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Abstract
This work deals with a possible model of a cell of cognitive radio architectures via a multi-server queueing system with two differenttypes of requests and preemptive priority of one type of requests on the other. Service demands arrive according to Markovian ArrivalProcesses in order to capture traffic correlation. Cognitive engine tries to find a solution or optimize a performance goal based on thereceived inputs that define the radio’s current internal state and operating environment. Hence, beside priority mechanisms, a possibledeactivation of information to transmit is considered via a hysteresis type strategy for the access to the service, with the aim ofsmoothing the effects of service interruptions for low priority requests. Fixed values for the thresholds of the strategy are assumed. Thesystem is statistically described by a level-dependent multi-dimensional Markov chain, which allows the computation of stationaryprobabilities and robust performance indices. Numerical results are presented to compare the system performances in the case ofuncorrelated flows and flows with different correlation levels.
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1. Introduction

A retrial impatient queueing system consisting of N iden-tical servers is analysed. Two types of requests are pro-cessed. The service times of a type-k request are indepen-dent identically exponentially distributed random vari-ables. Type-1 requests have preemptive (absolute) pri-ority over type-2 requests. Both types of requests arriveaccording to Markovian Arrival Processes (MAPs). Theadmission of requests of type-2 to the system follows ahysteresis strategy.
In order to avoid possible oscillations due to the frequentchange of the operation mode of the system, a thresholdstrategy is presented as follows. Two thresholds are con-sidered, M1 and M, with M1 ≤ M. The admission of non-

priority requests ends when the number of requests in thesystem exceeds M and is resumed when this number be-comes less than M1.The service of a type-2 request may end at the arrival of atype-1 request and a type-2 request leaves the system per-manently with a certain probability or moves to a virtualplace, the orbit. The requests inside the orbit are impa-tient and depart from the system without service after arandom time having an exponential distribution.
1.1. Possible applications

Different real life phenomena are described via multi-server queueing systems with various type of customersand/or requests. Indeed, many mathematical models are

https://creativecommons.org/licenses/by-nc-nd/4.0/.
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useful to simulate and optimize situations in some con-texts, such as emergency departments in hospitals, supplychains as well as cells for cognitive radio systems. In sucharchitectures, primary requests (i.e. they are consideredas licensed users or patients with a severe injury) have pre-emptive priority over secondary ones (seen as cognitivecustomers or other types of patients). Secondary requestsare dropped if, at their arrival moment, all servers giveservice to the primary requests. If all servers are busy, butsome of them provide service to the secondary requests,the service of a secondary request ends and the primaryrequest enters the server. When a service ends by inter-ruption, there are various negative effects (i.e. the lossof the throughput). Hence, a suitable admission of thesecondary requests is necessary, for instance by adopt-ing some thresholds values to discriminate the possibleinterruption.

In normal contexts, radio cognitive cells have mecha-nisms that permit to discriminate among possible signalsto transmit. Input impulses are accepted but not alwaysimmediately elaborated: in some cases, they are “served”;in others, they can be lost or put on hold. This justifies thepossible adoption of a model that, considering multipleflows of incoming information, distinguishes priorities onrequests as well as an acceptance mechanism for the elabo-ration of outputs. The management of the various elabora-tions are already assumed in some scientific works where,if there are N servers, the non-priority request is acceptedto the system only when the number of busy servers isless than a threshold M such that 0 < M ≤ N. Such a mod-elling strategy has been improved by the introduction of:arrivals described by the Marked Markovian Arrival Pro-cess (MMAP), generalization of Markovian Arrival Process(MAP) for heterogeneous requests; an orbit, that repre-sents a virtual place where non-priority requests, that arenot immediately accepted to the system or interruptedduring a service, have the option to be deactived instead ofabandoning the system, and have then to retry for serviceafter a random time.
The possibility of retrials is indeed typical in telecom-munication systems. On the other hand, threshold andmulti-threshold strategies of control are widely describedin cases of flows of types MAP or MMAP. In particular,MAPs are able to describe correlated arrivals, and MMAPsallow to capture cross-correlations between the arrivalsbelonging to different classes as well.

