
© 2023 The Authors. This article is an open access article distributed under the terms and conditions of the Creative
Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

35th European Modeling & Simulation Symposium
20th International Multidisciplinary Modeling & Simulation Multiconference

2724-0029 © 2023 The Authors.
doi: 10.46354/i3m.2023.emss.042

A proposal based on Petri nets and Artificial Neural
Networks for modeling Biotechnological process

Joselito Medina-Marin1,*, Maria Guadalupe Serna-Diaz2, Norberto
Hernandez-Romero1, Juan Carlos Seck-Tuoh-Mora1 and Irving Barragan-
Vite1

1Área Académica de Ingeniería, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5,
Col. Carboneras, Mineral de la Reforma, Hidalgo, 42184, México
2Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5,
Col. Carboneras, Mineral de la Reforma, Hidalgo, 42184, México

*Corresponding author. Email address: jmedina@uaeh.edu.mx

Abstract
Biotechnology is an interesting area that addresses global challenges related to human health, agricultural productivity,
sustainability, among others. Biotechnology processes require the development of many experiments to study and understand
the relationship of the variables participating in a process. On the other hand, this relationship can be modeled by using artificial
neural networks. Moreover, the training phase in artificial neural network development can be improved with the use of Petri Net
mathematical tools for generating the arc weights with matrix operations. This study proposes the use of graphical and
mathematical representation of Petri nets in order to be trained as an Artificial Neural Network. The result is an extended Petri
net model, named Neural Petri Net (NPN), which provides basic structures to create Petri net models with learning capabilities.
The proposed algorithm is an adaptation of the known backpropagation algorithm, and the incidence matrix and state equation
of Petri nets are used to calculate the output value of the trained NPN. The NPN was used to model a biotechnological process to
obtain lignocellulosic biomass, showing a good performance in the forecasting.

Keywords: Petri nets, Artificial neural networks, Biotechnological process, State equation

1. Introduction

Characterization of biotechnological processes
requires the development of many experiments to
understand the relationship among the significative
variables of the system. From experimental data, many
models have been created to understand the complexity
biotechnological systems and control their behavior
(Noll & Henkel, 2020)

Advances in technology and computer science have

allowed the development of complex modeling in
biotechnology (Klyuchko, 2018). With the use of
models, dynamic behavior of biotechnological systems
can be simulated over the time without invasion in the.
systems.

Mathematical methods have been applied for
modeling and data processing in biotechnology. In
addition, computational tools are used to analyzed data
and create models to replicate systems behavior.
(Klyuchko, 2017)

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:abc@uni.edu

 | 35th European Modeling & Simulation Symposium, EMSS 2023

These methodologies applied in biotechnological
processes modeling includes artificial neural networks
(ANN), cluster analysis and image processing. (Niazian
& Niedbała, 2020)

On the other side, Petri nets (PNs) have been applied
to model manufacturing systems interactions,
however, the same methodology was applied to create
computational biology models and perform flux
balance analysis (Simone et al., 2020).

ANNs training requires an iterative process to find
the optimal arc wight values, which is time consuming.
And PN mathematical tools can be used to speed up the
calculations of arc weghts.

In this paper, the use of a hybrid model based on
Petri nets (PN) and Artificial Neural Networks (ANN) is
proposed. Both tools have been developed successfully
in separate ways and each one provides its own
advantages in its application areas. However, there are
similarities, such as parallel processing, graphical
representation, and mathematical calculations, that
should be considered to improve their performance
working together.

The reminder of this paper is organized as follows.
In Section 2 are presented the works related to PN
theory application to model biotechnological processes
and some hybrid models of PNs and ANNs. Next, PN and
ANN basis are described in Section 3. The results and
discussion are given in Section 4. Finally, the
conclusions are presented in Section 5.

2. State of the art

Biotechnological processes modeling has been done
from many perspectives. PN theory is not the
exception, and there are some works published
related to the use of PNs in biotechnological
modeling.

