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Abstract

This work deals with a possible model of a cell of cognitive radio architectures via a multi-server queueing system with two different
types of requests and preemptive priority of one type of requests on the other. Service demands arrive according to Markovian Arrival
Processes in order to capture traffic correlation. Cognitive engine tries to find a solution or optimize a performance goal based on the
received inputs that define the radio’s current internal state and operating environment. Hence, beside priority mechanisms, a possible
deactivation of information to transmit is considered via a hysteresis type strategy for the access to the service, with the aim of
smoothing the effects of service interruptions for low priority requests. Fixed values for the thresholds of the strategy are assumed. The
system is statistically described by a level-dependent multi-dimensional Markov chain, which allows the computation of stationary

probabilities and robust performance indices. Numerical results are presented to compare the system performances in the case of

uncorrelated flows and flows with different correlation levels.
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1. Introduction

A retrial impatient queueing system consisting of N iden-
tical servers is analysed. Two types of requests are pro-
cessed. The service times of a type-k request are indepen-
dent identically exponentially distributed random vari-
ables. Type-1 requests have preemptive (absolute) pri-
ority over type-2 requests. Both types of requests arrive
according to Markovian Arrival Processes (MAPs). The
admission of requests of type-2 to the system follows a
hysteresis strategy.

In order to avoid possible oscillations due to the frequent
change of the operation mode of the system, a threshold
strategy is presented as follows. Two thresholds are con-
sidered, M; and M, with M; < M. The admission of non-

priority requests ends when the number of requests in the
system exceeds M and is resumed when this number be-
comes less than M;.

The service of a type-2 request may end at the arrival of a
type-1request and a type-2 request leaves the system per-
manently with a certain probability or moves to a virtual
place, the orbit. The requests inside the orbit are impa-
tient and depart from the system without service after a
random time having an exponential distribution.

1.1. Possible applications

Different real life phenomena are described via multi-
server queueing systems with various type of customers
and/or requests. Indeed, many mathematical models are
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useful to simulate and optimize situations in some con-
texts, such as emergency departments in hospitals, supply
chains as well as cells for cognitive radio systems. In such
architectures, primary requests (i.e. they are considered
as licensed users or patients with a severe injury) have pre-
emptive priority over secondary ones (seen as cognitive
customers or other types of patients). Secondary requests
are dropped if, at their arrival moment, all servers give
service to the primary requests. If all servers are busy, but
some of them provide service to the secondary requests,
the service of a secondary request ends and the primary
request enters the server. When a service ends by inter-
ruption, there are various negative effects (i.e. the loss
of the throughput). Hence, a suitable admission of the
secondary requests is necessary, for instance by adopt-
ing some thresholds values to discriminate the possible
interruption.

In normal contexts, radio cognitive cells have mecha-
nisms that permit to discriminate among possible signals
to transmit. Input impulses are accepted but not always
immediately elaborated: in some cases, they are “served”;
in others, they can be lost or put on hold. This justifies the
possible adoption of a model that, considering multiple
flows of incoming information, distinguishes priorities on
requests as well as an acceptance mechanism for the elabo-
ration of outputs. The management of the various elabora-
tions are already assumed in some scientific works where,
if there are N servers, the non-priority request is accepted
to the system only when the number of busy servers is
less than a threshold M such that 0 < M < N. Such a mod-
elling strategy has been improved by the introduction of:
arrivals described by the Marked Markovian Arrival Pro-
cess (MMAP), generalization of Markovian Arrival Process
(MAP) for heterogeneous requests; an orbit, that repre-
sents a virtual place where non-priority requests, that are
not immediately accepted to the system or interrupted
during a service, have the option to be deactived instead of
abandoning the system, and have then to retry for service
after a random time.

The possibility of retrials is indeed typical in telecom-
munication systems. On the other hand, threshold and
multi-threshold strategies of control are widely described
in cases of flows of types MAP or MMAP. In particular,
MAPs are able to describe correlated arrivals, and MMAPs
allow to capture cross-correlations between the arrivals
belonging to different classes as well.