1.2. Brief literature review

For an adequate presentation of examples of multi-serverqueueing systems with various type of customers and/orrequests, see for instance (2), (12) and (27). Differ-ent mathematical ways to simulate and optimize situa-tions such as emergency departments in hospitals, sup-ply chains as well as cells for cognitive radio systems, areshown in (1), (6), (11), (17), (18), (29), (30), (32). As for themanagement of priorities, consider the work (33) where all

non-priority requests enter the server if 0 < M ≤ N, where
M is a suitable threshold and N represents the number ofservers.Notice that the model, seen in (33), has been improvedby works like (31) where arrivals are described by flowsMMAP and MAP, see (28). Eventual insights are also in (5),(13), (22) and (24).The possibility of retrials, essential aspect for the de-scribed model, is widely considered in some works like (3),(4), (10), (18), (20), while (9) represents a suitable exam-ple of a hysteresis strategy of admission control. Finally,the paper (19) describes in a wide theoretical way the pro-posed model, whose performance indices are deduced by(16).
1.3. Contribution of the paper

The paper (19) presents a deep theoretical analysis for thequeuing model that is here shortly described, but there isnot an exhaustive description of some features, such asthe possible differences in adopting various input flows.Hence, several numerical examples are presented in Sec-tion 5 to underline that general models of arrival processeswith high correlations (like MAPs for instance) lead toquite different results from the ones obtained by arrivalsof Poisson types. Such last flows, interested by a zero cor-relation, are nowadays still widely used but are not able tofocus on the features of real systems and networks. Hence,the main contribution of this work is due to numericalstudies, that clearly show the evident differences in usingdifferent and high correlations for input flows.
1.4. Organization of the work

The paper is organized as follows. Section 2 deals with themathematical model of the system. Section 3 presentsa level dependent multi-dimensional continuous-timeMarkov chain for the dynamics of the overall system,and suitable conditions for the ergodicity. Section 4 de-scribes the main performance indices. Numerical resultsare shown in Section 5. Conclusions end the paper in Sec-tion 6.
2. Mathematical model

A queueing system, that consists of N identical serverswith no buffer, is considered. For such a system, two typesof requests are assumed. Type-1 requests have preemp-tive priority over type-2 ones. Service times of a type-
k request are independent, identically exponentially dis-tributed random variables with rate µk, k = 1, 2. The ar-rival of type-k, k = 1, 2, requests is described by a Marko-vian Arrival Process, defined by an irreducible continuous-
time Markov chain ν

(k)
t , t ≥ 0 with W̄k = Wk + 1 states

{0, ..., Wk}. The transition intensities of ν
(k)
t within the

state space are defined by the matrices D(k)0 and D(k)1 of size
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W̄k. The matrix D(k)0 has non-diagonal entries that definethe intensities of transitions that are not accompanied byarrival of type-k request. The diagonal entries of the ma-
trix D(k)0 indicate the rates of the process ν

(k)
t exit from its

states. The entries of the matrix D(k)1 represent the inten-sities of transitions that are accompanied by arrival of atype-k request.
The infinitesimal generator of the Markov chain ν

