IBM to consistently outperform humantraders; an extended version of MGD known as GDX, de-veloped by Tesauro and Bredin (2002), another adaptive al-gorithmic trading strategy called Adaptive Aggressive (AA:see Vytelingum et al. (2008)) which was demonstrated tooutperform human traders by De Luca and Cliff (2011a,b);and then three zero intelligence (ZI) trading strategies,known as Zero Intelligence Constrained (ZIC: Gode and Sun-der (1993)); Shaver (SHVR: Cliff (2012, 2018)), and Give-

away (GVWY: Cliff (2012, 2018)). ZI trading strategies suchas ZIC, SHVR, and GVWY have proven to be highly pro-ductive as model traders in various simulation studies incomputational finance and economics: for reviews of suchsimulation studies see, e.g., Farmer et al. (2005); Ladley(2012), and Axtell and Farmer (2018).
It is beyond the scope of this paper to give full expla-nations of the internal mechanics of each of the six algo-rithms. A primary distinction is between the three adap-

tive algorithms (i.e., ones that use some form of machinelearning) i.e. AA, GDX, and ZIP – for further details ofwhich the reader is referred to the original sources citedabove; and the three ZI strategies GVWY, SHVR, and ZICwhich are nonadaptive and somewhat simpler to explain.The behavior of each of these three ZI strategies is deter-mined in part by the trader’s current limit price, whichis introduced in the next paragraph: GVWY issues bid orask quotes to the exchange that are all simply fixed at thattrader’s current limit price; SHVR issues bid or ask pricesthat are one cent better than the current best bid or askprice shown on the exchange’s LOB (where one cent isthe exchange’s minimum price difference, or tick-size), solong as this is possible without violating the trader’s cur-rent limit price; and ZIC issues bid or ask prices as drawsfrom a uniform distribution bounded either above (forbids) or below (for asks) by the trader’s current limit price.For further descriptions of the six algorithms, and of thedesign and implementation of BFBSE, see Savidge (2023a),from which all the results in this paper are taken; and forrecent work which unifies GVWY, SHVR, and ZIC into oneparameterized-response zero-intelligence trading strat-egy, see Cliff (2023).
In the results and analysis that follows in Section 2, ourultimate aim is to determine the dominance network for thesix algorithmic trading strategies AA, GDX, GVWY, SHVR,ZIC, and ZIP. The dominance network is a graph in whicheach strategy is a node, and a directed edge from node A to
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node B indicates that strategy A dominates strategy B. Weuse the Rollins and Cliff (2020) definition of “dominates”which integrates over the results from many independent
market sessions: in a single market session, the marketis populated with some number of algorithmic tradersrunning strategy A, and some other number of tradersrunning strategy B; each trader is then supplied with astream of assignments over the duration of the session, andattempts to profitably trade those assignments – assign-ments to buyers specify a quantity to trade and a maximumunit-price to buy at; similarly, assignments to sellers spec-ify a quantity to trade and a minimum unit-price to sell for.The maximum/minimum price in a buy/sell assignmentis referred to as that assignment’s limit price. The distri-bution of buyer limit prices defines a demand curve, andthe seller limit prices define a supply curve, and if thesetwo curves intersect then the intersection point definesthe equilibrium price denoted by P∗. We as experimentershave full control of defining the two curves and hence alsoof defining P∗.

Each trading session runs for a pre-specifed duration(e.g. one simulated 8-hour trading day) and at the end ofthe session the overall profitability of strategy A vs strat-egy B is calculated, and if A is more profitable than B thenthe session is declared a “win” for A, and vice versa forB. The number of traders in the market is held constantat 2N, and in a series of market sessions the ratio of A:Bis systematically varied across the range from (2N – 1):1through N:N and out to 1:(2N – 1): this we refer to as a ratio
sweep. Because any one market session is stochastic, mul-tiple independent and identically distributed (IID) sessionsare recorded for any one specific ratio of A:B. The numberof wins for A and B is recorded at each of the discrete A:Bratios studied, and the difference in wins between A and Bat each ratio is plotted as a graph, which Rollins and Cliff(2020) referred to as the delta curve for strategy-pair A andB. Finally, if the integral of the delta curve over the rangeof ratios shows A has more aggregate wins than B, then Ais said to dominate B, and vice versa.
2. Assessing Trading Performance in the FBA

