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Abstract
This paper reports results and analysis from simulation experiments in which a population of adaptive automated traders compete with
one another and co-evolve their trading behaviors on a high-fidelity model of a contemporary electronic financial exchange. The
automated traders are all using the adaptive Zero Intelligence Plus (ZIP) trading strategy, and the novel contribution of this paper is that
here each ZIP trader has been extended to continuously use Differential Evolution (DE) to try to find the most profitable trading behavior
in the current market conditions. The simulation experiments are structured in such a way that convergence to a stable steady-state is
expected, but the results reveal that the continuous co-evolutionary interactions among traders give rise to unpredictable long-term
instabilities in the traders’ individual strategies. The instabilities seen in the new results presented here are qualitatively the same as
those seen previously in simpler models of co-evolutionary markets involving less sophisticated adaptation mechanisms operating on
less sophisticated trader-agents Thus, the results presented here add weight to the hypothesis that co-evolutionary markets are
inherently unstable in strategy space, and hence that the long-term strategy instabilities seen in simpler simulation models of
co-evolutionary markets are not mere artefacts of those models’ simplifying assumptions. The Python source-code used in these
experiments is being made freely available on GitHub, for other researchers to replicate and extend the results presented here.
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1. Introduction

Over the past twenty years, there has been a significant
transformation in major financial markets worldwide due
to the widespread adoption of sophisticated automated
trading systems, commonly referred to as “algorithmic
traders" or “algos” or “robot traders”. These automated
systems have largely taken the place of human traders
when it comes to actually executing trades. A simple rea-
son for this shift is that robot traders can react to market
fluctuations at speeds beyond human capabilities, while
also processing massive amounts of data to inform their
responses. The roots of this technology revolution lie in a
groundbreaking paper by Das et al. (2001), the authors of
which were all researchers from IBM T. J. Watson Research
Labs, published at the International Joint Conference on Arti-

ficial Intelligence (IJCAI). This paper marked the first-ever
demonstration, conducted through carefully controlled
laboratory-style experiments, that basic algoritmic trad-
ing systems consistently outperformed human traders.

The IBM IJCAI paper received significant global media
attention; it examined the interactions between human
traders and two robot-trader strategies known as GD and
ZIP. GD was developed by Gjerstad and Dickhaut at the
University of Minnesota in 1998 (see Gjerstad and Dick-
haut (1998)); while ZIP (Zero Intelligence Plus) was cre-
ated in 1996 by Cliff at Hewlett-Packard’s main European
Research Labs in Bristol, England (see Cliff (1997)). The
experiments, conducted on a simulated electronic finan-
cial exchange, revealed that both GD and ZIP consistently
yielded higher profits compared to human traders. These
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findings have been replicated by other researchers, as evi-
denced in studies reported by De Luca and Cliff (2011); De
Luca et al. (2011); and Cartlidge and Cliff (2013).

In the twenty-two years since the publication of the
IBM IJCAI paper, adaptive automated trading technology
has been widely embraced by trading entities such as in-
vestment banks and fund-management companies that
previously relied on human traders. It has now become
customary on major financial exchanges for both the buyer
and the seller in a transaction to be algorithmic trading
systems. One of the primary motivations for adopting this
technology has been the significant cost-saving achieved
by transitioning from human to robot traders, considering
the traditionally high salaries of human traders. However,
as the presence of robots increased in the markets, con-
cerns emerged, particularly regarding the emergence of
High-Frequency Trading (HFT). HFT involves automated
trading activities occurring within extremely short time-
frames, sometimes lasting only a few seconds or less,
where traders buy and sell tradeable assets like stocks or
currencies for quick profits. For valuable insights and crit-
ical evaluations of the rise of robot traders and HFT, as well
as their impact on market fairness and stability, the reader
is referred to books such as those by Arnuk and Saluzzi
(2012); Patterson (2013); and Bodek and Dolgopolov (2015).

Market participants, whether they are individual
traders or trading-entity corporations, along with the reg-
ulatory authorities responsible for overseeing markets,
share a clear interest in ensuring that markets exhibit fair-
ness, stability, and efficiency. However, evaluating the de-
gree of fairness, stability, or efficiency in any given market
is challenging due to the practical impossibility of conduct-
ing controlled experiments on a major financial exchange
while it is actively operating. The cost and feasibility of
conducting A/B testing to compare alternative structures
or operational approaches for a live exchange are not real-
istically attainable. Although some insights can be gleaned
by comparing different exchanges or alternative trading
systems (ATSs) – which are independent trading venues
resembling exchanges but without the full regulatory re-
quirements of securities exchanges – tthere is a growing
interest in instead performing comparative experiments
using accurate simulation models. These models serve to
explore the performance of specific types of exchanges
and allow experimenters to comprehend the boundaries
within which the exchange can safely operate. The aim is
to understand when the market operating on the exchange
veers into unfairness, instability, or inefficiency.

One notable early demonstration of the effectiveness
of simulation modeling in real-world financial exchanges
was reported (several years after the fact) in the book by
Darley and Outkin (2007). This study involved the devel-
opment of an agent-based model (ABM) for the NASDAQ
exchange, which was used to anticipate the consequences
of transitioning from fractional dollar prices to decimal
prices (i.e., a change known as decimalization). Darley and
Outkin’s ABM model made several specific predictions re-

garding the impacts of this change. Subsequently, when
NASDAQ actually implemented decimalization, all of the
model’s predictions proved to be accurate, except for one
long-term prediction that couldn’t be verified as true or
false at the time the simulation was documented in Darley
and Outkin (2007). Other instances of ABM simulations in
finance and economics, tracing back to the seminal Santa
Fe Stock Market work of Arthur et al. (1996) can be found
in the surveys by Hommes and LeBaron (2018) and Chen
(2018).