(k)
t is

represented by the matrix D(k)(1) = D(k)0 +D(k)1 . The row vec-
tor θ(k) indicates the stationary distribution of this Markovchain. Such vector represents the unique solution to thesystem θ(k)D(k)(1) = 0, θ(k)e = 1. Here and throughout thispaper, e is a column vector of appropriate size consistingof 1’s, and 0 is a row vector of appropriate size consistingof 0’s.The fundamental (average) arrival rate λk of type-k re-
quests is defined by λk = θ(k)D(k)1 e.Requests of type-1 have preemptive priority over re-quests of type-2. Hence, an arriving type-1 request is al-ways admitted to the system except the case when, duringthe arrival moment, all servers are busy by providing ser-vice to type-1 requests. In such a context, a type-1 requestleaves the system without service (it is lost). If all serversduring type-1 request arrival epoch are busy, but at leastone of them provides service to type-2 requests, the ser-vice of one of these requests ends and the type-1 requestoccupies the corresponding server.The admission of requests of type-2 to the system fol-lows the hysteresis strategy as follows. The decision toadmit or to reject an arriving type-2 request depends onthe current state of the managing stochastic process ξtthat has two possible values: 0 and 1. Indeed, the value 0represents an off-period during which arriving requestsof type-2 are not admitted into the service; the value 1 in-dicates an on-period during which arriving requests oftype-2 can be admitted for service.The mechanism of switching the states of the managingprocess is defined by the current number of busy serversand two integer thresholds M1 and M, 0 ≤ M1 ≤ M ≤ N.If the number of busy servers is less than M during thestay of the process ξt in the state 1, then any request, thattries to access, is admitted to the system and immediatelystarts service. If the number of busy servers during thestay of the process ξt in the state 1 equals M and a newrequest arrives from outside, then the process ξt transitsto the state 0. The arriving request is accepted if it is oftype-1 and M < N and is rejected if it is of type-2. Withprobability 1 – q, 0 ≤ q ≤ 1, a rejected request leaves thesystem permanently (it is lost). With probability q, this re-quest decides to retry to get the access in a second moment.In particular, this request moves to a virtual place called“orbit”. A request inside the orbit repeats the attemptsto get access, independently of other requests inside theorbit, after a random time interval that has exponentialdistribution with rate α,α > 0. An attempt is successfulif the managing process ξt is in state 1 and the number of

busy servers is less than M. If the attempt is successful,the request immediately occupies a free server and startsservice. If the attempt is not successful, with probability1 – q the retrying request departs from the system. Withprobability q, the request comes back to the orbit.When the process ξt is in the state 0, the number ofbusy servers equals M1 and the service of a request ends.Then, the process ξt transits to the state 1 (the on-periodbegins). At all the other moments (when no arrival occursduring the on-line period in presence of M busy servers orno service completion occurs during the off-line period inpresence of M1 busy servers) no switches of the states of
ξt occur.The service of a type-2 request admitted for service mayend at the arrival of a type-1 request. In this case, a type-2request leaves the system permanently with probability1 – p, 0 ≤ p ≤ 1, or moves to the orbit. The requestsinside the orbit are impatient and depart from the systemwithout service after a random time having an exponentialdistribution with parameter γ, γ > 0.
3. Markov Process for the system states and er-

godicity
Consider the following quantities at the time t, t ≥ 0:
• it, it ≥ 0, are the number of requests in the orbit;• nt, nt = 0, N, are the number of busy servers;• lt, lt = 0, min{nt, M}, are the number of requests oftype-2 inside the service;
• ν

(k)
t , ν(k)

t = 0, Wk, are the state of the process MAPk, k =1, 2;• ξt represents the state of the admission managing pro-cess: ξt = 0 during an off-period, while ξt = 1 during anon-period.
The six-dimensional process

ηt = {it, nt, lt,ν(1)
t , ξt,ν(2)

t }, t ≥ 0,
represents an irreducible continuous-time Markov chain.The states of the chain ξt are enumerated in the directlexicographic order of the components (i, n, l,ν(1), ξ,ν(2)).The set of the states with value (i, n) of two first com-ponents is called macro-state (i, n) and the set of macro-states ((i, 0), . . . , (i, N)) as level i, i ≥ 0.Assume that Q is the generator of the Markov chain
ξt, t ≥ 0. The generator Q has the blocks Qi,j, that, in turn,consist of the matrices (Qi,j)n,n′ of the intensities of thetransition of the chain ξt from the macro-state (i, n) to themacro-state (j, n′), n, n′ = 0, N. The exact expression forthe generator Q is not reported here, but further detailsare in (19).For the ergodicity of the process ηt, we use the resultsof (26) and define the quantities:
Y0 = lim

i→∞ R–1
i Qi,i–1, Y1 = lim

i→∞ R–1
i Qi,i+I, Y2 = lim

i→∞ R–1
i Qi,i+1,
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where Ri is a diagonal matrix with elements defined as themoduli of the corresponding diagonal entries of the ma-trix Qi,i, i ≥ 0. From (26) we get the following sufficientcondition for ergodicity:

yY0e > yY2e,
where the row vector y is the unique solution to the systemof linear algebraic equations

y(Y0 + Y1 + Y2) = y, ye = 1.