In the results presented here, each experiment holds thebatch interval ∆tb at some constant value and runs a ratiosweep for each of the 15 distinct A:B pairs combined fromthe six algorithms discussed in Section 1.4. Each of the15 pairs is examined across all possible ratios in a marketwhich has a total of 40 traders, 20 buyers and 20 sellers.For each ratio, 1000 trials are run, and from each trial thewinning algorithm is declared as the one with the greatestprofit per trader. The algorithm that wins more trials thanits counterpart across the 19,000 trials generated is saidto dominate its counterpart in this pairwise comparison.Through 15 different pairwise tests across 6 algorithms,we conduct a total of 285,000 trials per experiment. Usingwin-counts as a success metric for algorithm comparison,we can establish two hierarchies: one by ordering algo-

rithms based on the number of algorithms they dominate;and the other by comparing their total wins against everyother algorithm.Here we present results from three experiments, withthree different values of the batch interval ∆tb. By chang-ing the batch interval to make matches progressively morefrequent, we can observe which trader algorithms performbetter with longer batch intervals, and which perform bet-ter with relatively frequent batch intervals, where the stateof the market is reported to traders more frequently. Witha smaller batch interval the market becomes more sim-ilar to a CDA and so results may be expected to be closerto those recorded in TBSE by Cliff and Rollins (2020). Byperforming experiments with varying batch intervals italso becomes possible to deduce the best batch interval tohamper certain strategies, e.g. identifying what is the bestinterval to limit the speed-advantage of HFTs.It is also important to observe the effects of varying theequilibrium price P∗. Here, we first run experiments witha fixed P∗, to establish a baseline, and then we re-run ourexperiments but with the P∗ varying over time. We referto the first set of experiments as “Static-P∗” and the sec-ond as “Dynamic-P∗”. In the experiments reported here,limit prices are random draws from a uniform distribu-tion between a minimum value between 1 and 100 and amaximum value between 100 and 200, giving an average
P∗ of 100: in the Static-P∗ experiments, this is maintainedthroughout the trading session; in the Dynamic-P∗ ex-periments, in order to produce results from a simulationwhich more accurately reflects the price fluctuations in areal-world financial market, we alter the equilibrium pricethroughout a trading session, by adding in a time-vayingoffset value to all limit prices, resulting in the equilibriumprice varying during the trading session.
3. Results

Here we present results from setting the batch-intervalduration ∆tb to 10 seconds (Section 3.1), then to 2 seconds(Section 3.2) and then to 0.5s (Section 3.3). In Section 3.1we note that the original SHVR algorithm can be improvedto work better in FBAs, and so we re-name the originalas SHVR1 and then introduce a modification referred to asSHVR2 which is used in all our subsequent experiments.
3.1. 10-second batch interval (∆tb=10s)
The longer the batch interval (i.e., the higher the value of
∆tb is), the greater the dissimilarity in trading environ-ment between the FBA and the CDA. This is because an FBAwith large batch intervals has more extended periods ofinactivity, where the perceived market state from reportsof the previous batch stage can significantly differ fromthe actual market state. As a result, there are significantprice fluctuations in transaction prices between batches,which is a characteristic feature of FBAs compared to CDAs.The set of results from ∆tb=10s are shown in Table 1.
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Trading Algorithm Total Wins Algorithms Beaten

GVWY 94537 5
ZIP 66684 4
GDX 60162 3
AA 37466 2
ZIC 22797 1
SHVR1 3354 0

Table 1. Wins and number of algorithms beaten by each trading algorithmin an FBA with ∆tb=10s and the original SHVR1 algorithm.
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Figure 1. ZIC vs SHVR1 Delta Curve for FBA with ∆tb=10s.

One particular result that revealed itself was the poorperformance of SHVR1. This is seen in Figure 1 whereSHVR1 is only able to out-perform the ZIC trading strategywhen SHVR1 is running in a small number of agents oneach side of the FBA market. This is a surprising result asin both TBSE and BSE, SHVR1 is known to dominate ZICwith both a static and dynamic equilibrium price Cliff andRollins (2020). As SHVR1 reacts to the state of the marketit is surprising that it is outperformed by a strategy whichgenerates quote prices from a random distribution subjectto the constraint that the prices thus generated should notmake a loss. The original implementation, SHVR1, aimsto always have the best quote on its side of the LOB, solong as doing so does not violate its limit price. It achievesthis by ‘shaving’ one unit off the best bid or best ask atthe time of issuing its order. However, the FBA in BFBSEuses the LOB structure to store remaining bids and asks,
after the matching has taken place, so in its original imple-mentation SHVR1 will only examine quotes that haven’tcrossed the spread, and hence do not represent the bestbids or offers. We modified SHVR1, changing it to insteaduse the entire demand/supply curve for the immediatelyprevious most recently matched batch – ‘shaving’ onecent off the best bid/ask from the most recent batch: thismodified form is referred to as SHVR2. Table 2 shows thechange in performance that results from this modifiedSHVR2 algorithm.Furthermore ZIC’s surprisingly good performance canbe seen from Figure 2 where, when it makes up a smallproportion of the market, it is able compete fairly closelywith GDX. Specifically, when there is only one ZIC traderon each side of the market, compared to 19 GDX agents oneach side of the market, GDX scores 625 wins compared toZIC’s 375 wins.From the results in Table 2 it is possible to draw furtherconclusions about the performance of other trading algo-rithms tested. The high performance of GVWY is notable,considering its straightforward strategy of simply quoting
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Figure 2. GDX vs ZIC Delta Curve for FBA with ∆tb=10s.
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Figure 3. GDX vs ZIP Delta Curve for FBA with ∆tb=10s.