To create useful ABM simulations of contemporary mar-
kets, it is essential to accurately replicate relevant internal
operations of the exchange and also to faithfully model
the market participants, i.e. the traders in the market.
The task of modeling the behavior of individual human
traders or trading institutions may prima facie appear to
be highly challenging. However, significant progress has
been made over the past 30 years by employing remarkably
minimal models known as “zero-intelligence” (ZI) trad-
ing strategies. The effectiveness of these strategies was es-
tablished in a seminal paper published in a top economics
journal by Gode and Sunder (1993), where markets popu-
lated by a trading strategy called "ZI-Constrained" (ZIC)
demonstrated market dynamics that closely resembled
the dynamics of directly comparable markets populated
by human traders.

When prompted to provide a price for a transaction,
a ZIC trader responds with a randomly generated value
drawn from a uniform distribution. The range of this
distribution is bound by the trader’s current limit price,
which represents the maximum price a buyer is willing
to pay or the minimum price a seller is willing to accept.
For ZIC buyers, the lower bound of the uniform distribu-
tion aligns with the minimum bid price allowed by the
exchange (referred to as the exchange’s tick-size, com-
monly one cent/penny). On the other hand, for ZIC sellers,
the upper bound of the distribution is an arbitrary system
maximum price, representing the highest price that can
be quoted on the exchange.

The research conducted by Gode and Sunder (1993)
demonstrated that markets populated by ZIC traders ex-
hibited the same level of allocative efficiency as comparable
markets populated by human traders. Allocative efficiency
is a technical measure that evaluates the economic effi-
ciency of a market. Since the introduction of ZIC three
decades ago, ABMs of financial markets incorporating ZI
traders have been extensively studied in economics, fi-
nance, and management research papers. For compre-
hensive reviews of these studies, see Farmer et al. (2005);
Ladley (2012); and Axtell and Farmer (2018).

Although ZIC traders have proven to be remarkably use-
ful in modelling markets, they are sufficiently simple that
they clearly lack one characteristic of human traders: the
ability to learn or adapt to changing market conditions. A
first remedy to this was offered in the development of the
Zero-Intelligence-Plus (ZIP) strategy, which adds simple
machine-learning as reported in Cliff (1997), and which,
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as was noted above, was one of the two trading strategies
that the IBM IJCAI 2001 paper showed to consistently out-
perform human traders (i.e., to be “super-human” in that
specific sense).

Very recently, an extension of ZIC was reported by Cliff
(2023b) in which the probability mass function (PMF)
for the distribution from which prices are randomly gen-
erated can be varied by setting a strategy parameter, de-
noted by s ∈ [–1.0, +1.0] ∈ R. In this extension, known
as Parameterized Response Zero Intelligence (PRZI), when
s = 0 the response of a PRZI trader is identical to that of
ZIC, but as s → ±1, the shape of the PMF becomes more
distorted away from the rectangle of ZIC’s uniform dis-
tribution, thereby allowing the PRZI trader’s strategy to
be either more “urgent” than ZIC (i.e., more likely to is-
sue a randomly-generated quote-price that is close to the
trader’s limit price, which is hence more likely to result in
a transaction but at a lower level of profitability) or more
“relaxed” (generating more profitable prices than ZIC, but
taking longer to find a counterparty to trade with). As
originally defined in Cliff (2021), PRZI traders are non-
adaptive: their s-value is fixed for all time. Two subse-
quent papers (Cliff (2022a,b)) have shown results from
markets populated entirely by PRZI traders, each of which
is continuously trying to adapt its s-value in an effort to
improve its profitability. Because the profitability of any
one PRZI trader’s s-value is dependent at least in part on
the set of s-values currently being used by all the other
traders in the market, such a system is inherently co-
evolutionary – and this then prompts questions of whether
the co-evolutionary process within the market can reli-
ably converge onto stable and economically efficient sets
of strategy-values for the PRZI traders. To discuss this
in more depth, first let us note that in a market popu-
lated by NT traders, each running PRZI and where at time
t each trader i has its own strategy-value si(t), the vector
S⃗(t) = (s1(t), s2(t), . . . , sNT (t))⊤ represents a point in the
NT-dimensional phase-space for that market, such that as
the traders each change their si values over time, the point
S⃗(t) traces a path or trajectory through the phase space.

In the first study of co-evolutionary PRZI markets
(Cliff (2022a),) each trader used a simple stochastic hill-
climbing (SHC) optimizer, much like an elementary multi-
armed-bandit algorithm (see e.g. Lattimore and Szepes-
vari (2020); Slivkins (2021)); whereas in the second study
(Cliff (2022b)), the SHC optimizer was replaced and each
trader instead used Differential Evolution (DE: see e.g. Bi-
lal et al. (2020)). In both cases, SHC and DE, a key no-
table result from the simulation studies was that the co-
evolutionary process did not result in convergence to a
stable equilibrium where all traders had settled on a static
preferred strategy-value: instead, the system was in con-
stant flux where a change in strategy by one trader T1 could
trigger in reaction a change in strategy some other trader
T2, and the change in T2’s strategy might prompt another
trader to alter its strategy, and so on, until a consequent
change in strategy by some trader Tn causes the original

T1 trader to alter its strategy, and so the chain-reaction of
strategy-changes continues. Furthermore, this constant
flux in strategies, driven by each trader continuously at-
tempting to improve its profitability, could result in the
system tracing loops in its strategy phase-space, such that
a given previous set of strategies (that was since improved
upon) recurs and in that sense the system collectively has
expended time and effort in co-evolving from some par-
ticular earlier state S(t – ∆t) to eventually arrive at a new
state S(t) where S(t) ≈ S(t – ∆t), i.e. where the system
has looped back on itself in strategy-space and where the
transit time to complete the loop, denoted by ∆t can be
very large – potentially tens or hundreds of days of con-
tinuous round-the-clock trading and simultaneous con-
tinuous co-evolution of strategies. These recurrent states
and looping paths through strategy-space were identified
in Cliff (2022a,b) via the use of Recurrence Plots (RPs: a
technique for visualizing high-dimensional complex dy-
namical systems, first developed by physics researchers;
see e.g. Eckmann et al. (1987); Marwan et al. (2007); Web-
ber and Marwan (2015), which are explained briefly in the
Appendix to Cliff (2023b).

