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Abstract
Artificial Intelligence (AI) has gained importance in several fields, but challenges still remain when developing effective AI systems.Generating rich datasets and testing AI’s performance in special conditions are primary obstacles in AI development. Simulation offersa possible solution by generating synthetic data for training and flexible testing environments. However, the generation of highlydetailed simulation implies a lot of effort and sometimes cannot even be integrated into AI development due to lack in performance andquality. AI could help close these gaps in simulation. We propose a framework with which the mutually beneficial relationship betweensimulation and AI can be studied. It focuses on how AI can help improve simulation that in turn will be used for the benefit of AIdeployed in real applications, which also serves as feedback to improve the former. In this survey-like contribution, we also highlightexamples of current AI developments that can be useful to enhance some key factors of realistic simulation and analyze how simulationcan help with training and testing of AI for real applications. Finally, we show our preliminary results on human vs. AI perception indetection networks and on video to video synthesis, to further validate the necessity of research on the AI’s influence on simulation.
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1. Introduction
Different fields of application nowadays demand the useof Artificial Intelligence (AI) to tackle problems that aretoo hard to code manually by engineers and developers.Although AI seems like a compelling solution to this kindof problems, it is usually not easy to develop functioningand reliable AI in a cost-effective way. Most AI developingtechnologies face the same problem: scarce availability ofvaried, meaningful training data. For instance, in the auto-motive sector only a few companies (e.g. Tesla) with fleetsof semi-autonomous cars that continuously collect data tofeed their networks, have access to a big and widely varieddataset to achieve acceptable AI behavior. But even withsuch data acquisition methods, they miss crucial informa-tion from special cases that fully autonomous AI needs tohandle. Moreover, testing of the AI performance becomesa problem due to the high costs in fields of application

like space missions. Virtual Testbeds (VTBs) Rossmannet al. (2016), thorough 3D simulation environments thatportray all important aspects of the applications, providea possibly effective solution to these problems. They of-fer a cost-effective, fast, safe and very flexible alternativeto generate virtual environments Jochmann et al., whichcould be used for AI testing or to create datasets for AItraining. However, this often requires highly detailed andrealistic scenarios that need a lot of human labor, expertknowledge and computational effort.
AI cloud also be use to help overcome limitations ofvirtual worlds, and close the remaining gap between sim-ulation and reality. Following the Pareto principle, whilethe first steps in simulation yielded major improvementswith little effort, the last necessary improvements requirethe most effort. Several current AI developments can beimplemented in simulated environments to increase their
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Figure 1. Diagram of the framework proposed to study the mutually beneficial relationship between Simulation and Artificial Intelligence.

performance and realness, which in turn leads to bettersynthetic data for AI training and testing.We want to investigate if AI can be used to enhancesimulation and ultimately help produce better AI for realapplications ("real-AI"). The purpose of this "simulation-AI" is to either improve upon current working classicalmethods of simulation or benefit from them, rather thanreplace them. It is important to keep in mind that theenhancements in simulation must be beneficial in the eyesof the real-AI, i.e. either the performance or the ease of useof the real-AI are increased due to the improvements inthe virtual worlds. Our motivation is then to scrutinize thebenefits and limitations of using AI to improve simulationand vice versa.For this purpose, we propose a framework to study thepotentially mutually beneficial relationship between simu-lation and AI (Figure 1). This includes the use of syntheticdata to train and test real-AI by easily configuring and val-idating virtual scenarios according to specific use cases,focusing on the real-AI to be used. In the following sec-tions, we give an insight to the proposed framework andhighlight related work relevant to each part of it, we showpreliminary results on human vs. AI perception and video-to-video translation, and we provide our conclusions andthe focus of our future work.
1.1. The relationship between simulation and artificial

intelligence (concept)