1.2. Brief literature review

For an adequate presentation of examples of multi-server
queueing systems with various type of customers and/or
requests, see for instance (2), (12) and (27). Differ-
ent mathematical ways to simulate and optimize situa-
tions such as emergency departments in hospitals, sup-
ply chains as well as cells for cognitive radio systems, are
shownin (1), (6), (11), (17), (18), (29), (30), (32). As for the
management of priorities, consider the work (33) where all

non-priority requests enter the server if 0 < M < N, where
M is a suitable threshold and N represents the number of
servers.

Notice that the model, seen in (33), has been improved
by works like (31) where arrivals are described by flows
MMAP and MAP, see (28). Eventual insights are also in (5),
(13), (22) and (24).

The possibility of retrials, essential aspect for the de-
scribed model, is widely considered in some works like (3),
(4), (10), (18), (20), while (9) represents a suitable exam-
ple of a hysteresis strategy of admission control. Finally,
the paper (19) describes in a wide theoretical way the pro-
posed model, whose performance indices are deduced by
(16).

1.3. Contribution of the paper

The paper (19) presents a deep theoretical analysis for the
queuing model that is here shortly described, but there is
not an exhaustive description of some features, such as
the possible differences in adopting various input flows.
Hence, several numerical examples are presented in Sec-
tion 5 to underline that general models of arrival processes
with high correlations (like MAPs for instance) lead to
quite different results from the ones obtained by arrivals
of Poisson types. Such last flows, interested by a zero cor-
relation, are nowadays still widely used but are not able to
focus on the features of real systems and networks. Hence,
the main contribution of this work is due to numerical
studies, that clearly show the evident differences in using
different and high correlations for input flows.

1.4. Organization of the work

The paper is organized as follows. Section 2 deals with the
mathematical model of the system. Section 3 presents
a level dependent multi-dimensional continuous-time
Markov chain for the dynamics of the overall system,
and suitable conditions for the ergodicity. Section 4 de-
scribes the main performance indices. Numerical results
are shown in Section 5. Conclusions end the paper in Sec-
tion 6.

2. Mathematical model

A queueing system, that consists of N identical servers
with no buffer, is considered. For such a system, two types
of requests are assumed. Type-1 requests have preemp-
tive priority over type-2 ones. Service times of a type-
k request are independent, identically exponentially dis-
tributed random variables with rate ,, k = 1,2. The ar-
rival of type-k, k = 1,2, requests is described by a Marko-
vian Arrival Process, defined by an irreducible continuous-

time Markov chain vgk), t > o with W, = W, + 1 states
{0, ..., W, }. The transition intensities of vik) within the
state space are defined by the matrices D) and D{¥) of size



Wy. The matrix Dg‘) has non-diagonal entries that define
the intensities of transitions that are not accompanied by
arrival of type-k request. The diagonal entries of the ma-

trix Dg‘) indicate the rates of the process vﬁk) exit from its

states. The entries of the matrix Dg‘) represent the inten-
sities of transitions that are accompanied by arrival of a
type-k request.

The infinitesimal generator of the Markov chain ng) is
represented by the matrix D(X)(1) = Df)k) +D§k) . The rowvec-
tor 0(K) indicates the stationary distribution of this Markov
chain. Such vector represents the unique solution to the
system e(k)D(k)(l) =0, 6e = 1. Here and throughout this
paper, e is a column vector of appropriate size consisting
of 1’s, and 0 is a row vector of appropriate size consisting
of 0’s.

The fundamental (average) arrival rate A, of type-k re-
quests is defined by A, = 6 D{Ve.

Requests of type-1 have preemptive priority over re-
quests of type-2. Hence, an arriving type-1request is al-
ways admitted to the system except the case when, during
the arrival moment, all servers are busy by providing ser-
vice to type-1 requests. In such a context, a type-1request
leaves the system without service (it is lost). If all servers
during type-1request arrival epoch are busy, but at least
one of them provides service to type-2 requests, the ser-
vice of one of these requests ends and the type-1 request
occupies the corresponding server.