The conclusion drawn by Cliff (2022a,b, 2023b) was that
the strategy-looping through recurring points in phase-
space was evidence that that a competitive co-evolutionary
process within the market, while clearly sufficient to
drive constant change, was unable to guarantee even near-
optimal outcomes or convergence to stable economic effi-
ciency. However, one criticism of that argument is that the
results could be a direct consequence of the choice to pop-
ulate the market entirely with PRZI traders – possibly, the
counterargument goes, the strategy-looping would not
be seen if instead the market was populated with more so-
phisticated traders, such as humans or human-level robot
traders. And it is that issue which is explored and resolved
in this paper: here, I present first results from running
co-evolutionary market simulations where all traders are
instead using the ZIP strategy, known to outperform hu-
man traders, and where each trader is continuously us-
ing the DE optimization process intended to improve its
profitability by searching for better settings of the five hy-
perparameters that govern the behavior of a ZIP trader.
The key novel result in this paper is that long-term on-
going instability of strategies does indeed routinely occur
in the ZIP markets, in much the same was as they did in
the PRZI markets: this is an indication that competitive
co-evolution in financial markets may lead to suboptimal
outcomes and with traders returning to earlier strategies
previously superseded by subsequent adaptive improve-
ments, even when those traders are “super-human”.

In short, the results presented here demonstrate that
the co-evolutionary Red Queen dynamic identified by Van
Valen (1973) can manifest itself in these accurately mod-
elled financial markets, with traders constantly adapting
purely to stay where they are (in terms of profitability) as
the trading-strategy landscape they adapt to and operate
on continuously shifts under their feet. This casts major
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doubts on claims that, in virtue of the competition among
market participants, the market’s current distribution of
strategies can be expected to be “efficient” for any reason-
able definition of efficiency, and bolsters the argument for
thinking not in terms of the Efficient Markets Hypothesis
(see e.g. Fama (1970)), but rather in terms of the Adaptive
Markets Hypothesis of Lo (2004, 2019).

Section 2 of this paper presents further background
details, sufficient to explain the ABM simulation exper-
iments reported here: the text of Sections 2.1 and 2.2 is
reproduced essentially verbatim from an earlier paper by
Cliff (2023c) and can be skipped over by any readers al-
ready familiar with the background to this work. Having
covered the relevant background, the design of the experi-
ments conducted here to explore the effect of coevolution
on strategy stability is explained in Section 3, and then key
illustrative results from the comparative experiments are
visualized and analyzed in Section 4. Sections 5 and 6 then
offers discussion of further work and draw conclusions,
respectively.

2. Background

2.1. Markets, Exchanges, and the Limit Order Book

The introduction of automated trading systems in con-
temporary financial markets around the world has already
been discussed in sufficient depth in Section 1. Neverthe-
less, to fully explain the simulation experiments reported
here to readers unfamiliar with financial markets, it is
necessary to first introduce some standard terminology.

A market in any one type of tradeable asset (e.g a par-
ticular commodity or security or currency) is centered
on a process by which traders in that asset can interact
to identify potential counter-parties for a trade and then
agree a price that both sides of the deal consider to be ac-
ceptable. While some important markets are organised
around decentralized networks of traders interacting with
each other via phone calls or computer messaging (which
are known as Over-The-Counter or OTC markets), very
many major financial markets around the world involve
the traders interacting via platform offered by a centralized
exchange. Such an exchange will typically accept quotes
(or orders) from potential buyers and potential sellers –
a buyer’s order will name a quantity and a per-unit bid-
price (the maximum price the trader is prepared to buy
for), while a seller’s order will name a quantity and a per-
unit ask-price (the minimum price this trader is prepared
to sell for). When a trader’s order is received at the ex-
change, it will be processed by the exchange’s matching
engine to see whether any earlier orders received at the
exchange and not yet matched with a counterparty are
compatible with the newly-arrived order. If one or more
earlier orders can be matched with the new order, then
a transaction will be recorded, the relevant traders will
be informed, and the transaction will be published on the
exchange’s tape, its publicly-viewable sequential record
of trades that have taken place. However, if the new order

cannot be matched with any previous orders already rest-
ing at the exchange, the new order will be added to the list
of orders resting at the exchange, in the hope that a later-
arriving order can be matched with it. Any unmatched
order rests at the exchange until they are cancelled by the
trader that originally sent them – the cancellation can be
issued by the trader, or instead sometimes cancellation
criteria are sent at the same time as the order is issued to
the exchange, and the exchange’s matching engine auto-
matically cancels the order when the criteria are reached
(e.g., orders may be specified to be automatically cancelled
after a certain time-period has elapsed). After a new order
is added to the exchange’s list of resting orders for some
asset, a summary of that list is made publicly available, by
the exchange posting an updated version of that asset’s
Limit Order Book (LOB).

The LOB summarises and anonymizes the lists of cur-
rently resting bid orders and ask orders: the LOB can be
thought of as a tabular data-structure, divided into two
“sides” – the bid-side and the ask-side. Both sides are
themselves tabular, with a nonempty row for each unique
price at which a currently resting order exists, and with
the data item at that row being the total quantity bid or
offered at that price. The two sides of the LOB are each
then sorted into order of descending goodness of price, i.e.
bids are ordered highest-to-lowest, and asks are ordered
lowest-to-highest, so that at the “top of the book” traders
can see the current best bid price (and the quantity avail-
able at that bid price) and the current best ask price (and
the quantity available at that ask price). The difference
between the best bid price and the best ask price at any
one time is known as the spread, and the arithmetic mean
of the best bid and ask prices (i.e., the mid-point between
the two) is known as the mid-price, the usual single-value
summary of the market’s current price. If a new order
arrives at the exchange that is a bid with a price higher
than the best ask, or an ask with a price lower than the
best bid, that order is said to have crossed the spread and
the exchange’s matching engine then pairs the new order
with the order(s) at the top of the book that have just been
crossed, removing those orders from the top of the book
and recording details of the transaction.