In 2021, Amstein et al. proposed a PN model for
molecular reactions to find pathways in cellular
response.

In another research work, PNs were applied to model
several critical processes involved in ontogenesis. The
authors combined PNs in a hierarchical way (nets-
within-nets) to represent and simulate the ontogenesis
processes. (Bardini et al., 2021)

The work presented by Kardynska et al. in 2023,
describes the use of PNs for searching molecular
targets for drugs. Moreover, PN analysis tools were
used to identify the key elements in the regulatory
network.

Some papers have been published describing the use
of PNs and ANNs. In (Schuster, 2007), the author
proposes a technique based on a “tokenized artificial
neural network”. He applied his technique to a basic
perceptron-type network. A PN is trained with the use
of colored tokens for classification purposes.

In another research work, the authors developed a
system composed of a multilayer perceptron and a PN
to control multiple mobile robots. PN model and the
multilayer perceptron are collaborating in the system,
but each one has particular functions and does not work
together. (Pham et al., 2003)

A Dynamic Petri Recurrent Fuzzy Neural Network is
proposed in (Wai & Lin, 2012). This PN model was
developed for a vision-based mobile robot scenario. In
(Tan, 2015), the author proposed a Wavelet Petri Fuzzy
Neural Network Control, which is used to control
squirrel-cage induction generators for grid-connected
wind power applications. Nevertheless, in those
research works the mathematical power of PNs is not
used in the learning and execution process.

PN theory offers a graphical representation of
systems and mathematical operations to analyze their
state space. These tools and can be used for modeling
ANNs. Thus, in this paper, we propose the
implementation of learning algorithms in PN
structures by using the graphical properties of PNs
and matrix operations.

3. Materials and Methods

The proposal presented in this paper is based on
concepts of PNs and ANNs.

3.1. Petri nets concepts

A Petri net is a powerful graphical and mathematical
tool for modeling discrete event driven systems
(Peterson, 1977; Zhou). The graph is directed, arc
weighted, and has two types of nodes: places (circles)
and transitions (boxes).

In a PN, places are connected to transitions, and
transitions to places, but nodes of the same type are not
allowed to be connected. The system state is
represented using tokens, which are put in the
corresponding PN places.

A formal definition of a PN is showed in Table 1.
(Murata, 1989)

Table 1. Formal definition of a PN.

A Petri Net is a 5-tuple, PN=(P, T, F, W, M0) where:

𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑚} is a finite set of places.
𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛} is a finite set of transitions.
𝐹 ⊆ {𝑃 × 𝑇} ∪ {𝑇 × 𝑃} is a set of arcs.
𝑊 = 𝐹 → {1,2,3, … } is a weight function.
𝑀0 = 𝑃 → {0,1,2, … } is the initial marking.
𝑃 ∩ 𝑇 = ∅ and 𝑃 ∪ 𝑇 ≠ ∅

The token game animation is used to represent the
dynamical behavior of the system modeled through
PNs. The change in the token position is based on the
following transition firing rule: (Murata, 1989)

Medina-Marin et al. |

1. A transition 𝑡 ∈ 𝑇 is enabled if each input place 𝑝 ∈
𝑃 of t contains at least w(p,t) tokens.

2. An enabled transition t will be fired if the event
denoted by t occurs.

3. Once an enabled transition t is fired, w(p,t) tokens
are deleted from each input place p of t, and w(t,p)
tokens are put on every output place p of t.

In addition, the BAP modeling needs the use of
processing time. Thus, an extension of PN model with
time in places is applied. A Timed Place Petri Net
(TPPN) is a six-tuple 𝑇𝑃𝑃𝑁 = {𝑃, 𝑇, 𝐹,𝑊,𝑀0, 𝐷}, where
𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑚} represents the processing time for
every place 𝑝 ∈ 𝑃. (Zhao et al., 2011). In this case, the
first transition firing rule for PNs now considers not
only the number of tokens in the input places, also the
time 𝑑𝑖 indicated for place 𝑝𝑖 must be reached.

