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Abstract 
Biotechnology is an interesting area that addresses global challenges related to human health, agricultural productivity, 
sustainability, among others. Biotechnology processes require the development of many experiments to study and understand 
the relationship of the variables participating in a process. On the other hand, this relationship can be modeled by using artificial 
neural networks. Moreover, the training phase in artificial neural network development can be improved with the use of Petri Net 
mathematical tools for generating the arc weights with matrix operations. This study proposes the use of graphical and 
mathematical representation of Petri nets in order to be trained as an Artificial Neural Network. The result is an extended Petri 
net model, named Neural Petri Net (NPN), which provides basic structures to create Petri net models with learning capabilities. 
The proposed algorithm is an adaptation of the known backpropagation algorithm, and the incidence matrix and state equation 
of Petri nets are used to calculate the output value of the trained NPN. The NPN was used to model a biotechnological process to 
obtain lignocellulosic biomass, showing a good performance in the forecasting. 
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1. Introduction

Characterization of biotechnological processes 
requires the development of many experiments to 
understand the relationship among the significative 
variables of the system. From experimental data, many 
models have been created to understand the complexity 
biotechnological systems and control their behavior 
(Noll & Henkel, 2020) 

Advances in technology and computer science have 

allowed the development of complex modeling in 
biotechnology (Klyuchko, 2018). With the use of 
models, dynamic behavior of biotechnological systems 
can be simulated over the time without invasion in the. 
systems. 

Mathematical methods have been applied for 
modeling and data processing in biotechnology. In 
addition, computational tools are used to analyzed data 
and create models to replicate systems behavior. 
(Klyuchko, 2017) 
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These methodologies applied in biotechnological 
processes modeling includes artificial neural networks 
(ANN), cluster analysis and image processing. (Niazian 
& Niedbała, 2020) 

On the other side, Petri nets (PNs) have been applied 
to model manufacturing systems interactions, 
however, the same methodology was applied to create 
computational biology models and perform flux 
balance analysis (Simone et al., 2020). 

ANNs training requires an iterative process to find 
the optimal arc wight values, which is time consuming. 
And PN mathematical tools can be used to speed up the 
calculations of arc weghts. 

In this paper, the use of a hybrid model based on 
Petri nets (PN) and Artificial Neural Networks (ANN) is 
proposed. Both tools have been developed successfully 
in separate ways and each one provides its own 
advantages in its application areas. However, there are 
similarities, such as parallel processing, graphical 
representation, and mathematical calculations, that 
should be considered to improve their performance 
working together. 

The reminder of this paper is organized as follows. 
In Section 2 are presented the works related to PN 
theory application to model biotechnological processes 
and some hybrid models of PNs and ANNs. Next, PN and 
ANN basis are described in Section 3. The results and 
discussion are given in Section 4. Finally, the 
conclusions are presented in Section 5. 

2. State of the art

Biotechnological processes modeling has been done 
from many perspectives. PN theory is not the 
exception, and there are some works published 
related to the use of PNs in biotechnological 
modeling. 

In 2021, Amstein et al. proposed a PN model for 
molecular reactions to find pathways in cellular 
response.  

In another research work, PNs were applied to model 
several critical processes involved in ontogenesis. The 
authors combined PNs in a hierarchical way (nets-
within-nets) to represent and simulate the ontogenesis 
processes. (Bardini et al., 2021) 

The work presented by Kardynska et al. in 2023, 
describes the use of PNs for searching molecular 
targets for drugs. Moreover, PN analysis tools were 
used to identify the key elements in the regulatory 
network. 

Some papers have been published describing the use 
of PNs and ANNs. In (Schuster, 2007), the author 
proposes a technique based on a “tokenized artificial 
neural network”. He applied his technique to a basic 
perceptron-type network. A PN is trained with the use 
of colored tokens for classification purposes. 