Whole books have been written on the dynamics of LOB-
based financial exchanges (see, e.g., Abergel et al. (2016)).
Traders interacting with a LOB-based exchange may seek
to analyse the whole LOB (see e.g. Cont et al. (2021)), or
perhaps instead will only look at the top of the book. In
the simulation experiments reported in this paper, a long-
established open-source detailed and accurate simulation
of a LOB-based financial exchange, written in Python, has
been used: this is the BSE simulator, described in more
detail in Cliff (2012, 2018). BSE has been used as the un-
derlying simulation platform for a number of research
publications by various authors over recent years.

Simulating an ABM of a contemporary financial market
running on a LOB-based exchange requires not only an
accurate model of the exchange’s internal mechanisms,
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but also gives rise to a manifest need for plausibly realistic
models of the traders active in that market. Such model
traders have been developed and validated by reference to
work in Experimental Economics, discussed next.

2.2. Experimental Economics

One of the recipients of the 2002 Nobel Prize in Economics
was Vernon Smith, in recognition for his part in pioneer-
ing and developing the research field known as Experimen-
tal Economics. In this field, researchers create carefully-
designed laboratory experiments in which human subjects
play the role of traders interacting via some market mech-
anism, or auction, and the experimenter can control the
supply and demand schedule (SDS), which defines the mar-
ket’s supply and demand curves. As will be familiar to
anyone with a high-school level of economics education,
the supply and demand curves relate prices of bids/asks to
the quantities available at those prices, and the intersec-
tion of the two curves gives the market’s equilibrium price
(denoted here by P0) and equilibrium quantity (Q0).

Technically, economists use the word auction to refer
to the mechanism by which buyers and sellers interact to
discover and agree a mutually acceptable price for a trans-
action, and there are many types of auction. For instance,
the sole seller of a fine-art painting such as a Picasso will
often be matched with a sole buyer via a process known as
an ascending-bid first-price auction, often referred to collo-
quially as an English Auction; people who buy and sell on
eBay.com are familiar with a slightly different mechanism,
a second-price sealed-bid auction, because the buyer is who-
ever bid the most, but the price actually paid is whatever
the second-highest bid-price was; in the Netherlands, sell-
ers of tulip flower-bulbs start by announcing a high ask-
price, and gradually lower it until a buyer announces they
are willing to purchase at that price – this Dutch Auction is
technically a descending-ask first-price auction; and so on.
The one type of auction that has attracted the most atten-
tion from experimental economists is called the Continu-
ous Double Auction (CDA), a simultaneous superposition of
the English and Dutch auction mechanisms, in which any
buyer is free to announce a bid-price at any time, and any
seller is similarly free to announce an ask-price. One of
the primary reasons why the CDA has attracted so much
attention is that it is the mechanism implemented by LOB-
based financial exchanges around the world.

It is beyond the scope of this paper to survey or sum-
marise all research in experimental economics, but readers
are referred to Smith (1962, 2000) for samples of Smith’s
seminal work in this field. For the purposes of explaining
the experiments reported in this paper, it is sufficient to
introduce the kind of supply and demand curves used in
Smith’s very first set of reported experiments, which are
illustrated in Figure 1. This shows the supply and demand
curves for a market in which there are 11 buyers and 11
sellers, where each trader has been assigned the right to
buy/sell exactly one unit of the market’s tradeable asset,

Figure 1. Supply and demand curves for an experimental economics session,
of the style pioneered by Nobel-laureate Vernon Smith, in which there are
11 buyers and 11 sellers, each with an assigned limit price for a single unit
of the tradeable asset. The schedule of seller limit prices determines the
supply curve and similarly the schedule of assigned buyer limit prices
determines the demand curve. The two stepped curves intersect at the
equilibrium point (EP), giving an equilibrium quantity (denoted Q0) of 5 and
an equilibrium price (denoted P0) of 200. Traders with assigned limit-prices
to the left of the EP are referred to as having intramarginal limit prices,
while traders whose limit-prices lie to the right of the EP are extramarginal.
The maximally intramarginal traders are seller So0 and buyer B10, while
the maximally extramarginal traders are the seller S10 and the buyer B00.

and where each buyer and seller have been assigned a limit
price: the price beyond which a buyer cannot pay, and the
price below which a seller cannot sell. Traders in the mar-
ket are free to try to get a better price than their limit price:
e.g a seller with a limit of $2.00 could agree a transaction
at a price of $2.50 with a willing buyer, and walk away with
a profit of $0.50; or a buyer with an assigned limit price
of $2.00 could agree a transaction at a price of $1.50 and
then that buyer would also make a profit of $0.50; and, in
both cases, we could say that the trader is quoting a price
that differs from their limit price by a margin (in this ex-
ample, the margin is 25% in both cases: the seller creates
an ask-price by increasing the the baseline limit price of
$2.00 by 25%; the buyer creates a bid-price by decreasing
the $2.00 limit-price price by 25%). One of the key find-
ings of Smith’s early experimental work (such as Smith
(1962)) was that competition within the CDA among small
numbers of traders, such as the 11 buyers and 11 sellers
populating the market of Figure 1, was sufficient for the
time-series of transaction prices in the market to converge
on the theoretical equilibrium price P0 given by the inter-
section of the supply and demand curves – prior to Smith
publishing his results, it had been widely believed that
much larger number of traders would be required for a
market to show reliable and stable equilibration behavior.