3.2. Incidence Matrix and state equation

In this paper, the matrix equation of PN theory is
used to simulate the token game animation in the
production line, obtain the total of products processed,
and finally calculate the throughput of the system.

A PN with n transitions and m places can be denoted
as a matrix of integers 𝐴 = [𝑎𝑖𝑗] with dimension 𝑛 ×𝑚.
The 𝑎𝑖𝑗 values are calculated with the mathematical
expression 𝑎𝑖𝑗 = 𝑎𝑖𝑗+ − 𝑎𝑖𝑗−, where 𝑎𝑖𝑗+ is the arc weight
𝑤(𝑡𝑖 , 𝑝𝑗) and 𝑎𝑖𝑗− is the arc weight 𝑤(𝑝𝑗 , 𝑡𝑖).

The state equation is helpful to determine the
marking in a PN through the transition firings. This
equation is as shown in eq. 1.

𝑀𝑘 = 𝑀𝑘−1 × 𝐴
𝑇𝑈𝑘 , 𝑘 = 1,2,… (1)

where 𝑈𝑘 is a 𝑛 × 1 column vector of zeros and a
unique one. The position of the one value indicates the
transition 𝑡𝑗 that will be fired. 𝐴𝑇 is the transpose of the
incidence matrix 𝐴. 𝑀𝑘−1 is the marking before 𝑡𝑗 is fired.
And 𝑀𝑘 is the marking reached after the firing of 𝑡𝑗.

3.3. Artificial Neural Networks

An Artificial Neural Networks (ANN) is part of
computer intelligence, it contains a set of units named
neurons, which are connected to perform classification
tasks, pattern recognition, function fitting, among
other applications. Moreover, ANNs have the ability to
learn and have been applied to solve problems in a wide
range of areas (van Gerven & Bohte, 2017; Chen et al.,

2019).

An ANN is composed of a set of inputs, synaptic
weights, a propagation rule, and an activation function.
It can be applied to create models with incomplete
information, is fault tolerant and its memory is
distributed, and parallelism can be used for its
processing. (Wen et al., 2020)

The features of ANNs are the following: (Aggarwal,
2018)

1. Each input node i is related to an input
variable xi.

2. Arc connections between nodes i and j have
a weight 𝑤𝑖𝑗 ∈ ℜ.

3. A threshold 𝜃𝑖 is defined for each node i.

4. The new state for each node i is defined by an
activation function 𝑓𝑖(𝑥𝑗 , 𝑤𝑖𝑗 , 𝜃𝑖), which
depends on the states of nodes j (𝑥𝑗), the
weights of arcs connection (𝑤𝑖𝑗), and the
threshold 𝜃𝑖 .

The graphical representation of an ANN is shown in
Figure 1. It is composed of three types of layers: input,
hidden and output layers. Every node in the input layer
is relate to only one input state variable. Hidden layers
can be composed of one or more layers. Finally, the
output layer contains the response variables of the
system.

The information travels through every ANN layer,
which is updated in a progressive processing. The
function applied to each neuron with n inputs and m
outputs is expressed in eq. 2.

𝑦𝑖(𝑡) = 𝑓 (∑𝑤𝑖𝑗𝑥𝑗 − 𝜃𝑖

𝑛

𝑗=1

) , ∀𝑖, 1 ≤ 𝑖 ≤ 𝑚
(2)

The input layer sends the information received by
each neuron to the next hidden layer, and do not
compute anything.

During the training phase, arc weights (𝑤𝑖𝑗) are
updated in order to obtain similar values to the target
used as input data.

 | 35th European Modeling & Simulation Symposium, EMSS 2023

Figure 1. Structure of an ANN with one input layer, the hidden layers, and one output layer.