In another research work, the authors developed a 
system composed of a multilayer perceptron and a PN 
to control multiple mobile robots. PN model and the 
multilayer perceptron are collaborating in the system, 
but each one has particular functions and does not work 
together. (Pham et al., 2003) 

A Dynamic Petri Recurrent Fuzzy Neural Network is 
proposed in (Wai & Lin, 2012). This PN model was 
developed for a vision-based mobile robot scenario. In 
(Tan, 2015), the author proposed a Wavelet Petri Fuzzy 
Neural Network Control, which is used to control 
squirrel-cage induction generators for grid-connected 
wind power applications. Nevertheless, in those 
research works the mathematical power of PNs is not 
used in the learning and execution process. 

PN theory offers a graphical representation of 
systems and mathematical operations to analyze their 
state space. These tools and can be used for modeling 
ANNs. Thus, in this paper, we propose the 
implementation of learning algorithms in PN 
structures by using the graphical properties of PNs 
and matrix operations. 

3. Materials and Methods

The proposal presented in this paper is based on 
concepts of PNs and ANNs. 

3.1. Petri nets concepts 

A Petri net is a powerful graphical and mathematical 
tool for modeling discrete event driven systems 
(Peterson, 1977; Zhou). The graph is directed, arc 
weighted, and has two types of nodes: places (circles) 
and transitions (boxes). 

In a PN, places are connected to transitions, and 
transitions to places, but nodes of the same type are not 
allowed to be connected. The system state is 
represented using tokens, which are put in the 
corresponding PN places. 

A formal definition of a PN is showed in Table 1. 
(Murata, 1989) 

Table 1. Formal definition of a PN.  

A Petri Net is a 5-tuple, PN=(P, T, F, W, M0) where: 

𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑚} is a finite set of places. 
𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛} is a finite set of transitions. 
𝐹 ⊆ {𝑃 × 𝑇} ∪ {𝑇 × 𝑃} is a set of arcs. 
𝑊 = 𝐹 → {1,2,3, … } is a weight function. 
𝑀0 = 𝑃 → {0,1,2, … } is the initial marking. 
𝑃 ∩ 𝑇 = ∅ and 𝑃 ∪ 𝑇 ≠ ∅ 

The token game animation is used to represent the 
dynamical behavior of the system modeled through 
PNs. The change in the token position is based on the 
following transition firing rule: (Murata, 1989) 
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1. A transition 𝑡 ∈ 𝑇 is enabled if each input place 𝑝 ∈
𝑃 of t contains at least w(p,t) tokens.

2. An enabled transition t will be fired if the event
denoted by t occurs.

3. Once an enabled transition t is fired, w(p,t) tokens
are deleted from each input place p of t, and w(t,p)
tokens are put on every output place p of t.

In addition, the BAP modeling needs the use of 
processing time. Thus, an extension of PN model with 
time in places is applied. A Timed Place Petri Net 
(TPPN) is a six-tuple 𝑇𝑃𝑃𝑁 = {𝑃, 𝑇, 𝐹,𝑊,𝑀0, 𝐷}, where 
𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑚} represents the processing time for 
every place 𝑝 ∈ 𝑃. (Zhao et al., 2011). In this case, the 
first transition firing rule for PNs now considers not 
only the number of tokens in the input places, also the 
time 𝑑𝑖 indicated for place 𝑝𝑖 must be reached. 

3.2. Incidence Matrix and state equation 

In this paper, the matrix equation of PN theory is 
used to simulate the token game animation in the 
production line, obtain the total of products processed, 
and finally calculate the throughput of the system. 

A PN with n transitions and m places can be denoted 
as a matrix of integers 𝐴 = [𝑎𝑖𝑗] with dimension 𝑛 ×𝑚. 
The 𝑎𝑖𝑗 values are calculated with the mathematical 
expression 𝑎𝑖𝑗 = 𝑎𝑖𝑗+ − 𝑎𝑖𝑗−, where 𝑎𝑖𝑗+ is the arc weight 
𝑤(𝑡𝑖 , 𝑝𝑗) and 𝑎𝑖𝑗− is the arc weight 𝑤(𝑝𝑗 , 𝑡𝑖). 