Research in experimental economics by Smith and oth-
ers over the 1960s, 70s, and 80s produced a large body
of results illustrating the behavior of human traders in
the CDA and various other auction mechanismss, via care-
fully structured and controlled laboratory experiments.
Initially, the experiments involved humans interacting in
minimal versions of the face-to-face open outcry trading
pits that had formed the nexus of major national financial



 | 35th European Modeling & Simulation Symposium, EMSS 2023

exchanges for more than a hundred years. But over time
the experimental economists, like the real market practi-
tioners, transitioned to basing their market interactions
on networks of trader terminals, PCs that could be used to
display market information and to input orders to a central
exchange computer. Once the experiments were taking
place on computer networks, it became possible to replce
a human trader sat at a trader terminal with a software
system doing the same job, i.e. receiving inputs of market
data and producing outputs of orders sent to the exhange.
This then enabled the groundbreaking work of Gode and
Sunder (1993) whose seminal paper on zero-intelligence
automated traders, introducing ZIC, was discussed in Sec-
tion 1. Again, for reasons of brevity, no more will be said
here about ZI traders in general, but to understand the
experiments reported in Section 4 we do need to briefly
explain more details of the ZIP trading strategy, which
was demonstrated in 2001 by the IBM team to consistently
outperform human traders (and is hence, in that limited
sense, “super-human”), and which is extended in the
experiments reported here.

2.3. ZIPDE: ZIP with Differential Evolution

For the purposes of this paper, it is sufficient to note that,
as defined in Cliff (1997), any one ZIP trader is, at any one
time, designated either as a buyer or a seller. ZIP is an
adaptive trading strategy: its internal mechanisms imple-
ment a simple (and hence computationally inexpensive)
form of machine learning (specifically, the Widrow-Hoff
Delta Rule with momentum, which is also at the heart of
back-propagation-based deep learning neural networks).
A ZIP trader with index i maintains a time-varying mar-
gin, denoted by µi(t). ZIP trader i’s initial margin value
|µi(0)| ∈ [0, 1] ∈ R (µi(0) ≤ 0 for buyers, and ≥ 0 for
sellers) is one of the five hyperparameters that determine
the nature of its adaptivity while it is trading: the other
four are a learning rate denoted by βi ∈ [0, 1] ∈ R; a mo-
mentum (damping) term denoted by γi ∈ [0, 1] ∈ R; and
two real-valued constants cai and cri , each also within
the range [0, 1] (but expected to be much closer to zero
than to one), that are used in calculating that trader’s
target price, i.e. the price it is aiming to get for the cur-
rently assigned trade. Thus any one ZIP trader i’s adap-
tive trading behavior is set by the five-dimensional vector
V⃗i = (|µi(0)|,βi,γi, cai , cri )⊤ ∈ [0, 1]5 ∈ R5 and hence each
ZIP trader’s V⃗i can be thought of as a point in the five-
dimensional phase-space for that individual trader. It is
important to note that in the limit case of βi = 0 no adap-
tation takes place at all in trader i and hence the other four
hyperparameters then play no causal part in that trader’s
behavior; i.e., for the full set of hyperparameters to be
potentially shaping the ZIP trader’s activity, βi must be
greater than zero.

As was first demonstrated a more than 20 years ago (see
e.g. Cliff (2001, 2009)) the setting of these hyperparame-
ters for each ZIP trader in a market affects the dynamics

of that market, it is possible to use evolutionary compu-
tation methods, such as an appropriate genetic algorithm
(GA), to find vectors of hyperparameter values that op-
timize particular measures of market dynamics, such as
the root mean square deviation of transaction prices from
the theoretical competitive equilibrium price – a measure
introduced by Smith Smith (1962) and popular ever since.
However, the GA-based studies of Cliff (2001, 2009) con-
centrated on finding a single vector of hyperparameter
values that could be cloned across all ZIP traders in the
market, to give some desired overall market dynamics.
Such an approach makes sense in applications such as
market-based control (see e.g. Clearwater (1996)) but is
not a realistic prospect as a model of actual real-world fi-
nancial markets, in which each individual trading entity
is privately attempting to maximise its own profitability,
and is unlikely to ever share with competitors its own lo-
cal information about the most profitable hyperparameter
vectors, because such information constitutes much of
that trader’s competitive advantage.

To better model the dynamics of real financial markets,
in the experiments reported here each ZIP trader in the
market operates an evolutionary optimizer, continuously
attempting to improve its profitability by altering one or
more of its five hyperparameter values: the point in 5-d
phase-space is now time-varying, and hence properly de-
noted by V⃗i(t) = (|µi(0)(t)|,βi(t),γi(t), cai (t), cri (t))⊤. The
evolutionary optimization method used here is differential
evolution (DE: see e.g. Storn and Price (1997); Price et al.
(2005); and Bilal et al. (2020)), which has repeatedly been
demonstrated to be a very successful approach on a wide
range of challenging problems across multiple application
areas, and is commonly described as a leading-edge evo-
lutionary optimization technique.

To distinguish this version of ZIP from its non-
optimizing predecessor, we’ll call this ZIPDE (ZIP with
Differential Evolution, pronounced zip-dee). Each
ZIPDE trader maintains its own private population of
k different individual hyperparameter vectors, denoted
V⃗i,1, V⃗i,2, . . . , V⃗i,k, and evaluates each of those k vectors se-
quentially, trading with each for a specified period of time
Teval,i and noting the profitability scored over that period:
thus, after kTeval,i seconds all k of the V⃗i,j hyperparameter
vectors have been evaluated. Note that in the DE research
literature, the population size which is here denoted by k
(for compatibility with the research literature on k-armed
bandits such as Gittins et al. (2011); Slivkins (2021)) is
conventionally denoted by NP for “number in population”.