3.4. The biotechnological process

The data used in this modeling were gathered from
lab experiments for obtaining lignocellulosic biomass
of barley straw. The input variables considered are the
sulfite concentration (1%, 5%, and 10%), particle size
(mesh number 8, 12 and 20), and reaction time (30, 60,
and 90 minutes). 27 experiments were made 3 times,
and the data were used for training the ANN based on
PNs.

4. Results and Discussion

In this paper, an extended Petri net model enhanced
with learning capabilities is introduced, which is called
Neural Petri Network (NPN). The learning process is
based on the backpropagation algorithm, adapted to be
applied to a PN structure.

4.1. Extended Petri Net model

The basic elements used to model a neuron are

shown in Figure 2. The neuron depicted in Figure 2(a)
is used to represent input values to the NPN. Place pa
holds a token with input value 𝑥𝑖 ∈ ℝ, this token is
consumed by tj and it is replicated to the output places
of tj.

Figure 2(b) denotes the neuron model used in the
hidden layers. Each neuron model receives the result of
the dot product of vector X (containing the token
values) and W (denoting the weights for each arc)
∑ 𝑥𝑖𝑤𝑖 − 𝜃𝑖
𝑛
𝑖=1 , the result is stored in place pb as a token.

This token is consumed by transition tk, where the
token value less the bias (𝜃𝑖) is evaluated in the
activation function 𝑓1(∑ 𝑥𝑖𝑤𝑖 − 𝜃𝑖

𝑛
𝑖=1), the result is stored

in a token and it is replicated to the output places of tk.

Place pc of the output neuron shown in Figure 2(c)
has the same behavior as pb. It sends the resulting token
to transition tl, where activation function f2 performs a
similar evaluation as f1, and the result is sent to pd. as
the output value y of NPN.

Figure 2. PN structures to represent neurons in an NPN.

.

.

.

.

.

.

.

.

.

Input layer

x1

x2

x3

x4

xn

Hidden layers Output layer

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

y

Medina-Marin et al. |

An NPN has a vector X of input values in the input
layer, one or more hidden layers, and the output layer
indicating the result of the NPN execution (Figure 3).

Figure 3. NPN structure with input, hidden and output layers.

Most of the connections are located where
transitions connect to their corresponding output
places. These connections can be represented as
submatrices of the whole NPN incidence matrix. The
first submatrix 𝐼𝑀𝑓 of 𝑚 × 𝑛 elements contain the
weights from the input layer to the first hidden layer
(Eq. 3)

𝐼𝑀𝑓 =

𝑝1,2 𝑝2,2 ⋯ 𝑝𝑛,2
𝑡1,1
𝑡2,1
⋮
𝑡𝑚,2

[

𝑤1 𝑤2 … 𝑤3
𝑤4 𝑤5 … 𝑤6
⋮

𝑤𝑚𝑛−2

⋮
𝑤𝑚𝑛−1

⋮ ⋮
… 𝑤𝑚𝑛

]
(3)

And the last submatrix 𝐼𝑀𝑙 is a column vector of 𝑠 × 1
elements, and it contains the weights from the last
hidden layer to the output layer (Eq. 4).

𝐼𝑀𝑙 =

𝑝𝑡
𝑡1,𝑘−1
𝑡2,𝑘−1
⋮

𝑡𝑠,𝑘−1

[

𝑤𝑢+1
𝑤𝑢+2
⋮

𝑤𝑢+𝑣

]
(4)

These matrices are used to train the NPN with a set
of input data. The next section describes the learning
process.

4.2. Learning algorithm

Backpropagation (BP) is the algorithm selected for
training the NPN because it has been used widely in
ANN applications (Sacramento et al., 2018). The steps

of the BP algorithm adapted to NPN are shown below. It
takes a set of patterns μ used as inputs for the training.

1. Set randomly the weights of all arcs connecting
from transitions to places of different layers
and the initial bias.

2. For each pattern 𝜇𝑖 of the learning set

a. Execute the NPN with pattern 𝜇𝑖.

b. Obtain the associated error signals.

c. Calculate the partial increase for
weights and bias due to 𝜇𝑖.