4. Performance indices

Under the assumption that the ergodicity condition is sat-isfied, the following stationary probability exists:
π(i, n, l,ν(1), ξ,ν(2)) =

lim
t→∞ P{it = i, nt = n, lt = l, ν(1)

t = ν(1), ξt = ξ,ν(2)
t = ν(2)},

i ≥ 0, n = 0, N, l = 0, min{n, M},

ν(1) = 0, W1, ξ = 0, 1,ν(2) = 0, W2 .
The row vectors of the invariant probabilities πi of thelevels are defined as follows:

πi = (π(i, 0),π(i, 1), . . . ,π(i, N)), i ≥ 0,
where the row vectors π(i, n) of the macro-states are:

π(i, n) = (π(i, n, 0),π(i, n, 1), . . . ,π(i, n, min{n, M})),

n = 0, N,
with row vectors π(i, n, l) that, in turn, consist of the in-variant probabilities π(i, n, l,ν(1), ξ,ν(2)) enumerated inthe lexicographic order of the components (ν(1), ξ,ν(2)).

In what follows, indicate by ⊗ the symbol of the Kro-necker product and by I the identity matrix whose dimen-sion is indicated by a suffix.
From the vectors of the stationary probabilities πi, i ≥0, some performance indices, listed as follows, are easilyderived.
The distribution of the number of the requests in theorbit is

lim
t→∞ P{it = i} = πie, i ≥ 0.

The average number of requests in the orbit is
Lorbit = ∞∑

i=1
iπie. (1)

The average number of requests inside the system is
L = ∞∑

i=0
N∑

n=0
(i + n)π(i, n)e. (2)

The average number of busy servers is
Nserver = ∞∑

i=0
N∑

n=1
nπ(i, n)e. (3)

The average number of busy servers providing serviceto type-1 requests is
N(1)

server = ∞∑
i=0

N∑
n=1

min{n,M}∑
l=0

(n – l)π(i, n, l)e. (4)

The average number of busy servers providing serviceto type-2 requests is
N(2)

server = ∞∑
i=0

N∑
n=1

min{n,M}∑
l=1

lπ(i, n, l)e = Nserver – N(1)
server. (5)

The intensity of output of type-i requests is
λ

(i)
out = µ1N(i)

server, i = 1, 2. (6)
The intensity of output of requests from the system is

λout = λ
(1)
out + λ

(2)
out. (7)

The loss probability of type-1 requests is
P(loss)1 = λ–11

∞∑
i=0

π(i, N, 0)(D(1)1 ⊗ I2W̄2 )e = 1 – λ
(1)
out
λ1 . (8)

The loss probability of type-2 requests is
P(loss)2 = 1 – λ

(2)
out
λ2 . (9)

The loss probability of an arbitrary request is
P(loss) = 1 – λout

λ
, (10)

where λ = λ1 + λ2.The probability of type-2 request loss upon arrival is
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computed by
P(ent–loss) =

= (1– q)λ–12
∞∑

i=0
[M–1∑

n=M1
π(i, n)(I(n+1)W̄1 ⊗

( 1 00 0
)
⊗D(2)1 )e+

+ N∑
n=M

π(i, n)(I(M+1)2W̄1 ⊗ D(2)1 )e
]

. (11)
The probability that a type-2 request enters the orbit uponarrival is computed by

P(ent–to–orbit) =

= qλ–12
∞∑

i=0
[M–1∑

n=M1
π(i, n)(I(n+1)W̄1 ⊗

( 1 00 0
)

⊗ D(2)1 )e+

+ N∑
n=M

π(i, n)(I(M+1)2W̄1 ⊗ D(2)1 )e
]

. (12)

The rate of type-2 requests lost upon arrival is λ̃2 =
P(ent–loss)λ2.The probability that an arbitrary type-2 request isforced to terminate service and goes into orbit is
P(termination–to–orbit) = pλ–12

∞∑
i=0

M∑
l=1

π(i, N, l)(D(1)1 ⊗ I2W̄2 )e.
(13)The probability that an arbitrary type-2 request isforced to terminate service and is lost is

P(termination–loss) = (1–p)λ–12
∞∑

i=0
M∑

l=1
π(i, N, l)⊗(D(1)1 ⊗I2W̄2 )e.