its limit order price into the market. The reasons for itssuccess is discussed further in Section 5 but here we brieflynote that due to GVWY quoting attractive prices into themarket it is able to fulfill a large number of assignmentsat a profit, and so generates a larger profit per trader. Inaddition to this, the significant difference in performancebetween GVWY and the adaptive algorithms, ZIP, GDX, andAA, is definitely not due to GVWY implementing a moreintelligent strategy that is better-suited suited for batchauctions. Instead, the more plausible explanation is thatthis is a result of the other “intelligent” trading algorithmsbeing unable to perform as profitably when the state of themarket is not reported as frequently as in a CDA.
In the FBA markets SHVR2 produced much more prof-itable trades than SHVR1. This is seen in Figure 4 whereSHVR2 is now able to record more wins at all ratios overZIC. However it should be mentioned that given a longerbatch interval, the auction process of FBAs is able to re-duce the effectiveness of SHVR2. This is seen in Table 2where SHVR2 is only dominant over 2 algorithms whereasin the TBSE results of Cliff and Rollins (2020) SHVR1 wasrecorded as dominating three algorithms when a static

P∗ is used. This is seen in Figure 5 where SHVR2 doesnot record more wins than GDX at any ratio, whereas inTBSE it scores more total wins than GDX across a pairwisecomparison.

Trading Algorithm Total Wins Algorithms Beaten

GVWY 94330 5
ZIP 62071 4
GDX 56833 3
SHVR2 40299 2
AA 22922 1
ZIC 8545 0

Table 2.Wins and algorithms beaten by each trading algorithm in a FBAwith ∆tb=10s and the new modified SHVR2.
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Figure 4. ZIC vs SHVR2 Delta Curve for TBA with ∆tb=10s.
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Figure 5. GDX vs SHVR2 Delta Curve for FBA with ∆tb=10s.

3.2. Two-Second Batch Interval (∆tb = 2s)
3.2.1. With Static P∗
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Figure 6. GDX vs SHVR2 Delta Curve for FBA with ∆tb = 2s.

The performance of SHVR improves significantly dueto the increase in batch frequency resulting from reduc-ing ∆tb from 10s to 2s. This is seen in the hierarchy inTables 3 and 4 where SHVR2 scores a significantly highernumber of wins and now dominates GDX. This is seen inFigure 6 where SHVR2 now scores more wins at every ratiocompared to the∆tb=10 results shown in Figure 5. Further-more, the dominance of GDX has shifted such that it onlydominates SHVR2 when it has four or less agents on eachside of the market; as the number of GDX agents increase,the performance of SHVR2 increases.
Furthermore the decline in the performance of GDX canbe seen in the difference in Figures 3 & 7 where the deltacurve is shifted down as the batch size increases. This rep-resents additional wins of ZIP across all ratios against GDX.

Trading Algorithm Total Wins Algorithms Beaten

GVWY 91698 5
ZIP 63676 4
SHVR2 52080 3
GDX 38439 2
AA 30923 1
ZIC 8184 0

Table 3. FBA results for ∆tb=2s with static P∗.
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Figure 7. GDX vs ZIP Delta Curve for FBA with ∆tb = 2s.
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Figure 8. AA vs SHVR2 Delta Curve for FBA with ∆tb = 2s.

It should also be noted that the increase in performancefrom ZIC when the equilibrium price varies, as seen in Ta-ble 4, likely represents ZIC benefitting from the inabilityof other traders to produce quotes that accurately reflectthe market state at a given time, and does not representZIC’s quotes being more intelligent than other traders’.
3.2.2. With Dynamic P∗

The delta curves from experiments with varying equilib-rium prices are not shown here because they are not in-terestingly different to those produced with a static equi-librium price. The results from a 2 second batch intervalwith a varying equilibrium price are shown in Table 4.
3.3. Half-Second Batch Interval (∆tb = 0.5s)
The GVWY results in Table 4 prompts the question ofwhether the success of GVWY is dependent on the durationof the batch period: our goal was to determine whetherthe success of GVWY could still be observed in simulationswith more frequent batches, as proposed in Budish et al.(2015), so we ran experiments in which the batch inter-val was reduced to 0.5s: results from these experimentsfor static P∗ are shown in Table 5 and Figure 9; and fordynamic P∗ in Table 6 and Figure 10.The results in Tables 5 and 6 show that as the batchinterval is shortened GVWY agents are less profitable butstill remain top of the hierarchy of traders in BFBSE. Oneconsequence of this is that the number of wins scored by