3. Calculate the total increase.

4. Update weights in submatrices and bias.

5. Calculate the total error with Mean Square
Error (MSE). Go to step 2 if the error is
unsatisfactory; otherwise, the algorithm
finishes.

In order to obtain the result of the NPN execution,
the next subsection describes the matrix operations
required.

4.3. Execution of NPN

The execution of the NPN produces the evaluation of
all the input values across the hidden layers and the
output layer. For this purpose, the state equation and

 | 35th European Modeling & Simulation Symposium, EMSS 2023

incidence matrix concepts of PN theory are used.

In this case, the vector containing the bias values is
used as the previous marking. The matrix 𝐼𝑀 is the sub
incidence matrix composed of arcs connecting from
transitions to the next layer places. And as the firing
vector we use 𝑀𝑘−1, which contains the initial tokens of
X, or the token value that arrives at each place in the
following calculations. Finally, the result is evaluated
with the activation function 𝑓1 or 𝑓2, depending on the
type of layer. Therefore, the adapted state equation is
shown in equation 5.

𝑀𝑘 = 𝑓1|2(−𝜃 + 𝐼𝑀
𝑇 ×𝑀𝑘−1) (5)

This equation is utilized to calculate the token values
for places in NPN.

For instance, to calculate the token values for places
p1,2, p2,2, …, pn,2 in Figure 3, we use equation 5 as follows:

𝑀1 = 𝑓1

(

 −𝜃 + [

𝑤1 𝑤2 … 𝑤3
𝑤4 𝑤5 … 𝑤6
⋮

𝑤𝑚𝑛−2

⋮
𝑤𝑚𝑛−1

⋮ ⋮
… 𝑤𝑚𝑛

]

𝑇

× [

𝑥1
𝑥2
⋮
𝑥𝑚

]

)

(6)

And so on, until we calculate the token value for
place pd (Figure 3) denoting the evaluation of the whole
NPN.

4.4. Results

In order to observe the NPN applicability in
biotechnological processes, a data set of lab
experiments were collected. The experiment consists of
a full factorial composite design to produce
lignosulfonates, considering sulfite concentration (1, 5,
and 10%), particle size (mesh number 8, 12, and 20),
and reaction time (30, 60, and 90 minutes). 27
experiments were carried out three times each one, and
the lignocellulosic biomass obtained was recorded.

The NPN can be created with the constructors
showed in figure 2. A NPN for modeling this process
containing 3 neurons in the input layer (sulfite
concentration, particle size, and reaction time), one
hidden layer composed of 3 neurons, and one neuron in
the output layer (amount of lignocellulosic biomass) is
shown in figure 4.

Figure 4. NPN structure for data collected in a biotechnological process with 3 input variables and one response.

The goodness-of-fit between the experimental and
predicted values obtained from the NPN has a good
correlation coefficient (R2 = 0.91).

The NPN has a good performance due to predictions
of lignocellulosic biomass were closer to experimental
values.

5. Conclusions

ANNs and PNs present interesting similarities that can
be considered to improve the learning capabilities of
ANNs. There are papers where the authors combine PNs
together with ANNs, but they do not apply the
mathematical strength of PNs in the ANN learning
process.

Medina-Marin et al. |

In this work, an Extended PN model with learning
capabilities is proposed. This model, named Neural
Petri Net (NPN), provides basic PN structures to
represent neurons for the input layer, hidden layers,
and the output layer. Furthermore, this model includes
a learning algorithm based on the well-known
backpropagation algorithm, and an execution
algorithm to evaluate input values with the trained
NPN.

The incidence matrix and state equation are used in
the training and execution of the NPN, which means
that the obtained model is a fusion of the features of
PNs and ANNs. In addition, the performance of the NPN
for predicting values of a biotechnological process was
suitable. Nevertheless, this methodology is not only
applicable to biotechnology, it can also be applied to
data of another fields for generating models with input
and response variables.