The admission of requests of type-2 to the system fol-
lows the hysteresis strategy as follows. The decision to
admit or to reject an arriving type-2 request depends on
the current state of the managing stochastic process &;
that has two possible values: 0 and 1. Indeed, the value 0
represents an off-period during which arriving requests
of type-2 are not admitted into the service; the value 1 in-
dicates an on-period during which arriving requests of
type-2 can be admitted for service.

The mechanism of switching the states of the managing
process is defined by the current number of busy servers
and two integer thresholds M; and M, 0 < M; <M < N.

If the number of busy servers is less than M during the
stay of the process &; in the state 1, then any request, that
tries to access, is admitted to the system and immediately
starts service. If the number of busy servers during the
stay of the process &; in the state 1 equals M and a new
request arrives from outside, then the process ¢; transits
to the state 0. The arriving request is accepted if it is of
type-1and M < N and is rejected if it is of type-2. With
probability 1 — q, 0 < q < 1, arejected request leaves the
system permanently (it is lost). With probability q, this re-
quest decides to retry to get the access in a second moment.
In particular, this request moves to a virtual place called
“orbit”. A request inside the orbit repeats the attempts
to get access, independently of other requests inside the
orbit, after a random time interval that has exponential
distribution with rate «, « > 0. An attempt is successful
if the managing process ¢&; is in state 1 and the number of
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busy servers is less than M. If the attempt is successful,
the request immediately occupies a free server and starts
service. If the attempt is not successful, with probability
1 — q the retrying request departs from the system. With
probability q, the request comes back to the orbit.

When the process ¢; is in the state 0, the number of
busy servers equals M; and the service of a request ends.
Then, the process &; transits to the state 1 (the on-period
begins). At all the other moments (when no arrival occurs
during the on-line period in presence of M busy servers or
no service completion occurs during the off-line period in
presence of M; busy servers) no switches of the states of
&t occur.

The service of a type-2 request admitted for service may
end at the arrival of a type-1request. In this case, a type-2
request leaves the system permanently with probability
1—p, 0 < p < 1, or moves to the orbit. The requests
inside the orbit are impatient and depart from the system
without service after a random time having an exponential
distribution with parameter y, y > 0.

3. Markov Process for the system states and er-
godicity

Consider the following quantities at the timet, t > o:

« iy, i > 0, are the number of requests in the orbit;

* ng, ng = 0, N, are the number of busy servers;

* It, It = o,min{n;, M}, are the number of requests of
type-2 inside the service;

. vgk), vgk) = 0, W, are the state of the process MAPy, k =
1,2;

- & represents the state of the admission managing pro-
cess: & = 0 during an off-period, while &; = 1 during an
on-period.

The six-dimensional process
— £ 1 2
Nt = {lt)nt)lt)vg )1 Etﬂ/g )}) t>o,

represents an irreducible continuous-time Markov chain.

The states of the chain &; are enumerated in the direct
lexicographic order of the components (i, n, I, vV, &, v(?)).
The set of the states with value (i, n) of two first com-
ponents is called macro-state (i, n) and the set of macro-
states ((i,0),...,(i,N))asleveli,i > 0.

Assume that Q is the generator of the Markov chain
&, t > 0. The generator Q has the blocks Q; ;, that, in turn,
consist of the matrices (Q,-J)n,n/ of the intensities of the
transition of the chain &; from the macro-state (i, n) to the
macro-state (j,n’), n, n’ = 0, N. The exact expression for
the generator Q is not reported here, but further details
arein (19).

For the ergodicity of the process n;, we use the results
of (26) and define the quantities:

—1i -1 . -1 . -1
Yo = .llm R,' Qi,i—l! Y. = .llm Ri Qi,i+I) Y, = .llm Ri Qi,i+1)
1—o00 1—o00 1—o00
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where R; is a diagonal matrix with elements defined as the
moduli of the corresponding diagonal entries of the ma-
trix Q; ;, i > 0. From (26) we get the following sufficient
condition for ergodicity:

yYOE > yYZQ,

where the row vector y is the unique solution to the system
of linear algebraic equations

y(Yo+Y1+Y2) =y, ye=1

4. Performance indices

Under the assumption that the ergodicity condition is sat-
isfied, the following stationary probability exists:

ﬂ(i,n,l,\/(l), E,v(z)) =

tllm Pli¢=i, ne=n, It =1, Vgl) = V(l)) & =&, V§2) = V(Z)})

=0,N,Il =0, min{n, M},

v =0, 62 0,1,v = 0,W; .