The state equation is helpful to determine the 
marking in a PN through the transition firings. This 
equation is as shown in eq. 1. 

𝑀𝑘 = 𝑀𝑘−1 × 𝐴
𝑇𝑈𝑘 , 𝑘 = 1,2,… (1) 

where 𝑈𝑘 is a 𝑛 × 1 column vector of zeros and a 
unique one. The position of the one value indicates the 
transition 𝑡𝑗 that will be fired. 𝐴𝑇 is the transpose of the 
incidence matrix 𝐴. 𝑀𝑘−1 is the marking before 𝑡𝑗 is fired. 
And 𝑀𝑘 is the marking reached after the firing of 𝑡𝑗. 

3.3. Artificial Neural Networks 

An Artificial Neural Networks (ANN) is part of 
computer intelligence, it contains a set of units named 
neurons, which are connected to perform classification 
tasks, pattern recognition, function fitting, among 
other applications. Moreover, ANNs have the ability to 
learn and have been applied to solve problems in a wide 
range of areas (van Gerven & Bohte, 2017; Chen et al., 

2019). 

An ANN is composed of a set of inputs, synaptic 
weights, a propagation rule, and an activation function. 
It can be applied to create models with incomplete 
information, is fault tolerant and its memory is 
distributed, and parallelism can be used for its 
processing. (Wen et al., 2020) 

The features of ANNs are the following: (Aggarwal, 
2018) 

1. Each input node i is related to an input
variable xi.

2. Arc connections between nodes i and j have
a weight 𝑤𝑖𝑗 ∈ ℜ.

3. A threshold 𝜃𝑖  is defined for each node i.

4. The new state for each node i is defined by an
activation function 𝑓𝑖(𝑥𝑗 , 𝑤𝑖𝑗 , 𝜃𝑖), which
depends on the states of nodes j (𝑥𝑗), the
weights of arcs connection (𝑤𝑖𝑗), and the
threshold 𝜃𝑖 .

The graphical representation of an ANN is shown in 
Figure 1. It is composed of three types of layers: input, 
hidden and output layers. Every node in the input layer 
is relate to only one input state variable. Hidden layers 
can be composed of one or more layers. Finally, the 
output layer contains the response variables of the 
system. 

The information travels through every ANN layer, 
which is updated in a progressive processing. The 
function applied to each neuron with n inputs and m 
outputs is expressed in eq. 2. 

𝑦𝑖(𝑡) = 𝑓 (∑𝑤𝑖𝑗𝑥𝑗 − 𝜃𝑖

𝑛

𝑗=1

) , ∀𝑖, 1 ≤ 𝑖 ≤ 𝑚
(2) 

The input layer sends the information received by 
each neuron to the next hidden layer, and do not 
compute anything.  

During the training phase, arc weights (𝑤𝑖𝑗) are 
updated in order to obtain similar values to the target 
used as input data.  
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Figure 1. Structure of an ANN with one input layer, the hidden layers, and one output layer. 

3.4. The biotechnological process 

The data used in this modeling were gathered from 
lab experiments for obtaining lignocellulosic biomass 
of barley straw. The input variables considered are the 
sulfite concentration (1%, 5%, and 10%), particle size 
(mesh number 8, 12 and 20), and reaction time (30, 60, 
and 90 minutes). 27 experiments were made 3 times, 
and the data were used for training the ANN based on 
PNs. 

4. Results and Discussion

In this paper, an extended Petri net model enhanced 
with learning capabilities is introduced, which is called 
Neural Petri Network (NPN). The learning process is 
based on the backpropagation algorithm, adapted to be 
applied to a PN structure. 