The main limitation of this proposal is inherited
from PNs. There are needed two times the number of
nodes in an ANN, thus it requires to handle bigger
structures to represent the model.

As further work, the NPN will be applied to model
another biotechnological processes such as
conidiospores production and microplastics detection.
In engineering applications, this proposal will be used
to model the making of bricks to optimize its
performance, in combination with evolutive
algorithms.

Funding

This work was supported by the Consejo Nacional de
Humanidades, Ciencia y Tecnología (Conahcyt), under
Project CONACYT CB-2017-2018-A1-S-43008

References

Aggarwal, C. C. (2018). Neural networks and deep
learning. Springer, 10(978), 3.

Amstein, L. K., Ackermann, J., Hannig, J., Ðikić, I.,
Fulda, S., & Koch, I. (2021). Mathematical modeling
of the molecular switch of TNFR1-mediated
signaling pathways using Petri nets. BioRxiv, 2021-
11.

Bardini, R., Benso, A., Politano, G., & Di Carlo, S. (2021).
Nets-within-nets for modeling emergent patterns
in ontogenetic processes. Computational and
Structural Biotechnology Journal, 19, 5701-5721.

Chen, M., Challita, U., Saad, W., Yin, C., & Debbah, M.
(2019). Artificial neural networks-based machine
learning for wireless networks: A tutorial. IEEE
Communications Surveys & Tutorials, 21(4), 3039-
3071.

Kardynska, M., Kogut, D., Pacholczyk, M., & Smieja, J.
(2023). Mathematical modeling of regulatory
networks of intracellular processes–Aims and
selected methods. Computational and Structural

Biotechnology Journal.

Klyuchko, O. M. (2017). On the mathematical methods
in biology and medicine. Biotechnologia Acta, 10(3),
31-40.

Klyuchko, O. M. (2018). Some trends in mathematical
modeling for biotechnology. Biotechnologia Acta,
11(1), 39-57.

Niazian, M., & Niedbała, G. (2020). Machine learning
for plant breeding and biotechnology. Agriculture,
10(10), 436.

Noll, P., & Henkel, M. (2020). History and evolution of
modeling in biotechnology: modeling & simulation,
application and hardware performance.
Computational and Structural Biotechnology
Journal, 18, 3309-3323.

Pham, D. T., & Parhi, D. R. (2003). Navigation of
multiple mobile robots using a neural network and a
Petri Net model. Robotica, 21(1), 79-93.

Sacramento, J., Ponte Costa, R., Bengio, Y., & Senn, W.
(2018). Dendritic cortical microcircuits approximate
the backpropagation algorithm. Advances in neural
information processing systems, 31.

Schuster, A. J. (2007). A Computing Model Combining
Artificial Neural Networks and Petri Nets.
Intelligent Computing Everywhere, 61-77.

Simone, P., Laura, F., Gianfranco, B., Luciano, M.,
Giulia, S., Niccoló, T., ... & Marco, B. (2020).
Integrating petri nets and flux balance methods in
computational biology models: a methodological
and computational practice. Fundamenta
Informaticae, 171(1-4), 367-392.

Tan, K. H. (2015). Squirrel-cage induction generator
system using wavelet petri fuzzy neural network
control for wind power applications. IEEE
Transactions on Power Electronics, 31(7), 5242-
5254.

van Gerven, M. A. J., & Bohte, S. M. (2017). Artificial
neural networks as models of neural information
processing.

Wai, R. J., & Lin, Y. W. (2012). Adaptive moving-target
tracking control of a vision-based mobile robot via
a dynamic petri recurrent fuzzy neural network.
IEEE Transactions on Fuzzy Systems, 21(4), 688-
701.

Wen, J., Yang, J., Jiang, B., Song, H., & Wang, H. (2020).
Big data driven marine environment information
forecasting: a time series prediction network. IEEE
Transactions on Fuzzy Systems, 29(1), 4-18.