In brief, DE as implemented here in each ZIPDE trader,
operates iteratively, endlessly looping through a short se-
quence of actions: first, four distinct (non-identical) indi-
viduals are selected from the trader’s population, which
will be denoted here by V⃗a, V⃗b, V⃗c and V⃗d; then a new vec-
tor denoted here as V⃗e is created, via an adaptive step of:
V⃗e = V⃗b + F.V⃗∆, where F is a DE hyperparameter known as
the differential weight, with F ∈ [0, 2] ∈ R; and where V⃗∆
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is the difference vector: V⃗∆ = V⃗c – V⃗d. After this, a new can-
didate vector V⃗new is created by working along the length
of the vector and setting each element at index i in V⃗new,
denoted by V⃗new,i, to be a random choice of either the el-
ement V⃗e,i with probability CR or the element V⃗a,i with
probability (1 – CR), where CR is the crossover probability
hyperparameter, CR ∈ [0, 1] ∈ R. Finally, there is the selec-
tion step in which the fitness (here, profitability) of V⃗new
is evaluated and its fitness is greater than or equal to the
fitness of V⃗a then V⃗a is deleted from the population and
replaced by V⃗new; but if the fitness of V⃗new is less than that
of V⃗a then V⃗new is discarded and V⃗a remains untouched in
the population. After the comparison of fitness values for
V⃗new and V⃗a and any consequent adjustment to the pop-
uation is done, the DE loop is over and it iterates back to
randomly selecting another set of four distinct vectors
from the population, and continues on iterating around
this cycle forever.

As discussed previously in Cliff (2022b), it seems that al-
most the entire DE literature has been devoted to working
on stationary optimization problems in which the under-
lying fitness landscape is fixed, constant, and hence in
which it is desirable for the evolutionary process to con-
verge on a local (and preferably global) optimum solution,
and then stay just there forever more. Admittedly there
are lots of engineering problems for which the assump-
tion of this kind of fitness-landscape stationarity is not a
problem, but for co-evolutionary systems such as those
studied here, it is totally wrong. In the specific instance of
DE as used here, as one trader’s local population converges
on a particular solution vector, the length of the difference
vectors V⃗∆ shortens to be very small, at which point the
DE adaptive step reduces to V⃗e = V⃗b + ϵ for some small
noise-level ϵ that is the residual near-zero value of F.V⃗∆,
and after a few iterations of that, the entire population
becomes so heavily converged that all V⃗∆ values are ≈ 0.0
and so differential evolution grinds to a halt.

To counter this, in the experiments described here,
I added an anti-convergence mechanism which detects
when a trader’s local population is too converged, and then
selects one individual vector from the population at ran-
dom and adds mutations (zero-mean Gaussian noise) to
each element of the vector. Very often, the mutated indi-
vidual will have lower fitness than the un-mutated orig-
inal individual and so will later be eliminated from the
local population in the DE selection step; but every now
and again, the mutations bring variation that does con-
fer added fitness, possibly because the fitness landscape
has altered, due to ongoing adaptations and changes in
behavior of other traders within the market.

The measure used here to detect convergence is
straightforward. For a trader with a local population P
of k vectors s.t. P = {v1, v2, . . . , vk}, with |vi| = D ∀i
(here, D=5), at each index j within the vector – i.e., at
each locus on the vector, denoted as vi,j for locus j on in-
dividual i – first calculate the population locus mean as

µj = 1
k
∑k

i=1 vi,j and then the population locus standard de-
viation as σj = ( 1

k
∑k

i=1(vi,j – µj)2) 1
2 . Next, calculate the

population locus coefficient of variation CoVj = σj/µj, and
finally (because the CoVj values are ratio measures) cal-
culate the population geometric mean CoV for locus j, de-

noted here by GMCj, as: GMCj =
(∏k

i=1 CoVj
) 1

k and then if
any GMj < ϵ for some small threshold level of mean CoV
(e.g. for 2.5%, use ϵ=0.025), declare the population to be
converged and add a mutation, as described above.

3. Experiment Design

As the key question being explored here is whether the
co-evolutionary process is the cause of the observed strate-
gic instabilities, the experiments reported here were de-
liberately designed to make it as easy as possible for the
evolutionary process to settle onto a stable equilibrium,
by configuring the BSE simulator to eliminate all other
sources of variation. This means that the experiments
reported here are deliberately unrealistic in comparison
to real markets, but by clamping down on all sources of
variation found in real markets we can directly observe
any effect that the coevolutionary dynamic has on the sta-
bility of strategies in the simulated market – something
that is manifestly impossible in a real market scenario –
and it is intuitively obvious that introducing more sources
of variation, to make the experiment scenarios closer to
those of real-world markets, would only serve to introduce
unwelcome confounding factors.

To this end, the assignments issued to the traders were
all drawn from the single, fixed, symmetric supply and
demand schedule (SDS) for NT = 22 traders (11 buyers and
11 sellers) as illustrated in Figure 1: this means that the
market’s equilibrium price P0 and quantity Q0 were con-
stant for the duration of each experiment, and that any one
trader i was issued with the same limit price λi in every sin-
gle assignment over the whole experiment (but different
traders had differing fixed values of λi). By convention, the
expected profitability of each trader is determined by the
difference between their limit price(s) and P0, and hence
the expected profitability is zero for the 50% of traders in
the market that are issued with extramarginal limit-prices.
And so, while some extramarginal traders might get lucky
and make a profitable trade on an occasional assignment
(in just the same way as some intramarginal traders might
occasionally suffer bad luck and fail to make a profitable
trade for a particular assignment), in the long run the ex-
tramarginal traders get no useful fitness/pps feedback,
and are ignored in the discussion that follows. For brevity,
in Section 4 of this paper we focus only the results for a
single trader, the maximally intramarginal seller, denoted
by S00 in the SDS of Figure 1: the choice of buyer or seller
here is abitrary, and without loss of generality; the max-
imally intramargin trader is of interest because they are
most likely to succeed in transacting every assignment
issued to them, and so get the richest stream of ppsfitness
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signals from the market – put simply, if any trader is going
to evolve to a stable optimum strategy, it is a maximally
intramarginal one.

In all experiments reported here, BSE was configured to
allow continuous round-the-clock trading for a single very
long market session, lasting 365 days. BSE approximates
continuous real-time via discrete time-slicing at a resolu-
tion of 1/NT per timestep, such that each trader reacts to
market events on average once per second. Fresh assign-
ments were issued to the traders via a random process that
averaged 15 seconds between assignments, so the expected
number of assignments per trader is four per minute. As
the maximally intramarginal traders would be expected
to execute a transaction on almost every assignment they
are issued with, the total number of transactions that S00
can be expected to execute in any one 365-day experiment
is very close to 365 × 24 × 60 × 4 = 2, 102, 400.