Trading Algorithm Total Wins Algorithms Beaten

GVWY 92826 5
ZIP 67403 4
SHVR2 47353 3
GDX 34908 2
AA 31211 1
ZIC 11299 0

Table 4. FBA results for ∆tb=2s with dynamic P∗.
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Trading Algorithm Total Wins Algorithms Beaten

GVWY 73306 5
ZIP 65574 4
SHVR2 54512 3
GDX 48096 2
AA 35759 1
ZIC 7753 0

Table 5. Wins and algorithms beaten by each trading algorithm in the FBAwhen ∆tb = 0.5.
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Figure 9. AA vs SHVR2 Delta Curve for FBA with ∆tb = 0.5s.

Trading Algorithm Total Wins Algorithms Beaten

GVWY 76876 5
ZIP 70482 4
SHVR2 49489 2
AA 39176 2
GDX 38967 2
ZIC 10010 0

Table 6. Counts of wins and algorithms beaten by each trading algorithmin the FBA with ∆tb=0.5s and Dynamic-P∗.
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Figure 10. AA vs SHVR2 Delta Curve for ∆tb = 0.5s and Dynamic-P∗.
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Figure 11. ZIP vs GVWY Delta Curve for ∆tb = 0.5s and Dynamic-P∗.

all the adaptive algorithms (AA, ZIP, and GDX) increasesas they are able to steal more profit from GVWY. Anothernotable result is the increase in performance of AA as thebatch frequency increases. From Figures 8, to 9, to 10,it is clear to see that AA performs considerably better asthe environment becomes closer to that of a CDA. This ismore similar to the hierarchy given in Rollins and Cliff(2020) where AA is at the top in TBSE with both a staticand dynamic equilibrium price.
Another notable result is that in the final experiment,ZIP is able to score more wins than GVWY in ratios where ithas many more agents on both sides of the market. This isseen in Figure 11 where ZIP has a slightly greater numberof wins than GVWY when it has between 14 and 18 tradeson each side of the market.

4. Final Hierarchy and Comparison to TBSE

A final comparison can be performed from the most realis-tic simulations of a FBA, one in which the batch periods arerelatively frequent and the equilibrium price varies. Forexample, in Budish et al. (2015) they propose a trading daythat is divided into frequent intervals and suggest around100 milliseconds for the length between each auction. Thisis relatively close to the batch interval used in our most fre-quent FBA experiment, which stands at 0.5 seconds or 500milliseconds. Although a smaller batch interval could havebeen used for our experiments, 0.5 seconds was chosen asthe lower limit to allow the exchange thread enough timeto perform all necessary calculations and record-keepingfor one auction process before starting another.
Algo. A Algo. B TBSE BFBSEA wins B wins A wins B wins

ZIC AA 2178 16822 5601 13399ZIP AA 6559 12441 14847 4153GDX ZIC 10674 8326 17709 1291GDX ZIP 8628 10372 5923 13077ZIP ZIC 12452 6548 18984 16GDX AA 9401 9599 12032 6968ZIC SHVR2 4275 14725 841 18159ZIP SHVR2 5226 13774 10906 8094AA SHVR2 10637 8363 9379 9621GDX SHVR2 15073 3927 9258 9742ZIC GVWY 4802 14198 4 18996ZIP GVWY 5995 13005 7760 11240AA GVWY 12296 6704 1860 17140GDX GVWY 7708 11292 3174 15826GVWY SHVR2 7817 11183 10104 8896
Table 7. Comparison of Algorithms on TBSE and BFBSE with Static P∗.For each column of A/B win-count pairs, the larger value is highlighted inbold font; underlining highlights where the TBSE dominance relationshipreverses in the switch from the CDA-based TBSE to the FBA-based BFBSE.

The results of trading strategies in the most realisticFBA were selected from Section 3.3, where a FBA was sim-ulated without a change of equilibrium price and with achange of equilibrium price throughout the trading day.
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Figure 12. Pairwise dominance graphs for Static P∗: left-hand graph isfrom FBA experiments run in BFBSE; right-hand graph is from CDA ex-periments run in TBSE. In both graphs the nodes represent the six tradingalgorithms evaluated, and a directed arrow between two nodes points fromthe dominant node to the dominated node. Beneath each node label are apair of numbers: the in-degree of the node, followed by the out-degree ofthe node. In the BFBSE network, those edges that are the same as in theTBSE network are plotted in a light gray while edges that reverse directionbetween FBA and CDA are drawn in black ink.