Virtual Testbeds are able to produce high quality data withgood performance. Quality results often require a great hu-man effort to obtain, while good performance demands ex-pensive computations which leads to the need of expensivehardware (e.g. GPUs with high parallelism). AI can helpovercome this drawbacks for the VTBs to be effectivelyused in real-AI development. Our proposed frameworkallow us to investigate the use of AI to close the remain-ing gap to realism of the VTBs, while focusing on use caseapplications from the perspective of the real-AI to be used.The diagram of our proposed framework to study the

relationship between simulation and AI is seen in Figure1. It is centered on AI enhanced simulation, for which thetraining of AI models is needed. As with most AI, trainingdata plays a major role in the success of the algorithm; inthis case, high quality data (e.g. high resolution or ray trac-ing images) is used to train such models. The proportionof synthetic and real training data will depend on the goalof the simulation-AI, which can be the improvement ofsimulation performance, quality or environment realness.The AI enhanced simulation needs to be perceived as per-formant and of high quality in the real-AI’s perspective.With this, not only can we use the synthetic data to trainAI that will work in real life, but we can also use the en-hanced virtual worlds to test this real-AI. Furthermore,both the analysis of the obtained simulated data and theperformance of real-AI trained with such data, serve asfeedback for further iterations of the simulation-AI.All in all, this concept can be viewed as having two mainpaths of thought which, with the help of the related workto this topic, will be discussed further in the following sec-tions. These paths of thought and the goals of our researchare:
• The benefits that AI brings to simulation in order toclose the gap between real and simulated systems.• The benefits that simulated environments can bring toAI applications, specially for training and testing.

2. State of the art: Improving simulation with AI

2.1. Simulation

Simulation environments are constantly improving andare showing very impressive graphical fidelity, especiallyin the video game industry. Leaders in this sector are Un-real Engine 5 (UE5) and Unity. These engines are some-times used for research and testing in sectors like the au-tomotive one. A recently released simulation environmentplatform called Omniverse NVIDIA focuses on automotiveand industry sectors. They state that their platform can be
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used to generate synthetic data for training AI perceptionnetworks. This platform is the closest to the intended ca-pabilities of VTBs. However, their environments are notboosted by AI and they are assuming that their syntheticdata works in real applications without any feedback ofthe AI performance to the 3D world generation tools. Bothof which we intend to investigate and analyze in this andfuture publications.In the following, we go through the different ways inwhich AI can help improve simulation by highlightingsome state of the art developments that could prove useful.
2.2. Performance

Performance of the simulation can be increased by leavingtaxing computations to the AI. Some examples follow:
2.2.1. QualityWe refer to quality as how the simulation is perceived bythe human eye, and how it compares to real life, includingreal sensors (e.g. cameras, LiDAR).The use of image-to-image translators from both su-pervised (Wang et al. (2018b), Park et al. (2019)) and un-supervised (Liu et al. (2017), Huang et al. (2018)) methodsproduce a high quality frame from a low quality or evensemantic frame. This could be used at every step of thesimulation to generate a higher quality output at the lowercomputational cost of simulating semantic frames. How-ever, this rises temporal consistency problems with thematerial properties (e.g. color).Video-to-video translators based on Generative Adver-sarial Networks (GANs) Wang et al. (2018a) aim to solveconsistency problems and achieve a high quality, short-term temporally coherent output. World consistent video-to-video translation Mallya et al. (2020) builds on top ofthis. Using a guiding image, it achieves a long-term tem-poral consistency over the entire 3D world. However, thistranslator requires inputs of the same quality (e.g. realimages) as the desired output to achieve temporal consis-tency.As this defeats the purpose of using synthetic data, al-ternative ways to calculate the parameters for temporalconsistency are needed. Thankfully, simulated environ-ments can provide additional data of the world (so calledGround Truth data) which, together with modificationsof the translator’s structure, should be sufficient to calcu-late said parameters and achieve comparable results. Thismeans that this AI framework could be used to transformsemantic data of the simulation into photorealistic or raytracing looking ones. Figure 2 shows our objective: re-search the use of AI to turn a semantic input into a raytracing output during simulation to reduce the computa-tional effort, thus reducing the hardware requirements.
2.2.2. ResolutionDeep Learning Super Sampling (DLSS) from NVIDIABurnes (2020) uses a Convolutional Autoencoder to pro-

Figure 2. Example of one of our goals in performance improvement. Froma semantic input the AI will be able to generate a ray tracing output. Thiswill be integrated to the simulation pipeline to reduce computational effort.Virtual scenario and sensor data generated using VEROSIM VEROSIM andthe framework presented in Thieling and Rosmann.

