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Abstract 
The Buffer Allocation Problem is a typical issue for production line designers. Several buffer slots must be distributed along the 
line in order to maximize throughput, taking into account the number of machines and their processing time. In this paper, Petri 
Net theory is proposed to model and simulate production lines in the Buffer Allocation Problem, where the processing time for 
each machine and the buffer's capacity are included in the extended Petri Net model. Numerical results show the feasibility of 
Petri Nets in representing the relationship between machines and buffers, as well as the use of state equations to calculate the 
throughput of the production line. Small, medium, and large-sized production lines are analyzed, with three different numbers 
of slots as restrictions. Moreover, two algorithms were implemented to create the Petri Net model from a production line 
configuration and to execute the simulation of the line with the Petri Net model. 
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1. Introduction

A typical problem in manufacturing system design is 
the assignment of the number of buffer slots in a 
production line. These slots are distributed among the 
machines to achieve the maximum system throughput. 
(figure 1). (Weiss, 2018) 

Figure 1. Serial flow in a production line composed of K machines 
(boxes) and K buffers of capacity Bi. 

The combinatorial assignment challenge in 
manufacturing system design, known as the Buffer 

Allocation Problem (BAP), depends on the number of 
machines and the total number of slots. 

The BAP can be defined as an optimization model 
with three different perspectives based on the objective 
function. The first perspective aims to optimize the 
maximum throughput of the system. The second 
perspective focuses on minimizing the buffer size to 
achieve a given performance rate. The last perspective 
aims to minimize the work in process inventory (Weiss, 
2018). 

Mathematical models for the BAP were presented by 
Papadopoulos et al. (2013) from three different problem 
perspectives. 

In the Dual Problem (BAP-A), there are K machines 
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and K – 1 buffer areas, with N buffer slots to be 
allocated. The solutions for this problem are 
represented as n = (N1, N2, …, Nk-1). The objective is to 
achieve the highest performance rate in the production 
line with a fixed number of N buffer slots placed 
between each machine K. The mathematical 
formulation for the maximization function is denoted 
by Eq. 1 and Eq. 2. 

max𝑋(𝑛) = max𝑋(𝑁1, … ,𝑁𝑘−1) (1) 

s.t.

 ∑ 𝑁𝑖 = 𝑁

𝐾−1

𝑖=1

  𝑁𝑖 ≥ 0,∀𝑖 = 1,… , 𝐾 − 1 (2) 

The Primal Model (BAP-B) focuses on minimizing 
the number of allocated buffers between each machine 
K while ensuring a minimum throughput of X0 (Eq. 3), 
subject to the constraint shown in Eq. 4.  

min 𝑁 = ∑ 𝑁𝑖

𝐾−1

𝑖=1

 (3) 

s.t.

 𝑋(𝑛) = 𝑋(𝑁1, … , 𝑁𝐾−1) ≥ 𝑋0 (4) 

The BAP-C is related to minimize the average work 
in process (WIP) given a minimum throughput X0 (Eq. 
5) and the restrictions denoted in equations 6 and 7.

min 𝐿(𝑛) = min 𝐿(𝑁1, … , 𝑁𝑘−1) (5) 

s.t.

𝑋(𝑛) = 𝑋(𝑁1, … , 𝑁𝐾−1) ≥ 𝑋0 (6) 

∑ 𝑁𝑗 ≤ 𝑁

𝐾−1

𝑗=1

  𝑁𝑗 ≥ 0, 𝑗 = 1,… , 𝐾 − 1 (7) 

where: 

𝐿(𝑛) = 𝐿(𝑁1, … ,𝑁𝐾−1): Represents the mean of the WIP 
inventory which depends on the buffer size and the 
throughput X0. 