The row vectors of the invariant probabilities ; of the
levels are defined as follows:

m; = (n(i, 0), (i, 1), ..., n(i,N)), i > 0,
where the row vectors =(i, n) of the macro-states are:

”(iy n) = (”(iy n, O)y ﬂ(i) n, 1); (RS 7T(i) n, min{n,M})),

n=o0,N,

with row vectors n(i, n, I) that, in turn, consist of the in-

variant probabilities (i, n, 1, vV, £, v(?)) enumerated in

the lexicographic order of the components (vV, £, v(?)).
In what follows, indicate by @ the symbol of the Kro-

necker product and by I the identity matrix whose dimen-
sion is indicated by a suffix.

From the vectors of the stationary probabilities 7;, i >
0, some performance indices, listed as follows, are easily
derived.

The distribution of the number of the requests in the
orbit is

lim P{i; = i} = me, i > 0.
t—oo

The average number of requests in the orbit is
[ee]
Lorbit = Z iﬂie. (1)
-
The average number of requests inside the system is

oo N
L= Z Z(i +n)n(i, n)e. (2)

=0 h=0

The average number of busy servers is

o N
Nserver = Z Z nn(i, n)e. (3)

i=z0 n=1

The average number of busy servers providing service
to type-1requests is

oo N min{n,M}

Nselzrver ZZ Z (n = Dn(i,n,De. (4)

i=0 n=1 =0

The average number of busy servers providing service
to type-2 requests is

oo N min{n,M}

server ZZ Z

i=0 n=1 I=1

In(i, n, I)e = Nserver — N§(13])'ver' (5)

The intensity of output of type-i requests is
}‘f)gt = FLlNg(la)rver) i=1,2. (6)
The intensity of output of requests from the system is

Aout = AL +22). (7)

The loss probability of type-1 requests is
(1)

- A
PI =201 3 (i, N, 0)(DY @ L, Je = 1= L. (8)
i=0

The loss probability of type-2 requests is

(2)
A
p(lOSS) =1- )(\)ut (9)

2
The loss probability of an arbitrary request is

P(loss) - (10)

A
1— (;\ut,

where A = A1 + A,
The probability of type-2 request loss upon arrival is



computed by

P(ent—loss) -

oo rM-1
- P 1 0
Sa-nty | S n(z,n)u(m)wl@( Lo )®D§2))e+

i=0 “n=M,

N
3 iy W)U g, © Dgz))e} , (11)
n=M

The probability that a type-2 request enters the orbit upon
arrival is computed by

p(ent—to—orbit) -

oo rM-1

- . 1 0
= q}\zlz Z 7, M) y4qyw, @ ( o o ) ®D§2))e+

i=0 “n=M,;

N
3 7l W)U ygoayai, © Dgn)e} , (12)

n=M

The rate of type-2 requests lost upon arrival is A, =
P(ent—loss)}\z.

The probability that an arbitrary type-2 request is
forced to terminate service and goes into orbit is

o M
P(termmatzon—to—orblt) - P7\£1 Z Z Tr(i,N, l)(Dgl) ® IzVVZ Ye.
i=0 I=1
(13)
The probability that an arbitrary type-2 request is
forced to terminate service and is lost is

o M
P(termmatlon—loss) - (1—P))\2_1 Z Z 7'[(i, N, l)®(D§l)®12V_V2 Je.
i=0 I=1
(14)
The probability of an arbitrary type-2 request loss from
the orbit is

p(loss—from—orbit) _ p(loss) _ P(ent—loss) _ P(termination—loss)
=P .