duce high resolution images from lower resolution imagesand their motion vectors. This produces comparable re-sults to natively generated super resolution images anda substantial increase in performance. FidelityFX AMDfrom AMD and DirectML Microsoft from Microsoft are al-ternatives to DLSS.
2.2.3. Denoising
The AI-accelerated denoiser from NVIDIA, introducedwith OptiX 5.0 Chaitanya et al. is a post-processing fea-ture based on Autoencoders. This AI can "dramatically re-duce the time to render a highly fidelity visually noiselessimage", which could lead to performance improvements.Similarly, the denoiser in Mildenhall et al. (2021) is capableof taking extremely noisy raw images captured in dark en-vironments and generate a synthetic high dynamic rangeview.
2.2.4. Physics andDynamics of the system
Computation of the physics and dynamics of a system canbe very costly. Some AI developments in this area haveproven that deep networks are capable of boosting per-formance for simulation problems with a known solution.In Holden et al., they use a feed-forward neural networkto simulate subspace physics that interacts with externalobjects and generates close to ground truth results signifi-cantly faster than classic methods. Moreover, in Sanchez-Gonzalez et al. they use Graph Networks (GNs) togetherwith an encoder and a decoder to describe complex physi-cal systems composed of particles, showing that they canaccurately simulate thousands of particles to solve com-plex physics problems in simulation.
2.3. Realism

Implementing models of the simulation agents (e.g. sen-sors) that are not ideal but rather describe their behavioras close to reality as possible with AI help, is the goal ofthis subsection.



         

Figure 3. Example of the development in Thieling et al. (2019) applied toour simulation pipeline. Color transfusion from vegetation is present insome objects due to the distribution of trees and houses in the limited realdataset used in that research. Virtual scenario and sensor data generatedusing VEROSIM VEROSIM and the framework presented in Thieling andRosmann.

2.3.1. Sensor simulation resultsFor simulated camera sensors, the goal is to achieve pho-torealistic images that integrate error models and noisetypical of real sensors. The work in Thieling et al. (2019) isa first approach to use unsupervised GANs based image-to-image translation to achieve photorealistic outputs out ofrasterized simulation. It takes advantage of transfer learn-
ing, an approach in Machine Learning where one uses apreviously trained network as the starting point of train-ing; as the network already knows abstract concepts of theinitial domain, that are also found in the desired domain,the amount of new data required to train is drastically re-duced. Figure 3 shows an example of this image refiner inour simulation pipeline, it shows a more realistic image,although some artifacts and color transfusion from thevegetation can be seen.Furthermore, the research in Richter et al. (2021) takesrendered images from the video game GTA V and producesenhanced images that look realistic. They use G-bufferencoders to get typical rendering information of the in-put and pass them to their image enhancement networktogether with the input to produce the enhanced output.This research shows very promising results for using AIto simulate the behavior of real camera sensors.Another important type of sensor is the LiDAR. Theresearch in Elmadawi et al. (2019) presents a structureusing a fully convolutional Deep Neural Network (DNN)together with Polar Grid maps and a Histogram classifierto simulate the realistic behavior of a LiDAR sensor withpromising results.
2.3.2. ModelingWhen modeling objects, it is often necessary to simplifythe model so that the engine is able to simulate the scene ata reasonable computational cost. Using AI to learn modelsthat have the necessary complexity to fully imitate the realphysics and dynamics of the system is a step further inimproving realism. This way, better digital twins of theobjects and the 3D world can be achieved.
2.3.3. TexturesTextures and materials are important for the realness ofthe scene, as they contain information on how light par-ticles should behave when in contact with objects. The

work in Ramesh et al., although primarily a text-to-imagetranslator with focus in art, has been shown to be effec-tively used in the creation of realistic looking materialsin modeling software like Blender Brown. Ultimately, thesimulation-AI can help set up simulation parameters toachieve more realistic materials.
2.4. Data Analysis

We need a way to objectively measure if our enhancementsare improving realism. For instance, a super resolutionhigh quality simulation may look realistic for some but notfor others. In this part of the framework, we try to tacklethat subjectiveness by proposing the use of some metricsthat may give more insight in how realistic a simulationis. Non reference image quality metrics like CEIQ Yan et al.for contrast, BRISQUE Mittal et al. for space quality orNoR-VDPNet Banterle et al. for visibility and luminance(or their combination); could offer a first approach intomeasuring realness of synthetic data. Ultimately, virtualworlds need to work with real-AI, so it is important that inthis AI’s perspective, the simulation is realistic. Therefore,valid AI performance metrics have to be compared withthe results of the realism metrics.
3. State of the art: How simulation can help AI