These problems have been addressed with exact 
methods in small production lines, and metaheuristic 
methods for production lines with many machines and 
lot of buffer slots to be distributed in the system. For 
each case, the authors use their own way to represent 
the production line and calculate the variables of 
interest. However, the mathematical tools of PNs have 
not yet been exploited for BAP. In this work, we propose 
the use of Petri nets (PNs) theory for modeling the 
relationship of machines and buffer slots, and obtain 
the throughput, work in process inventory and the 
cycle time. 

The reminder of this paper is organized as follows. 
Section 2 are presented the works related to BAP. Next, 
PN basis are described in Section 3. The results and 
discussion are given in Section 4. Finally, the 
conclusions are presented in Section 5. 

2. State of the art

The BAP has been studied since last century. The first 
published work was presented by Koenigsberg 
(1959). In this work, a review and analysis of the 
effective functioning of production lines was 
presented.  

Recent published works regarding the BAP 
proposes different strategies to face it. Lopes et al 
(2020) proposed a mathematical model to evaluate the 
performance of production lines combining line 
balancing and buffer allocation problem. On the other 
hand, BAP has also been faced with evolutionary 
algorithms and simulation optimization in open serial 
production lines (Yelkenci et al, 2020). The authors 
focused on minimizing the total buffer space and 
maximizing the throughput. 

The BAP has also been studied from an expert 
system perspective. Motlagh et al (2019) developed an 
expert system where they considered mean 
processing times of workstations and buffer capacities 
to obtain the production line performance. Moreover, 
the expert system includes genetic algorithms and 
simulation based on linear regression. 

Due to some problems complexity, it is a good 
option to propose solutions divided in phases. A two-
stage heuristic algorithm was developed by (Liang et 
al, 2020). The first stage obtains the resource 
allocation, and the second one is centered in 
determining the position of buffer slots. 

As part of the proposals to solve the BAP, the use of 
PNs has been applied by many researchers. In 2011, 
Zhang et al defined two PN models for pre-allocating 
and partitioning buffers in a flexible manufacturing 
system. In 2016, Liu proposed the use of PNs for 
modeling resource allocation systems. The author’s 
proposal addresses the deadlock problem via a general 
class of PNs to analyze shared resources and the 
process interaction. And one year later, Skolud et al 
(2017) proposed a tool based on PNs to perform 
production line simulations. The GPenSIM tool is used 
to identify problems in the production lines design 
and resource allocation. In these PN proposals, the 
author focused on graphical representation of BAP 
and PN simulation to analyze the problem. 
Nevertheless, the mathematical tools were not 
considered to find solutions of the resource allocation 
and buffer slots position. 

The BAP has been modeled and optimized from 
different techniques and strategies, including PNs. 
Nevertheless, state equation and incidence matrix 
were not taken into advantage for throughput 
calculus. In this paper, mathematical tools, and 
graphic representation of PNs are used to model the 
production line, and obtain the production rate and 
throughput of the lines in the BAP. 



3. Materials and Methods

The interaction of machines and buffers in the BAP is 
depicted as a Petri net (PN) model, and its 
mathematical tools are taken into advantage to 
calculate the throughput of the production line. 

3.1. Petri nets concepts 

A Petri net is a powerful graphical and mathematical 
tool for modeling discrete event driven systems 
(Peterson, 1977; Zhou). The graph is directed, arc 
weighted, and has two types of nodes: places (circles) 
and transitions (boxes). 

In a PN, places are connected to transitions, and 
transitions to places, but nodes of the same type are not 
allowed to be connected. The system state is 
represented using tokens, which are put in the 
corresponding PN places. 

A formal definition of a PN is showed in Table 1. 
(Murata, 1989) 

Table 1. Formal definition of a PN.  