The comparison between the number of wins scored byeach algorithm across a pairwise sweep with both a Static
P∗ and a Dynamic P∗ is seen in Tables 4.7 and 4.8 . Fromthese tables, a pairwise dominance network graph is gen-erated to show the changes in algorithm dominance whenmoving from TBSE to BFBSE. The dominance graphs fromexperiments run with both a static P∗ and a dynamic P∗

are shown in Figure 12 and 14, with the format explainedin the caption to Figure 12.
The conclusions drawn from simulations of CDAs per-formed in TBSE can be simplified into a number of points.First, in a CDA, a fairly simple but quick trading algorithmcan be profitable. This is seen in the result of ZIC which isable to dominate GDX across a number of trials when a dy-namic P∗ is used. This is simply a consequence of ZIC beingable to produce a quote into the market quicker than GDXbecause of GDX’s complexity: ZIC is often able to ‘steal’deals from GDX simply by being faster. However in an FBA,speed advantages become nullified if the batch interval islonger than the time taken for a trader to produce a quote.This is demonstrated in Figure 14, where the transitionfrom TBSE to BFBSE results in ZIC no longer dominatingGDX, as it fails to score more total wins than GDX acrossdifferent ratios. In addition to this, from the experimentsconducted in TBSE, it can be seen that the nonadaptive ZItrading strategies are less affected by the noisy LOB in aCDA. In a CDA, orders to an exchange are processed seri-ally and so the state of the LOB when an order is submittedmay be different to the state when the order is actually pro-cessed. This is one of the reasons why ZIC scores so manyof its wins. For example from Table 7, we can observe thatZIC is able to score a sizeable number of wins (6548) overZIP, which is also a fairly speedy algorithm. This partlybecause of ZIP’s reliance on the LOB which will be noisy atsome stages when an order is processed. However in BF-BSE, ZIC no longer has this advantage over ZIP and hencesignificantly fewer wins are recorded.
From Figures 12 and 14, it is clear to see GVWY’s domi-nance in BFBSE. Although in TBSE, the simplicity of GVWYenables it to perform profitably, dominating ZIP, GDX and

ZIC with both a static and dynamic P∗, its ranking at thetop of the hierarchy for BFBSE is notable due to its sim-plicity. GVWY’s position as a ‘source’ node, a node withmaximum out-degree and minimal in-degree, representsthe algorithm’s ability to score more wins across all ra-tios than all other algorithms it was tested against. Thisis promising for FBAs as it back up the claims of Budishet al. (2015) which state that FBAs reduce “. . . the value oftiny speed advantages, and . . . transforms competition onspeed into competition on price”. GVWY’s profitability liesin its design to always quote the most attractive price itcan on the market, which is the limit price in its current as-signment. By always offering the most competitive price,it consistently outperforms other algorithms.Another notable change can be observed is the perfor-mance of AA vs ZIP with a static equilibrium, where thedomination is drastically reversed when the pairwise com-parison is done in BFBSE vs TBSE. In TBSE AA dominatesZIP, scoring nearly twice as many wins. However, whenBFBSE is used, AA fails to compete with ZIP and scoresjust 4153 wins. This is seen in Figure 13, where AA fails toscore more wins than ZIP across any ratio. The possiblereasons for this are discussed further in Section 5.
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Figure 13. ZIP vs AA Delta Curve for Static P∗.

Figure 14. Pairwise dominance graph for Dynamic P∗.

Since the academic history of trading algorithm re-search and development is firmly rooted in studying algo-rithmic performance in CDAs, and this paper is the firstFBA simulation that we are aware of, hence unfortunatelythere are no previously-published results in the literaturethat we can compare to those generated here in BFBSE.However, some of the results recorded in BFBSE are similarto results that have been supported by previous work suchas: ZIP beating both ZIC (Cliff (1997)) and GDX (Rollinsand Cliff (2020)), and GVWY beating GDX (Cliff and Rollins
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Algo. A Algo. B TBSE BFBSEA wins B wins A wins B wins
ZIC AA 2724 16276 6375 12625ZIP AA 9769 9231 13503 5497GDX ZIC 8650 10350 16321 2679GDX ZIP 5007 13993 1518 17482ZIP ZIC 17025 1975 18965 35GDX AA 10303 8697 12147 6853ZIC SHVR 4713 14287 918 18082ZIP SHVR 10283 8717 12312 6688AA SHVR 11779 7221 12105 6895GDX SHVR 16375 2625 8312 10688ZIC GVWY 5999 13001 3 18997ZIP GVWY 9165 9835 8220 10780AA GVWY 10227 8773 2096 16904GDX GVWY 5462 13538 669 18331GVWY SHVR 8430 10570 11864 7136

Table 8. Comparison of Algorithms on TBSE (CDA) and BFBSE (FBA) withdynamic P∗. Meaning of bold-font and underlining are as for Table 7.