4.1. Extended Petri Net model 

The basic elements used to model a neuron are 

shown in Figure 2. The neuron depicted in Figure 2(a) 
is used to represent input values to the NPN. Place pa 
holds a token with input value 𝑥𝑖 ∈ ℝ, this token is 
consumed by tj and it is replicated to the output places 
of tj. 

Figure 2(b) denotes the neuron model used in the 
hidden layers. Each neuron model receives the result of 
the dot product of vector X (containing the token 
values) and W (denoting the weights for each arc) 
∑ 𝑥𝑖𝑤𝑖 − 𝜃𝑖
𝑛
𝑖=1  , the result is stored in place pb as a token. 

This token is consumed by transition tk, where the 
token value less the bias (𝜃𝑖) is evaluated in the 
activation function 𝑓1(∑ 𝑥𝑖𝑤𝑖 − 𝜃𝑖

𝑛
𝑖=1 ), the result is stored 

in a token and it is replicated to the output places of tk. 

Place pc of the output neuron shown in Figure 2(c) 
has the same behavior as pb. It sends the resulting token 
to transition tl, where activation function f2 performs a 
similar evaluation as f1, and the result is sent to pd. as 
the output value y of NPN. 

Figure 2. PN structures to represent neurons in an NPN. 
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An NPN has a vector X of input values in the input 
layer, one or more hidden layers, and the output layer 
indicating the result of the NPN execution (Figure 3). 

Figure 3. NPN structure with input, hidden and output layers. 

Most of the connections are located where 
transitions connect to their corresponding output 
places. These connections can be represented as 
submatrices of the whole NPN incidence matrix. The 
first submatrix 𝐼𝑀𝑓   of 𝑚 × 𝑛 elements contain the 
weights from the input layer to the first hidden layer 
(Eq. 3) 

𝐼𝑀𝑓 =

𝑝1,2 𝑝2,2 ⋯ 𝑝𝑛,2
𝑡1,1
𝑡2,1
⋮
𝑡𝑚,2

[

𝑤1 𝑤2 … 𝑤3
𝑤4 𝑤5 … 𝑤6
⋮

𝑤𝑚𝑛−2

⋮
𝑤𝑚𝑛−1

⋮ ⋮
… 𝑤𝑚𝑛

]
(3) 

And the last submatrix 𝐼𝑀𝑙  is a column vector of 𝑠 × 1 
elements, and it contains the weights from the last 
hidden layer to the output layer (Eq. 4). 

𝐼𝑀𝑙 =

𝑝𝑡
𝑡1,𝑘−1
𝑡2,𝑘−1
⋮

𝑡𝑠,𝑘−1

[

𝑤𝑢+1
𝑤𝑢+2
⋮

𝑤𝑢+𝑣

]
(4) 

These matrices are used to train the NPN with a set 
of input data. The next section describes the learning 
process. 

4.2. Learning algorithm 

Backpropagation (BP) is the algorithm selected for 
training the NPN because it has been used widely in 
ANN applications (Sacramento et al., 2018). The steps 

of the BP algorithm adapted to NPN are shown below. It 
takes a set of patterns μ used as inputs for the training. 

1. Set randomly the weights of all arcs connecting
from transitions to places of different layers
and the initial bias.

2. For each pattern 𝜇𝑖 of the learning set

a. Execute the NPN with pattern 𝜇𝑖.

b. Obtain the associated error signals.

c. Calculate the partial increase for
weights and bias due to 𝜇𝑖.

3. Calculate the total increase.

4. Update weights in submatrices and bias.

5. Calculate the total error with Mean Square
Error (MSE). Go to step 2 if the error is
unsatisfactory; otherwise, the algorithm
finishes.

In order to obtain the result of the NPN execution, 
the next subsection describes the matrix operations 
required. 

4.3. Execution of NPN 

The execution of the NPN produces the evaluation of 
all the input values across the hidden layers and the 
output layer. For this purpose, the state equation and 
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incidence matrix concepts of PN theory are used. 