A Petri Net is a 5-tuple, PN=(P, T, F, W, M0) where: 

𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑚} is a finite set of places. 
𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛} is a finite set of transitions. 
𝐹 ⊆ {𝑃 × 𝑇} ∪ {𝑇 × 𝑃} is a set of arcs. 
𝑊 = 𝐹 → {1,2,3, … } is a weight function. 
𝑀0 = 𝑃 → {0,1,2, … } is the initial marking. 
𝑃 ∩ 𝑇 = ∅ and 𝑃 ∪ 𝑇 ≠ ∅ 

The token game animation is used to represent the 
dynamical behavior of the system modeled through 
PNs. The change in the token position is based on the 
following transition firing rule: (Murata, 1989) 

1. A transition 𝑡 ∈ 𝑇 is enabled if each input place 𝑝 ∈

𝑃 of t contains at least w(p,t) tokens.
2. An enabled transition t will be fired if the event

denoted by t occurs.
3. Once an enabled transition t is fired, w(p,t) tokens

are deleted from each input place p of t, and w(t,p)
tokens are put on every output place p of t.

In addition, the BAP modeling needs the use of 
processing time. Thus, an extension of PN model with 
time in places is applied. A Timed Place Petri Net 
(TPPN) is a six-tuple 𝑇𝑃𝑃𝑁 = {𝑃, 𝑇, 𝐹,𝑊,𝑀0, 𝐷}, where 
𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑚} represents the processing time for 
every place 𝑝 ∈ 𝑃. (Zhao et al., 2011). In this case, the 
first transition firing rule for PNs now considers not 
only the number of tokens in the input places, also the 
time 𝑑𝑖 indicated for place 𝑝𝑖 must be reached. 

3.2. Incidence Matrix and state equation 

In this paper, the matrix equation of PN theory is 
used to simulate the token game animation in the 
production line, obtain the total of products processed, 
and finally calculate the throughput of the system. 

A PN with n transitions and m places can be denoted 
as a matrix of integers 𝐴 = [𝑎𝑖𝑗] with dimension 𝑛 × 𝑚. 
The 𝑎𝑖𝑗 values are calculated with the mathematical 
expression 𝑎𝑖𝑗 = 𝑎𝑖𝑗

+ − 𝑎𝑖𝑗
−, where 𝑎𝑖𝑗

+ is the arc weight 
𝑤(𝑡𝑖 , 𝑝𝑗) and 𝑎𝑖𝑗

− is the arc weight 𝑤(𝑝𝑗 , 𝑡𝑖). 

The state equation is helpful to determine the 
marking in a PN through the transition firings. This 
equation is shown in Eq. 8. 

𝑀𝑘 = 𝑀𝑘−1 × 𝐴𝑇𝑈𝑘 , 𝑘 = 1,2,… (8) 

where 𝑈𝑘 is a 𝑛 × 1 column vector of zeros and a 
unique one. The position of the one value indicates the 
transition 𝑡𝑗 that will be fired. 𝐴𝑇 is the transpose of the 
incidence matrix 𝐴. 𝑀𝑘−1 is the marking before 𝑡𝑗 is fired. 
And 𝑀𝑘 is the marking reached after the firing of 𝑡𝑗. 

4. Results and Discussion

In this work, we propose the use of PN theory to 
represent the BAP and obtain the performance rate of a 
production line, considering the number of stations 
and the buffer slots. 

4.1. Timed Place Petri Net model 

The PN structure depicted in figure 2 is used to 
represent every machine in the sequence of the 
workflow showed in figure 1. This structure with two 
places and two transitions is useful to model the 
availability of the stations and it contains the 
processing time assigned to every station. The buffers 
are represented with places between every PN pattern 
of figure 2. 

Figure 2. PN pattern to represent a station of the production line in 
the BAP. 

Place 𝑝𝑥 ∈ 𝑃 is used to indicate if a station is available 
or not, and place 𝑝𝑦 ∈ 𝑃 is used to keep stored the token 
during 𝑑 units of time to simulate the processing time. 

To illustrate our proposal, the TPPN of a production 
line, with K=2 (two stations) and one buffer B between 
them with capacity N=5, is showed in figure 3. 
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Figure 3. TPPN structure for modeling a production line with K=2 
and N=5. 