(14)The probability of an arbitrary type-2 request loss fromthe orbit is
P(loss–from–orbit) = P(loss)2 – P(ent–loss) – P(termination–loss).(15)Notice that performance indices offer a wide spectrum forthe analysis of the system. For a suitable explanation ofthe derivation of some indices, readers are addressed to(16).
5. Numerical results

This section deals with some numerical results, that showthe dependence of the performances indices on the pa-

rameters of the hysteresis admission. The system perfor-mances in the case of non correlated flows and flows withdifferent correlation levels are compared.
Consider a system with N = 15 servers. In what follows,we deal with three different cases, characterized by differ-ent correlations of the arrival flows and the same meanarrival intensity, λ1 = 2 and λ2 = 5:

• Case 1: Poisson flows.• Case 2: MAP2, where matrices for the arrival processes
D(1)0 , D(1)1 , D(2)0 and D(2)1 have order 2.• Case 3: MAP5, where the previous matrices are of order5 and higher correlation.

For case 2, for the arrival process of type-1 requests wehave:
D(1)0 =

( –7.44517 0.00002283580.0000111687 –0.000919517
)

,

D(1)1 =
( 7.44509 0.00005696010.0000181491 0.0008902

)
.

Here, the squared coefficient of variation of inter-arrivaltimes is cvar = 7.51006, while the coefficient of correlationof two neighbouring inter-arrival times is ccor = 0.483901.
For the arrival process of type-2 requests, we set:

D(2)0 =
( –19.6065 0.0005909610.00374586 –0.203639

)
,

D(2)1 =
( 19.5781 0.0278420.00559836 0.194294

)
.

The arrival process of type-2 requests has cvar = 2.45108and ccor = 0.463108.
In case 3, the arrival process of type-1 requests is char-acterized by:

D(1)0 =


–4.5 4.5 0 0 00 –4.5 4.5 0 00 0 –4.5 4.5 00 0 0 –4.5 00 0 0 0 –9

 ,

D(1)1 =


0 0 0 0 00 0 0 0 00 0 0 0 04.455 0 0 0 0.0450.09 0 0 0 8.91

 .
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Figure 1. Lorbit versus M1 and M in case 1.

The arrival process of type-2 requests presents:

D(2)0 =


–5.97 5.97 0 0 00 –5.97 5.970 0 00 0 –5.97 5.97 00 0 0 –5.597 00 0 0 0 –11.194

 ,

D(2)1 =


0 0 0 0 00 0 0 0 00 0 0 0 05.47267 0 0 0 0.1243790.0572143 0 0 0 11.1369

 .

The arrival process of type-1 requests has cvar = 1.02469,and ccor = 0.578554 while, for the one of type-2 requests,
cvar = 2.03612 and ccor = 0.635934.In all three cases, the other parameters are: µ1 = 2.5,
µ2 = 1.5, q = 0.8, p = 0.2, α = 1 and γ = 0.1.Notice that the performances of the system for type-1requests do not depend on the values of M and M1. Precisely,
we have: for cases 1, 2 and 3, N(1)

server = 0.7999, λ(1)
out = 1.9999;

the value of Ploss1 is: Ploss1 = 1.20896 · 10–14 in case 1; Ploss1 =4.999 · 10–7 in case 2; Ploss1 = 1.87134 · 10–6 in case 3.For variations of M over the interval [1, N – 1] and M1over the interval [1, M], we consider Figures 1, 2, 3, 4, 5,6, 7 and 8 that represent, respectively, for three different
simulation cases, Lorbit, N(2)

server, P(ent–loss) and P(loss).Notice that Lorbit, i.e. the mean number of type-2 re-quests in the orbit, is very high for low values of M and M1.Hence, type-2 requests have to wait for service in the orbit.When M and M1 both grow, the access of type-2 requestsis easier, and Lorbit decreases.
As for N(2)

server, namely the mean number of busy serversthat offer service to type-2 requests, it is low for low values
of M and M1. When M and M1 increase, N(2)

server increasesas more type-2 requests have access to the service uponarrival.The probability P(ent–loss) of type-2 requests loss upon

Figure 2. Lorbit versus M1 and M in case 2.