In this case, the vector containing the bias values is 
used as the previous marking. The matrix 𝐼𝑀 is the sub 
incidence matrix composed of arcs connecting from 
transitions to the next layer places. And as the firing 
vector we use 𝑀𝑘−1, which contains the initial tokens of 
X, or the token value that arrives at each place in the 
following calculations. Finally, the result is evaluated 
with the activation function 𝑓1 or 𝑓2, depending on the 
type of layer. Therefore, the adapted state equation is 
shown in equation 5. 

𝑀𝑘 = 𝑓1|2(−𝜃 + 𝐼𝑀
𝑇 ×𝑀𝑘−1) (5) 

This equation is utilized to calculate the token values 
for places in NPN. 

For instance, to calculate the token values for places 
p1,2, p2,2, …, pn,2 in Figure 3, we use equation 5 as follows: 

𝑀1 = 𝑓1

(

 −𝜃 + [

𝑤1 𝑤2 … 𝑤3
𝑤4 𝑤5 … 𝑤6
⋮

𝑤𝑚𝑛−2

⋮
𝑤𝑚𝑛−1

⋮ ⋮
… 𝑤𝑚𝑛

]

𝑇

× [

𝑥1
𝑥2
⋮
𝑥𝑚

]

)

(6) 

And so on, until we calculate the token value for 
place pd (Figure 3) denoting the evaluation of the whole 
NPN. 

4.4. Results 

In order to observe the NPN applicability in 
biotechnological processes, a data set of lab 
experiments were collected. The experiment consists of 
a full factorial composite design to produce 
lignosulfonates, considering sulfite concentration (1, 5, 
and 10%), particle size (mesh number 8, 12, and 20), 
and reaction time (30, 60, and 90 minutes). 27 
experiments were carried out three times each one, and 
the lignocellulosic biomass obtained was recorded.  

The NPN can be created with the constructors 
showed in figure 2. A NPN for modeling this process 
containing 3 neurons in the input layer (sulfite 
concentration, particle size, and reaction time), one 
hidden layer composed of 3 neurons, and one neuron in 
the output layer (amount of lignocellulosic biomass) is 
shown in figure 4.  

Figure 4. NPN structure for data collected in a biotechnological process with 3 input variables and one response. 

The goodness-of-fit between the experimental and 
predicted values obtained from the NPN has a good 
correlation coefficient (R2 = 0.91). 

The NPN has a good performance due to predictions 
of lignocellulosic biomass were closer to experimental 
values.  

5. Conclusions

ANNs and PNs present interesting similarities that can 
be considered to improve the learning capabilities of 
ANNs. There are papers where the authors combine PNs 
together with ANNs, but they do not apply the 
mathematical strength of PNs in the ANN learning 
process. 
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In this work, an Extended PN model with learning 
capabilities is proposed. This model, named Neural 
Petri Net (NPN), provides basic PN structures to 
represent neurons for the input layer, hidden layers, 
and the output layer. Furthermore, this model includes 
a learning algorithm based on the well-known 
backpropagation algorithm, and an execution 
algorithm to evaluate input values with the trained 
NPN. 

The incidence matrix and state equation are used in 
the training and execution of the NPN, which means 
that the obtained model is a fusion of the features of 
PNs and ANNs. In addition, the performance of the NPN 
for predicting values of a biotechnological process was 
suitable. Nevertheless, this methodology is not only 
applicable to biotechnology, it can also be applied to 
data of another fields for generating models with input 
and response variables. 

The main limitation of this proposal is inherited 
from PNs. There are needed two times the number of 
nodes in an ANN, thus it requires to handle bigger 
structures to represent the model.  

As further work, the NPN will be applied to model 
another biotechnological processes such as 
conidiospores production and microplastics detection. 
In engineering applications, this proposal will be used 
to model the making of bricks to optimize its 
performance, in combination with evolutive 
algorithms.  
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