At the beginning, there is the place 𝑝0 representing 
the raw material warehouse (𝐵0), with infinity capacity 
and a token is always available there. Then, machine 1 
is depicted by 𝑝1, 𝑝2 ∈ 𝑃 and 𝑡0, 𝑡1 ∈ 𝑇 . 𝐵3 represents the 
buffer with a capacity to store five slots. Machine 2 is 
composed of 𝑝4, 𝑝5 ∈ 𝑃 and 𝑡2, 𝑡3 ∈ 𝑇 . Finally, the storage 
𝐵2 for finished products is denoted by place 𝑝6 ∈ 𝑃 and 
its capacity is also infinite. 

The incidence matrix for this PN, with four 
transitions and seven places, is as presented in Eq. 9. 

𝐴 = [

−1 −1 1 0 0 0 0
0 1 −1 1 0 0 0
0 0 0 −1 −1 1 0
0 0 0 0 1 −1 1

] (9) 

Moreover, a vector 𝜏 with the processing times is 
defined. Only the places used to simulate the delay in 
the station will contain either a constant value or a 
probabilistic distribution function to generate a 
random value. For this example, an exponential 
distribution is used for emulating the processing time 
in the corresponding places and the value of 𝜇 = 1. 

𝜏 =

[

0
0

𝐸𝑥𝑝(1)
0
0

𝐸𝑥𝑝(1)
0 ]

(10) 

The initial marking 𝑀0 contains a token in the initial 
place 𝑝0, and in places 𝑝1 and 𝑝4 to indicate the 
availability of machines 1 and 2, respectively (Eq. 11). 

𝑀0 =

[

1
1
0
0
1
0
0]

(11) 

Figure 4 shows graphically the initial marking, the 
small black filled circles inside the places correspond to 
the values in 𝑀0. 

Figure 4. Initial marking of the production line, with the raw 
material ready to be processed, and the stations waiting for raw 
material. 

Furthermore, it is necessary to know the storage 
capacity for every place due to the transition firing rule. 
Above was mentioned that to trigger a transition, its 
output place must have space to receive the incoming 

token. Therefore, it is important to define the capacity 
vector 𝜅 to store the capacity of each place. For this 
example, vector C contains the values shown in Eq. 12.: 

𝜅 =

[

𝑖𝑛𝑓
1
1
5
1
1

𝑖𝑛𝑓]

(12) 

The next subsection presents the description of the 
algorithm implemented to create the TPPN incidence 
matrix 𝐴, vector 𝜏, initial marking 𝑀0 and the vector 𝜅. 
Moreover, the algorithm that executes the simulation 
to calculate the throughput of the system is described. 

4.2. Algorithms 

The first algorithm was implemented to create the 
TPPN and all the necessary elements to model the BAP. 
This algorithm requires the number of stations (K), the 
mean value (𝜇) for the probabilistic distribution 
function used to emulate the processing time, and the 
list of buffers capacity 𝐵𝑖. 



This algorithm returns the incidence matrix A 
denoting the TPPN, the processing time 𝜏 for each 
station, the buffer capacity 𝜅, and the initial marking 
M0. 

Once the TPPN is obtained, the simulation of the 
production line can be executed. The steps to carry out 
the simulation are shown in Algorithm 2, which 
receives as input all the parameters obtained in 
Algorithm 1 plus the simulation time. 

This second algorithm returns the production line 
throughput for the buffer slots distribution specified in 
k. 

4.3. Results 

Three categories are considered in the numerical 
experiments, small, medium, and large production 
lines with k=7, 21, and 70 machines, respectively. To 

analyze the behavior of these production lines, three 
different values for N are proposed, according to 
equation 10. 

𝑁 = {
𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒 (

𝑘

2
)

𝑘 + 1
2𝑘

(10) 

Thus, the values used in the experimental are shown 
in Table 2. 

Table 2. Number of slots (N) for every production line category. 

𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒 (
𝑘

2
) 𝑘 + 1 2𝑘

Small (k=7) 3 8 14 
Medium (k=21) 10 22 42 
Large (k=70) 35 71 140 

Moreover, the Algorithm 2 was executed 100 times to 
determine the slots distribution between each machine 
for a simulation time of 100 units of time. In a first 
stage, an infinity capacity for each buffer was 
considered. The maximum number of tokens during 
the simulation represents the maximum number of 
pieces in every buffer. Thus, a percentage value was 
assigned to each buffer, which was useful to distribute 
the N slots available in the whole production line. 

The throughput obtained for each category, 
considering infinity capacity in all buffers, is shown in 
Table 3. 

Table 3. Production line throughput with infinity capacity buffers. 

Small (k=7) Medium (k=21) 
Large 

(k=70) 

Maximum 0.7699 0.4599 0.0900 
Minimum 0.4896 0.2698 0.0200 
Average 0.6444 0.3684 0.0525 

It can be observed in Table 3 that the smaller is the 
line the better production line throughput is obtained.  
Small lines are composed of k=7 machines, and every 
product is processed only seven times. On the other 
hand, large lines contain 70 machines, thus every 
product needs to be processed by seventy machines, 
plus the waiting time in the buffer when the machine is 
busy with another piece of work. 

Once the slots distribution is known, i.e., how many 
slots are needed for every buffer depending on the 
number of available slots (N), and the obtained 
percentage, we proceed to create 9 TPPNs (3 categories 
with 3 different values for N), and the Algorithm 2 was 
executed again 100 times with these new TPPNs. The 
maximum, minimum, and average throughput 
obtained in the TPPN simulation is shown in table 4. 

Table 4. Production line throughput with finite capacity buffers. 
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N Small 
(k=7) 

Medium 
(k=21) 

Large 
(k=70) 

𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒 (
𝑘

2
)

Max 0.5377 0.3696 0.0999 
Min 0.3599 0.2195 0.0100 
Ave 0.4570 0.2956 0.0502 

𝑘 + 1 
Min 0.6376 0.3999 0.0800 
Max 0.4491 0.2499 0.0100 
Ave 0.5382 0.3342 0.0513 

2𝑘

Min 0.6687 0.4394 0.0900 
Max 0.4389 0.2698 0.0100 
Ave 0.5738 0.3453 0.0523 

From the 100 executions for every TPPN in large, 
medium and small lines, we obtained the maximum, 
minimum and average of the production line 
throughput. 

With this strategy for assigning slots according to 
the percentage values, the throughput tends to be 
closer to the values obtained when the buffer capacity 
is infinity. 

5. Conclusions

BAP is a NP-Hard Problem where the number of 
combinations spreads when the number of machines, 
buffers and slots also increase. An important issue in 
BAP is the modeling technique to denote all the 
significative features. Despite many of the research 
papers regarding the BAP, no one of them applies the 
mathematical tools of PNs to solve this problem. 

In this paper, we propose the use of an extended 
Petri net model, called Timed Place Petri Net (TPPN). 
This PN can represent the production line and the 
buffer capacity among each workstation. It can be used 
to simulate the behavior of the production line with 
different configurations. 

Three categories were analyzed. Small, medium, and 
large production lines were depicted by TPPNs. 
Moreover, the simulation for the TPPN was executed to 
find the best buffer slots distribution. With this 
strategy, the algorithm 2 provides the number of slot

s assigned to each buffer. 

The limitation of this proposal, as many of PN 
models, is that the number of places and transitions 
will depend on the number of machines and buffers. In 
other words, if for every machine we need 2 places and 
2 transitions, and for each buffer we need a place, then 
the incidence matrix dimensions will be 3*k+1 places, 
and 2*k transitions, in a production line with k 
machines. 

As further work, the proposed TPPN can be used as a 
modeling tool in the optimization of BAP, where the 
incidence matrix will allow the calculus of the 
production line throughput by means of the state 
equation. 
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