(2020)). This is promising as it suggests that FBAs can bea viable alternative to CDAs, and that with minimal adap-tations, algorithms designed for CDAs can be deployed inFBA environments.
5. Discussion

From the 1,710,000 sessions generated through simulating90 pairwise comparisons, a number of observations canbe made about how the six algorithms perform in BFBSE.
5.1. Zero Intelligence Constrained (ZIC)

The poor performance of ZIC in BFBSE is unsurprising dueto its main advantages being removed by the structureof a FBA. Although performing well across experimentsperformed in TBSE, due to its speed advantage over morecomplex algorithms, this advantage is stripped away dueto the discretization of time in an FBA.ZIC is most profitable when batch intervals are largeras adaptive algorithms have a less clear view of the mar-ket and so ZIC is able to profit off the quotes of thesetraders. However, with this being said, ZIC records theleast amount of wins in every experiment performed in BF-BSE, bar the first experiment with the old implementationof SHVR. While other non-adaptive algorithms are ableto perform more profitably in BFBSE, ZIC’s quote pricesdrawn from a random distribution do not yield a high num-ber of assignments fulfilled and so it fails to record a sig-nificant profit per trader in most trials.
5.2. Zero Intelligence Plus (ZIP)

ZIP’s machine learning heuristics means that it performswell in comparison to the other adaptive trading algo-rithms. ZIP works by adapting its profit margin using alearning rule based off other traders’ actions in the market.This mechanism causes ZIP to prosper in BFBSE where

it is able to consistently quote profitable prices into themarket. ZIP’s performance with both longer batch inter-vals and shorter batch intervals are notable as it alwaysremains second in the hierarchy, behind only GVWY. Infact, across all experiments in this paper, ZIP is only everdominated by GVWY and never scores less wins across apairwise sweep than any other algorithm. This is not dueto GVWY being a more intelligent trading strategy, betterable to accurately capture the current or future state of amarket, but simply a product of GVWY’s ability to performa higher number of trades.
Another notable result, worthy of further exploration,is that even with more frequent batches, where the marketbehaviour of an FBA is more similar to a CDA, ZIP is able todominate algorithms such as AA, which further calls intoquestion prior publications that reported superior perfor-mance of AA over ZIP in CDA markets (Vytelingum et al.(2008); De Luca and Cliff (2011b)). An interesting avenuefor future work might include observing how small thebatch interval can be configured, such that ZIP still out-performs AA.

5.3. Gjerstad Dickhaut eXtended (GDX)

In BFBSE, GDX records similar success to that reportedfrom tests done in TBSE by Rollins and Cliff (2020). Oneof the main motivators for TBSEs development was to re-evaluate the dominance hierarchy of trading algorithmsby taking into consideration their response time. Thisresulted in GDX being placed lower in the hierarchy due toits slower processing time compared to other algorithms.
Given that order matching in an FBA occurs through anauction at discrete time intervals, our initial assumptionwas that GDX could be one of the most dominant strate-gies in BFBSE. This is because GDX would have sufficienttime to quote “intelligent” prices to the market, withoutconcern for simpler traders trading faster and altering theLOB, thereby forcing GDX to either issue quote prices basedon outdated LOB information or to re-start its calculationswhen the LOB changes. While this assumption is correctfor longer batch intervals, where GDX is placed high upthe hierarchy for experiments conducted with batch inter-vals of 10 seconds, it is not the case when a batch intervalcloser to that prescribed in Budish et al. (2015) is used. Forexample from Table 1, it can be seen that GDX scores veryfavourably and is able to achieve a similar amount of winsto ZIP, which is the most successful adaptive algorithmin BFBSE. The results presented in Table 5 show that asthe batch interval is reduced to half a second, GDX scoresfewer wins. This effect is further magnified when thereis variation in the equilibrium price throughout the trad-ing session, as seen in Table 5. This is a result of SHVR’snumber of wins increasing, leading to GDX losing its domi-nance over SHVR. Consequently, GDX falls in the hierarchy.
It should also be noted that GDXs strong performancewith large batch intervals is surprising as it is formulatedto make quotes “in a broad class of auctions characterized
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by sequential bidding and continuous clearing” (Tesauroand Bredin (2002)), which does not fit the properties of aFBA. Despite this, it is still able to dominate both ZIC andAA across all batch intervals tested in this paper.While the result of GDX for smaller batch intervals isdisappointing, GDX’s belief function could potentially bemodified to enable it to function more effectively with thediscrete reporting of a FBA. This remains a topic for futurework.
5.4. Adaptive Aggressive (AA)