(15)
Notice that performance indices offer a wide spectrum for
the analysis of the system. For a suitable explanation of
the derivation of some indices, readers are addressed to
(16).

5. Numerical results

This section deals with some numerical results, that show
the dependence of the performances indices on the pa-
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rameters of the hysteresis admission. The system perfor-
mances in the case of non correlated flows and flows with
different correlation levels are compared.

Consider a system with N = 15 servers. In what follows,
we deal with three different cases, characterized by differ-
ent correlations of the arrival flows and the same mean
arrival intensity, A; = 2and A, = 5:

- Case 1: Poisson flows.

- Case 2: MAP2, where matrices for the arrival processes
D, DY, D) and D{ have order 2.

- Case 3: MAP5, where the previous matrices are of order
5 and higher correlation.

For case 2, for the arrival process of type-1 requests we
have:

D = ( ~ 744517

0.0000228358
Y 0.0000111687 !

—0.000919517

744509

D(l) -
1 0.0000181491  0.0008902

0.0000569601 >

Here, the squared coefficient of variation of inter-arrival
times is cyar = 7.51006, while the coefficient of correlation
of two neighbouring inter-arrival times is ccor = 0.483901.

For the arrival process of type-2 requests, we set:

—19.6065

D@ - 0.000590961
0 7\ 0.00374586 !

—0.203639

L@ 195781 0027842
1 =\ 000559836 0.194294 /-

The arrival process of type-2 requests has cyar = 2.45108
and ccor = 0.463108.

In case 3, the arrival process of type-1 requests is char-
acterized by:

45 45 0 0 0O
0 —45 45 0 O
p{V = 0 o —45 45 o |,
0 0 0 —45 O
o o o o0 -9
o0 000 O
0 000 O
p = 0 000 O
4455 O O O 0.045
009 0 0 0 891
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"-D rbit

LD rbit

Figure 1. L,,;;; versus M; and M in case 1.

The arrival process of type-2 requests presents:

-597 597 0 0 0
0 —5.97 5.970 0 0
=] o 0  -597 597 0 :
0 0 0 —5597 0
0 0 0 0 -11.194
[0} 0O O O (0]
0O O O (0]
p® = 0 000 0
547267 0 O O 0.124379
00572143 0 O O 111369

The arrival process of type-1requests has cyar = 1.02469,
and ccor = 0.578554 while, for the one of type-2 requests,
Cvar = 2.03612 and ccor = 0.635934.

In all three cases, the other parameters are: w; = 2.5,
ux =15,g=0.8,p=0.2,x=1andy = 0.1.

Notice that the performances of the system for type-1
requests do not depend on the values of Mand M;. Precisely,

we have: for cases 1, 2and 3, N&er = 07999, A% = 1.9999;

the value of P°S is: PloS = 120896 - 1074 in case 1; Pl% =
4999 - 1077 in case 2; Pl = 1.87134 - 107% in case 3.

For variations of M over the interval [1, N — 1] and M;
over the interval [1, M], we consider Figures 1, 2, 3, 4, 5,
6, 7and 8 that represent, respectively, for three different
simulation cases, L, N2, plent=loss) and p(loss),

Notice that L, i.e. the mean number of type-2 re-
quests in the orbit, is very high for low values of M and Mj;.
Hence, type-2 requests have to wait for service in the orbit.
When M and M; both grow, the access of type-2 requests
is easier, and L,,;,;; decreases.

As for Nggr)ver, namely the mean number of busy servers
that offer service to type-2 requests, it is low for low values
of M and M;. When M and M; increase, Ngr)ver increases

as more type-2 requests have access to the service upon
arrival.

The probability P(et~1055) of type-2 requests loss upon

o W
N r
o @ S
D™
Faated

10

Figure 3. N, versus M; and M in case 1.

Figure 4. N2),,, versus M; and M in case 3.

arrival is meaningful for small values of M and M;. When
M and M; get higher, P(e1t-1055) decreases.