Two major steps in real-AI development can be improvedwith the help of simulation: training and testing. In thefollowing we take a closer look at them and at how func-tionality analysis can help simulation-AI.
3.1. Training

One of the problems of training in machine learning isthe scarce availability of meaningful, varied and labeleddatasets. Even when there is available data, e.g. theCityscapes dataset Cordts et al. (2016), samples of extremeconditions are missing to achieve a reliable AI. These aregaps that can be filled with the help of simulation. Virtualworlds allow the automatic generation of bigger, varied, la-beled datasets, that are produced at a faster rate and lowercost than real datasets. Furthermore, these worlds can beused to generate indispensable data of special situationsthat are hard, if not impossible, to recreate in real life, like:abnormal, dangerous or extreme situations.Agriculture is a sector where training data is not eas-ily available. The German project "Feldschwarm" Feld-schwarm is developing a fleet of smaller tractors that workin a swarm-like interactive manner, where the surround-ings recognition system is based on a real time object de-tector. They have done research on using synthetic datato train AI for this purpose Jiménez Aparicio et al. (2020).They tried using only synthetic data, a combination withreal data and transfer learning, with the later showing thebest results. They state that using simulated sensor data
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for AI training is viable but the simulation technology isnot good enough yet to have the performance of compara-ble real datasets, showing that improving simulation canbe beneficial to real-AI.All in all, the better approach is to use synthetic data tocomplement already existing real data, when available, tohelp improve the performance of real-AI.
3.2. Testing

Testing an AI application to be sure it is reliable and safe forusage in real life can take a lot of time. In the automotivesector, testing an AI’s reliability for its safe deploymentcould take up to hundreds of years of driving time Kalraand Paddock. Furthermore, some cases are too danger-ous or expensive to repeatedly test in real life. Simulatedworlds not only offer more flexibility in test environmentsbut also allow testings to be done in parallel (e.g. by run-ning different tests in several computers at the same time),significantly reducing the time needed and risks taken.This also hints at the benefits of increasing simulationperformance for real-AI.Although the bulk of the tests and the special casescan be handled in virtual worlds, the better approach is tocomplement real life tests, as they are unavoidable.
3.3. Functionality Analysis

Real-AI’s performance is not only important for its giventask but also for simulation-AI. As real-AI needs to be suc-cessfully trained and tested with synthetic data, its per-formance can serve as feedback for the simulation-AI, todetermine if the improvements on simulation are relevantor not. Naturally, different real-AI applications use differ-ent metrics to measure performance, e.g. in object detec-tion and classification the commonly used metric is themean Average Precision (mAP) Everingham et al. (2010).These metrics need be cross checked against the proposedmetrics in section 2.4, to corroborate if the simulated datais also more realistic to the real-AI. In this part of the workit is also important to test how vulnerable is such an AI tobeing fooled by tampered images.
4. Preliminary Results and Discussion

To corroborate the importance of the real-AI’s view in ourproposed framework, our first approach was to evaluatethe difference in a human’s and an AI detector’s perceptionof an image. We started by testing two different resolutionsfor the same virtual scenario (Figure 7). If you take a lookat Figure 4, both images appear to be the same. However,when calculating the pixel by pixel difference, we can seethat there is indeed a slight difference between them, thisis portrayed in Figure 5.But is this difference relevant for the AI? To test this, weimplemented one of the state of the art real time capable AIdetectors, i.e. You Only Look Once (YOLOv3) Redmon and

Figure 4. Two images of the same asset with different original resolution.One image has an original resolution of 2560x1440 (left) and the other of1440x720 (right).

Figure 5. Pixel by pixel difference between images in Figure 4 after theyhave been passed through YOLO’s pre processing, where they get rescaledto 416x416.