Vytelingum’s Adaptive-Aggressive (AA) trading strategyis designed to maximize profits by adapting to the currentmarket conditions and taking aggressive positions whenthe opportunity arises. In simple simulations of a CDA, AAis widely regarded as one of the best-performing public-domain algorithms and was initially promoted as domi-nating all other strategies across a wide variety of marketconditions (see e.g. Vytelingum (2006); Vytelingum et al.(2008) and De Luca and Cliff (2011b)) although this appar-ent dominance was subsequently shown by Snashall andCliff (2019) to depend on what ratio of competitor strate-gies it was trading against, which is why it is important torun ratio-sweep tests. As far as we are aware, the resultspresented here are the first exploration of whether AA iswell-suited to FBA-based markets or not.AA’s mechanism relies on estimating the current equi-librium price P∗ and then using this in order to determineif its current limit price is less than or greater than P∗. InAA, orders are categorized as intramarginal if their trans-action at the equilibrium price results in a profit, and as
extramarginal if they won’t make a profit at the equilib-rium price. It is likely that the estimate of the equilibriumprice used by AA is not an ideal metric in a FBA.AA’s strategy of classifying orders as intramarginal andextramarginal can work effectively in a CDA. However,in a FBA, where transactions occur at regular intervals,a large batch of orders can skew AA’s perception of thetrue equilibrium price in the market as they all transactat the same time. Because of this, AA may find it difficultto determine the intramarginality or extramarginality ofits limit prices due to the poor accuracy of its estimatedequilibrium price. In a CDA a poorly calculated equilibriumprice can quickly be corrected by the arrival of new quotesto the exchange, however due to the batching nature ofFBAs it is much harder to evaluate the true equilibriumprice when quoting into the next batch’s matching process.This can be seen as AA scores fewer wins in markets witha large batch interval.Moreover, AA’s inability to calculate accurate equilib-rium prices is exacerbated by the fact that visible tradingvolumes in FBA are lower as a result of the batching pro-cess. A consequence of this is that it takes a longer amountof time to produce a useful estimate of the market equilib-rium price and so AA’s performance suffers.Another pitfall of AA in FBAs is its inability to transact

with orders on the exchange instantly. When AA’s aggres-
siveness value is above zero, AA’s passive strategy of quot-ing prices that generate large profits but are less attractiveto counterparties are unlikely to transact. The reason forthis is that, unlike in a CDA, where AA can transact withless informed traders as soon as the quote is submitted,the batched order-matching of an FBA eliminates AA’sability to make a profit from underinformed traders in avolatile market.
5.5. Giveaway (GVWY)

The results of GVWYs performance in BFBSE represent themost significant shift in the hierarchy relative to the re-sults reported by Cliff and Rollins (2020) from their studieswith the CDA-based TBSE: in the FBA-based BFBSE, GVWYdominates all over algorithms, across all experiments runin BFBSE: GVWY is at the top of the hierarchy and domi-nates all other trading algorithms. This may seem impos-sible since GVWY never aims to make a profit and insteadquotes its limit price into the market. In a CDA it can occa-sionally make a profit by crossing the spread the momentthe order is processed by the exchange.
However, in FBAs, transactions for a given batch occurat the clearing price, which is determined as the pointat which total supply is equivalent to total demand. Forthis reason, if a limit price is quoted to the market at amore attractive price than the equilibrium price, it willmake a profit. Given the batch nature of processing inFBAs, the occurrence of GVWY agents making a profit issignificantly more likely than in TBSE, as in between batchintervals many orders may cross the spread, which willhave an effect on the equilibrium price. This is not the casein CDAs in which, due to the serial nature of processing,the spread is only crossed by a single bid/offer at a time.Moreover, with the batch processing of FBAs, the state ofthe market when orders are processed is not known and soother trading algorithms will find it harder to exploit anybids submitted from GVWY that are much more attractivethan previous quotes from other traders in the market.
It should be noted that part of the reason for GVWYsdominance is that it never tries to make a profit and soexecutes the most trades compared to any other strate-gies: it loses no time in “haggling”, and in consequencecan generate more trades per unit time than any tradingstrategy that might take several steps before arriving atan agreeable price.
When batch intervals are shortened, and the marketbecomes more like a CDA, GVWY scores fewer wins. Thisis for a number of reasons. Firstly, with more frequentbatches, fewer orders cross the spread at each auction andso the clearing price is more influenced by GVWY quotingits limit price. Another reason for GVWYs worse perfor-mance in shorter batch intervals is that the state of the ex-change is reported more frequently and so adaptive traderssuch as AA, ZIP and GDX are able to perform more prof-itable trades. However, even with experiments run at a
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batch interval of half a second, GVWY is able to dominateall other algorithms that have been tested against it here.
5.6. Shaver (SHVR)