Finally, the loss probability P(°5) of an arbitrary re-
quest has a behaviour that depends on the number N of
servers, chosen so that Pi"ss is very low (of order 107%). The
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loss probability decreases for high values of M and M;. plioss)

P\ ent-loss)

0.05

0.00

Figure 8. p(loss) yersus M, and M in case 3.

: (ent-loss 5
Figure 5. P ) versus M; and Min case 1. Table 1. Values of P{** for different correlations

M M, Case1 Case2 Case3

1 1 0.814 0.911 0.826

2 2 0.600 0.838  0.667

3 2 0.485 0.802 0595

plent-oss) A 3 0.295 0.728 0.479

5 4 0.162 0.655 0.379

6 5 0.082 0584,  0.291

7 6 0.038 0.515 0.215

8 8 0.014  0.423 0.134

9 7 8848E-03  0.414  0.120

018 10 9  2.723E-03 0323  0.067
0.10 1 10 0.975E-03 0266  0.042
e 12 9 0.489E-03 0260  0.036

13 12 0101E-03  0.168  0.015

0.00 14 13  0.030E-03 0130  0.099

Table 2. Values of ptloss=from—orbit) for different correlations
M M Case1 Case2 Case3

1 1 0.626 0.718 0.639

2 2 0.433 0.650 0.500

3 2 0.334 0.618 0.440

Figure 6. P(e"~1055) yersus M, and M in case 2. & 3 0181 0549 0340
5 4 0.087 0.484 0.256

6 5 0.039 0.421 0.184

7 6 1.64E-02 0.360 0.127

8 8 0.53E-02 0.282 0.071

9 7 0.34E-02 0.275 0.064

plioss) 10 9  0.095E-02 0.202 0.032

1 10 0.33E-03 0.158 0.018
12 9  0.179E-03 0.155 0.016
13 12 0.326E-04 0.088 0.006
14 13 9.284E-06 0.062 0.003

tively, P{{°**) and plloss—from—orbit) There is a clear evidence
of differences in the various simulation cases, as a conse-
quence of correlated flows.

As for P{l°s%) and plloss—from-orbit) 'they decrease when
values of M and M, increase. The behaviour is very simi-
lar to P(105%)_ This is also a consequence of the probability
pltermination=loss) of 3 generic type-2 request. Such proba-
bility increases when values of M and M, grow in all sim-
ulation cases. In fact, more type-2 requests are accepted
Tables 1 and 2 report some values for indices, respec-  inside the system despite many servers are busy.

Figure 7. p(loss) yersus M, and M in case 1.
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6. Conclusions

In this paper, a multi-server queueing system, that pro-
vides service to two types of requests and models the oper-
ation of the cell of cognitive radio systems, has been pre-
sented. Requests of type-1 have preemptive priority over
type-2 ones. Requests of type-2 obtain service through
a hysteresis mechanism defined by two thresholds, that
allow a possible rejection from the service. Rejected type-2
requests may abandon the system or retry for service after
random intervals of time. Assuming fixed values for the
thresholds:

+ The dynamics of the system is described by a level de-
pendent six-dimensional Quasi-Birth-and-Death pro-
cess.

- Formulas for the main performance indices of the sys-
tem are presented.

- Numerical results show the effectiveness of the strategy
for the restriction of access of the requests of type-2
and the necessity of a careful account correlation in the
arrival process. In particular, meaningful differences
in performance indices can be noticed in the case of
different correlation levels in the arrival flows.

Indeed, the obtained results show a practical relevance of
the presented work, namely the possibility of defining a
theoretical and numerical approach for the representation
of real input flows for systems and networks. On the other
hand, the analysis still presents some modelling limita-
tions, that suggest suitable future research activities.

Some future work activities aim to extend the presented
model. In this direction, the following possible different
alternatives arise:

- The possibility of using different thresholds for the ac-
ceptance/rejection of requests of type-2 arriving from
outside and from the orbit.

- Arandomized procedure to drop requests of type-2 and
to retry users in case of possible lack of servers.

- The substitution of fixed servers with a processor shar-
ing discipline.

- The adoption of phase type distributions for service
times.
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