For each trader i, the strategy evaluation time for the
duration of the experiment was set to be some number of
seconds draw from a uniform distribution between two
and three hours (i.e., Teval,i = U(7200, 10800)) – this is to
avoid the kind of synchronisation artefacts highlighted
by Huberman and Glance (1993) when all individuals in a
simulation update at the exact same time.

For ease of comparison with prior work using differen-
tial evolution to co-evolve simpler trading strategies in
BSE, I used the simplest form of DE (known in the litera-
ture as DE/rand/1) with NP=k=4, F=0.6, and CR=0.9.

With the constant equilibrium P0 and Q0 given by the
unchanging SDS, the ZIP algorithm turns out to be some-
what over-specified for such an unrealistically unchang-
ing environment: rather than spend any time at all learn-
ing what margin is most appropriate to the given circum-
stances (which will, of necessity, involve learning from
mistakes, from situations where the margin could be im-
proved upon in future), instead the most profitable ap-
proach is to disable learning by setting βi = 0.0 and instead
relying on the initial margin µ(0)i to evolve via DE to be
whatever value is most profitable without being so high as
to be rejected by the counterparty side – this means that
the evolved ZIPDE intramarginal trader’s very first quote
for any assignment will be near or at the best possible price
for that trader given the unchanging P0, Q0, and λi values,
but will be in part dependent on the prices quoted by the
other traders in the market on the basis of their limit prices.
For this reason then, in Section 4 we concentrate only on
the values of β, on whether they evolve to zero or not.

The outcome of any one 365-day experiment is un-
certain, given the multiple points in the system where
randomly-generated values are injected, and so it is neces-
sary to run multiple repetitions of each experiment, with
only the seed value of the system’s random-number gen-
erator(s) being varied, to give multiple independent and
identically distributed (iid) experiment outcomes from
which summary statistics can then be calculated.

In Section 4 results are presented from multiple iid rep-
etitions of two experiment designs. The first design is

referred to as Evolve-1, because in that design only a single
trader (the maximally intramarginal seller, S00) is oper-
ating ZIPDE as described above – all other traders in the
market are each running the standard ZIP strategy with no
DE at all, no evolution of hyperparameter values, instead
using hyperparameter values that are constant for any one
experiment, fixed at initialization of the trader, using the
standard BSE default distributions to set those values. In
the second design, referred to as Evolve-All, ZIPDE as de-
scribed above is being used simultaneously by every trader
in the market. Thus, in the Evolve-1 experiments, there
is no co-evolution and the expectation is that DE will con-
verge the sole evolving trader’s βi value to zero, or near-
zero values given the anti-convergence measure explained
above, and for that convergence to be stable (i.e., once
βi ≈ 0, it stays ≈ 0 for the remainder of the experiment).
The non-co-evolutionary Evolve-1 experiments provide
baseline reference data for evaluating the co-evolutionary
Evolve-All experiments: if we see stable evolution to βi ≈ 0
in Evolve-1, and we do not see comparable stable evolution
in the Evolve-All experiments, then given that the only dif-
ference between Evolve-1 and Evolve-All is the presence or
absence of co-evolution, it is reasonable to conclude that
the coevolutionary dynamic has destabilised the market,
leading to a failure of the population of traders to reach
and maintain optimum βi values.

4. Results

Figure 2 shows the results for S00’s profitability (pps:
profit per second) and βS00 values over ten iid repetitions
of the 365-day Evolve-1 simulation experiments.

The outcome of each experiment is classified as one of
converged, wandered, or missed, by calculating a simple
moving average β̂(t) of the last 12 β values (i.e., the past
24-36 hours, depending on the trader’s specific value of
Teval,i) and declaring β̂(t) to be near enough to zero as to
be considered optimal if β̂(t) < ϵβ for some suitably small
value of ϵβ: Figure 6 uses ϵβ = 0.05. The sequences of
timesteps on which β̂(t) is optimal in this sense are identi-
fied, and if there are no such sequences in the β time series
then the experiment’s outcome is classified as missed; if
instead there are periods across the 365 days where β̂(t) is
optimal, but the value of β̂(t) is non-optimal at the end of
the experiment, then the outcome classification is wan-
dered; while if β̂(t) is optimal at the end of the experiment,
the experiment is classified as converged.

As can be seen in Figure 2, in seven of the ten exper-
iments the outcome is converged. In total, 50 Evolve-1
experiments were run: of which 36 (72%) converged; 10
(20%) wandered; and 4 (8%) missed. Figure 3 shows the
mean and standard deviation of β across the whole set of
n=50 Evolve-1 experiments: Including experiments clas-
sified as wandered and failed masks the extent to which
β̂ approaches zero in the converged experiments, but this
does serve to summarise the entire population of experi-
ments. See Cliff (2023a) for visualizations of all 50 Evolve-1
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Figure 2. Results from ten iid repetitions of the 365-day ZIPDE Evolve-1
experiment. Results from each single experiment are presented as a pair
of time-series graphs for S00, the maximally intramarginal seller in the
market: the graph labelled PPS (Profit Per Second; blue datapoint markers)
vertically above the graph labelled Beta (the ZIP learning rate β). The Beta
graphs are color-coded to indicate whether the outcome is classified as
converged (green), wandered (yellow) or missed (red). In all graphs, the
horizontal axis is time in days; the vertical axis is units of currency for PPS,
and for Beta is the dimensionless real value β ∈ [0.0, 1.0] ∈ R. Of these ten
repetitions, in seven S00’s value of β stably converged to near-zero values,
which is the optimal solution given the highly constrained nature of the
Evolve-1 experiment. See text for further discussion.

Figure 3. Average β values for S00 in all n=50 iid 365-day ZIPDE Evolve-1
experiments: this is the ten shown in Figure 6, plus results from an addi-
tional 40 repetitions shown in Cliff (2023a). Data-points are the arithmetic
mean recorded at the end of each day; error-bars show plus and minus one
standard deviation at the end of each week. See text for further discussion.