SHVR is described in Cliff and Rollins (2020) as a “strategyintended as a tongue-in-cheek model of a contemporaryhigh-frequency trading (HFT) algorithms, which involvesno intelligence other than a relentless desire to undercutall of its competitors”. For this reason, the performance ofSHVR in a FBA market is of great interest as it is the tradingalgorithm that mimics HFT, which is what FBAs claim toaddress Budish et al. (2015). As was discussed above, twoSHVR implementations were evaluated here.First, SHVR1 (the original strategy) attempts to alwayshave the best price remaining from the supply/demandcurves. Since the curves and the LOB are analogous,SHVR1’s performance might be expected to remain broadlythe same in both FBA and CDA markets, but instead theperformance is affected significantly, degrading badly inFBA. Since SHVR1 agents only act on the state of the mar-ket at any given time, they rely on the published LOB’ssummary of the market state as accurately reflecting thetrue underlying state of the market when the orders arematched. Since transactions only occur in the auctionphase of a given batch period, the state of the market de-rived from the supply and demand only report the stateof the market from the last set of transactions. Becauseof this, SHVR1’s ability to gain understanding of the mar-ket is significantly stunted and this can be seen from theperformance of its first implementation in BFBSE: resultsshown in Table 1, where it is outperformed by every otheralgorithm.While Budish et al. (2015) state this difference is similarto the noisy asynchronous information shown on the LOB,whereby the serial nature of orders added to the exchangeinduce a latency of the actual state of the market beingshown on the LOB, for longer batch periods the latency inFBA is significantly larger. This is shown from the resultsfor a shorter batch period, where SHVR’s performance issignificantly improved and it goes up the hierarchy.Furthermore, unlike in a CDA, quotes from SHVR arenot able to transact immediately due to the batch nature ofFBAs. This has a huge effect on the performance of SHVRtrading agents as it relinquishes their biggest advantage;they are no longer able to ‘steal quotes’ from the marketat a beneficial price simply by acting the quickest. This ad-vantage is discussed in Rollins and Cliff (2020), where theperformance of SHVR is impressive. With the FBA mecha-nism, there is no advantage to being the best bidder in abatch period, so long as your bid qualifies and it transactsat the clearing price and so SHVR1 was modified for FBAs.The modified SHVR2 showed a significant performanceincrease, outperforming the adaptive machine-learning-based algorithms AA and GDX, both of which have previ-ously been shown to outperform human traders in CDAmarkets, i.e. to be “superhuman” in that limited sense.

While this may seem to serve as proof that FBAs thathave a small batch interval do not mitigate the speed ad-vantages of HFT inspired traders like SHVR2, this is likelynot the case. SHVR2’s performance is a consequence ofit performing a large number of trades and not necessar-ily earning the highest profit per trade or per trader. Fu-ture work might include further analysis into SHVR-styleagents when orders are less frequently replenished and sothe profit earned per trade is of more concern. Moreover,it is likely that with additional hyperparameter tuning, al-gorithms such as AA and GDX will be able to outperformSHVR agents by using their adaptation mechanisms tolearn to place more profitable quotes in the market.Finally, since SHVR2’s number of wins fall as the batchfrequency decreases, it is likely that a large enough batchperiod can be chosen to reduce or eliminate SHVR2’s wins:again, a topic for further research.
6. Conclusion

The central goal of this paper was to explore how the per-formance of well-established trading algorithms, each ofwhich have previously been widely explored in CDAs, farewhen trading in a FBA.To address this, BFBSE was created which (as far as weknow) is a first-of-its-kind simulator for FBA markets.Through BFBSE, the performance of different trading al-gorithms were evaluated under the specific constraints ofdiscrete time intervals and batch processing, which areunique to FBAs. Using results from BFBSE, a comparisoncould be made with experiments reported from TBSE byCliff and Rollins (2020) and Cliff and Rollins (2020), inorder to determine the effect that the change in auctionmechanism has on the dominance network between trad-ing strategies.By conducting more than 1.7million simulated tradingsessions within the FBA setting, a comprehensive analysiswas carried out to examine the pairwise dominance rela-tionships among various trading algorithms. The resultsof these simulations led to insight into how trading algo-rithms designed for CDAs interact with each other, givingcomparisons across 19 different ratios.Since the design of FBAs is motivated by the desire tocurb the advantage of high-frequency traders, it was hy-pothesised that the performance of the SHVR strategy,which was designed “as a tongue-in-cheek model of acontemporary high-frequency trading (HFT)” (Cliff andRollins (2020)), would decline significantly. Experimentswere conducted using a similar interval to that recom-mended by Budish et al. (2015) with the addition of a dy-namically varying equilibrium price, in order to betterreflect real-world financial markets. The results indicatedthat by making only minor adjustments to the originalSHVR1, the revised SHVR2 trading algorithm was able tomaintain profitable performance in short batch intervals.Most notably, the results from Section 3.3 show that inFBAs SHVR2 can dominate both AA and GDX, two of the
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“superhuman” adaptive strategies, which is a somewhatunexpected result, inviting further investigation. This,and the various other directions for potential further re-search, will be explored and reported on in future papers.The source-code used to generate the results in this paperhas been made freely available on GitHub (see Savidge,2023b) so that other researchers can replicate and extendthe results presented here.
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