Farhadi (2018). We used the standard weights publishedby the author and run the inference on the two resolutions.As our focus was not to measure the performance of the AI,but to test if there is any difference from its perspective,we did not base the detection on the ground truth of thescene but on each other. I.e. we took one of the resolu-tions (2560x1440) as our ground truth for the detection.Additionally, YOLOv3 takes 416x416 images as input, thismeans that both datasets are scaled down before runninginference. If the initial resolution had no impact in thedetection, the Average Precision of each category, as wellas the mAP, would be 100%. Figure 6 shows the AP foreach detected category and states a mAP of 71.55% for thistest. With this, it can be concluded that the AI behavesdifferently for different initial resolutions and that the twodatasets are in fact different for the AI despite being practi-cally the same for the human eye. This also demonstratesthe need for appropriate metrics to measure these images,as the human eye is incapable of perceiving differencesthat the AI would.
Moreover, Figure 7 shows two example frames, wherecars are not being detected in the lower resolution, despitehaving a detection in the higher resolution. These areexamples of why the mAP ended up not being 100%.
We tested the translator "vid2vid" Wang et al. (2018a),mentioned in section 2.2, with the semantic images of thevirtual version of the KITTI dataset (VKITTI2) Cabon et al.(2020); Gaidon et al. (2016) and run the results throughYOLO. Figure 8 shows the Precision vs Recall curve withthe average precision (AP) of 20.02% for the car class, to-gether with two examples were both the results of thetranslation and the inference are seen. The AP shows thatalthough the detections look relatively promising, the per-formance is rather poor with respect to the ground truth



         

Figure 6. Average Precision (AP) for four detected categories, and thecalculated mAP for the dataset. Here the high resolution dataset is taken asthe ground truth to test if there is any difference in the detections of bothdatasets. This does not measure the performance of YOLOv3.

Figure 7. Two examples of the inference run with YOLOv3 Redmon andFarhadi (2018), both show instances where the cars are being miss detectedin the lower resolution dataset. Images on the left have the original resolu-tion of 2560x1440 and images on the right of 1440x720. Virtual scenarioand sensor data generated using VEROSIM VEROSIM and the frameworkpresented in Thieling and Rosmann.

of the simulation (i.e. perfect pixel-resolution annotation).This implies that further changes in the implementationare needed in order for this AI to improve simulation inthe perspective of real-AI. Furthermore, Both images havemany artifacts and blends of objects but follow semanticinput information relatively well. However, some of theblends of cars are being detected with a very high confi-dence. This happens because the AI fills that specific areawith features and shapes common to cars and the detectorgets "tricked" into thinking that it should be classified as acar, which hints to the need of testing real-AI’s robustnessagainst tampered data.Summarizing, our first approach to study the inte-gration of the simulation-AI developments in simulatedworlds, shows that even seemingly equal datasets havea different performance on real-AI. Metrics to calculatethe realness and, in turn, the performance of syntheticdatasets in the real-AI’s perspective are necessary beforeany improvements in simulation for real-AI training andtesting can be accurately measured. Furthermore, al-though the translation from simulated semantic to pho-torealistic videos shows promising results, it still lackstemporal consistency and realness to be effectively usedin real-AI training and testing.
5. Conclusion

We proposed a framework to study the mutual benefitsof the integration between AI and simulation, as well asits limitations. The framework shows a cyclical relation-

Figure 8. (top) Precision vs Recall curve for car detection from YOLOv3Redmon and Farhadi (2018) on the vid2vid Wang et al. (2018a) output usingsemantic images from VKITTI2 Cabon et al. (2020); Gaidon et al. (2016),giving an average precision of 20%. (bottom) Two examples of the results.

ship between both, were AI is used to improve simulation,which in turn would improve real-AI, and give feedbackfor further enhancements of the simulation-AI. We alsohighlighted examples of the areas of simulation that couldbe improved with recent AI developments. Furthermore,we analyzed how the use of simulated environments couldpositively impact the training and testing of real-AI.Our preliminary results show that perception AI candistinguish datasets that the human eye could not (e.g. dif-ferent original resolution rescaled to the same one). Thisgives two conclusions: first, appropriate metrics to mea-sure the realness of synthetic data is needed, human per-ception is too subjective and the real-AI’s perspective ismore important as it will be developed with said data. Sec-ond, resolution plays a role in perception networks and itsup-scaling by AI would impact the real-AI’s performance.Furthermore, video to video translation showed promis-ing results in the conservation of semantic informationbut lacks temporal consistency; world consistency is leftfor future research. It also hinted at the importance oftraining real-AI for robustness against falsified data.The research in simulation and AI that can be done withour proposed framework will help determine in whichcases AI is useful as an improvement or replacement ofclassical methods, and when it can be used to generateparameters of the simulation, all from the perspective ofreal-AI. Our future work will be based on the developmentsof simulation- and real-AI, with a special focus on ease ofuse enhancement, and integration and validation of them.
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