Figure 3. N(2)
server versus M1 and M in case 1.

Figure 4. N(2)
server versus M1 and M in case 3.

arrival is meaningful for small values of M and M1. When
M and M1 get higher, P(ent–loss) decreases.

Finally, the loss probability P(loss) of an arbitrary re-quest has a behaviour that depends on the number N ofservers, chosen so that Ploss1 is very low (of order 10–4). The
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loss probability decreases for high values of M and M1.

Figure 5. P(ent–loss) versus M1 and M in case 1.

Figure 6. P(ent–loss) versus M1 and M in case 2.

Figure 7. P(loss) versus M1 and M in case 1.

Tables 1 and 2 report some values for indices, respec-

Figure 8. P(loss) versus M1 and M in case 3.

Table 1. Values of P(loss)2 for different correlations
M M1 Case 1 Case 2 Case 31 1 0.814 0.911 0.8262 2 0.600 0.838 0.6673 2 0.485 0.802 0.5954 3 0.295 0.728 0.4795 4 0.162 0.655 0.3796 5 0.082 0.584 0.2917 6 0.038 0.515 0.2158 8 0.014 0.423 0.1349 7 8.848E-03 0.414 0.12010 9 2.723E-03 0.323 0.06711 10 0.975E-03 0.266 0.04212 9 0.489E-03 0.260 0.03613 12 0.101E-03 0.168 0.01514 13 0.030E-03 0.130 0.099

Table 2. Values of P(loss–from–orbit) for different correlations
M M1 Case 1 Case 2 Case 31 1 0.626 0.718 0.6392 2 0.433 0.650 0.5003 2 0.334 0.618 0.4404 3 0.181 0.549 0.3405 4 0.087 0.484 0.2566 5 0.039 0.421 0.1847 6 1.64E-02 0.360 0.1278 8 0.53E-02 0.282 0.0719 7 0.34E-02 0.275 0.06410 9 0.095E-02 0.202 0.03211 10 0.33E-03 0.158 0.01812 9 0.179E-03 0.155 0.01613 12 0.326E-04 0.088 0.00614 13 9.284E-06 0.062 0.003

tively, P(loss)2 and P(loss–from–orbit). There is a clear evidenceof differences in the various simulation cases, as a conse-quence of correlated flows.
As for P(loss)2 and P(loss–from–orbit), they decrease whenvalues of M and M1 increase. The behaviour is very simi-lar to P(loss). This is also a consequence of the probability

P(termination–loss) of a generic type-2 request. Such proba-bility increases when values of M and M1 grow in all sim-ulation cases. In fact, more type-2 requests are acceptedinside the system despite many servers are busy.
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6. Conclusions

In this paper, a multi-server queueing system, that pro-vides service to two types of requests and models the oper-ation of the cell of cognitive radio systems, has been pre-sented. Requests of type-1 have preemptive priority overtype-2 ones. Requests of type-2 obtain service througha hysteresis mechanism defined by two thresholds, thatallow a possible rejection from the service. Rejected type-2requests may abandon the system or retry for service afterrandom intervals of time. Assuming fixed values for thethresholds:
• The dynamics of the system is described by a level de-pendent six-dimensional Quasi-Birth-and-Death pro-cess.• Formulas for the main performance indices of the sys-tem are presented.• Numerical results show the effectiveness of the strategyfor the restriction of access of the requests of type-2and the necessity of a careful account correlation in thearrival process. In particular, meaningful differencesin performance indices can be noticed in the case ofdifferent correlation levels in the arrival flows.

Indeed, the obtained results show a practical relevance ofthe presented work, namely the possibility of defining atheoretical and numerical approach for the representationof real input flows for systems and networks. On the otherhand, the analysis still presents some modelling limita-tions, that suggest suitable future research activities.Some future work activities aim to extend the presentedmodel. In this direction, the following possible differentalternatives arise:
• The possibility of using different thresholds for the ac-ceptance/rejection of requests of type-2 arriving fromoutside and from the orbit.• A randomized procedure to drop requests of type-2 andto retry users in case of possible lack of servers.• The substitution of fixed servers with a processor shar-ing discipline.• The adoption of phase type distributions for servicetimes.
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