Figure 4. Scatter-plot showing the distribution of S00’s pps-β pairs in
the ten iid 365-day ZIPDE Evolve-1 shown in Figure 2. See text for further
discussion.

experiments conducted, and for summary time-series of
only the converged results.

Visual inspection of the paired pps and β plots in Fig-
ure 6 shows thatpps reaches its highest values whenβ ≈ 0,
as predicted. The relationship betweenβ andpps is further
illustrated in the scatter-plot of Figure 4: peak pps values
in the range [6.0, 8.0] are very tightly clustered around
β = 0, and as β → 1.0, pps values rapidly fall to lie mainly
in the range [2.0, 4.0].

As Figure 5 shows, the pps-β scatter-plot from ten
Evolve-All experiments is qualitatively very similar to that
from the ten Evolve-1 experiments of Figure 4. Again we
see a band of the highest pps values when β ≈ 0, as pre-
dicted, with a rapid fall-off to a band of lower pps values
once β > 0. But this similarity in pps-β outcomes is only
superficial: as is clear from Figure 6, the time-series of β
values in all of the Evolve-All experiments is much more
volatile, with β ≈ 0 being reached in nine of the ten experi-
ments but then wandering away to higher values such that
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Figure 5. Scatter-plot showing the distribution of pps-β pairs in the ten
iid 365-day ZIPDE Evolve-All experiments as shown in Figure 6. See text
for further discussion.

by the end of the 365 days, only one of the ten experiments
finishes converged with β ≈ 0.

Figure 7 then shows the mean and standard deviation
of results from n=50 converged Evolve-All experiments:
the ten from Figure 6 plus another 40 from experiments
shown in Appendix B: of these 50, 16 (32%) converged; 18
(36%) wandered; and 16 (32%) missed. That is, switching
from single-agent evolution to multi-agent co-evolution
roughly halves the frequency of stable convergence.

5. Discussion and Further work

Intuitively, a likely story for explaining for the lack of
strategy-space stability seen in the co-evolutionary ZIPDE
markets is that a change in the strategy of one agent a1
somewhere within the market triggers a response, a reac-
tive change, in the strategies of one or more other agents
in {a2, . . . , aNT } and this chain of actions-and-reactions
eventually affects a1 causing a fresh reaction in a1, and
this cyclic network of causal interactions then continues
forever. One avenue for further research is to develop ana-
lytical tools that can be more precise than this hand-wavy
narrative: as we have total control over the simulations,
we should be able to work through each timestep of the
system and identify exactly when and what change in the
strategy of some agent ai then caused subsequent reactive
changes in the strategies of some number of agents aj̸=i.
Untangling this what-caused-what in a network of inter-
acting nonlinear units is a problem that is probably best
addressed by use of Granger Causality (see e.g. Granger
(1969); Shojaie and Fox (2022)), a technique developed for
econometrics but which has also found great use in under-
standing causal patterns of activity in neural systems (see
e.g. Seth et al. (2015)). There are also clear similarities with
theoretical physics studies of spin-glass systems, such as
the Ising-Lenz model (see e.g. Cipra (1987)), and with
studies of cascades and epidemics on abstract networks
(e.g. Watts (2002)). And, of course, there is a long history

Figure 6. Results from ten iid repetitions of the 365-day ZIPDE Evolve-
All experiment. Format is the same as for Figure 2. The optimum value
of β = 0.0 is missed in three experiments (red datapoint markers), is
reached at some point over the duration of the year in the remaining seven
experiments, but six of those seven then wandered, failing to hold stable at
β = 0.0 (yellow datapoint markers), and only one experiment converged
and finish the year with β ≈ 0.0 (green datapoint markers). All nine
of the missed and wandered outcomes show wide swings in β occurring
at unpredictable times over the duration of the experiment. See text for
further discussion.

Figure 7. Average β values in n=50 iid 365-day ZIPDE Evolve-All experi-
ments: this shows results from the ten experiments illustrated in Figure 6,
plus an additional 40 experiments, the results from which are illustrated
in Cliff (2023a). Format as for Figure 3. See text for further discussion.
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of mathematical modelling of co-evolutionary processes in
the theoretical biology literature (see e.g. Maynard Smith
(1982); Thompson (1994); Hofbauer and Sigmund (1998)).
There are many publications in these research fields, all
of which can potentially be drawn upon to give better un-
derstanding the dynamics of co-evolving ZIPDE networks:
there is a fair amount of work to be done here, and any
progress in this direction will be reported in future papers.

Another direction for further work would be to explore
whether any of the many variants of DE is for some reason
more stable in the co-evolutionary context than the “plain
vanilla” DE/rand/1 variant used here (for a comparative re-
view of DE variants, see Georgioudakis and Plevris (2020)).
For example, Herbert (2023) has very recently published
promising preliminary results for using JADE (Zhang and
Sanderson (2009)) in the context of co-evolving PRZI
traders, and so an obvious next step is to re-run the exper-
iments here using JADE instead of DE/rand/1.

6. Conclusion

This paper has reported the first ever results from ex-
tensive long-term simulations of co-evolutionary adap-
tive markets populated by ZIPDE traders, and has demon-
strated that ZIPDE markets show qualitatively the same
kind of unstable dynamics in strategy space as had been
reported in previous studies where simpler trading strate-
gies (e.g. PRZI) were co-evolving using less sophisticated
evolutionary adaptation mechanisms (e.g., stochastic hill-
climbing rather than DE). The simulation experiments
reported here involved traders engaging in many millions
of transactions over the course of each one-year contin-
uous market session simulated at sub-second resolution,
and the design of the experiments was deliberately con-
strained: eliminating all controllable sources of variation
to give the clarity of a straightforward A/B test of evolution
vs. co-evolution. The results show clearly that while sim-
ple single-agent evolution leads to stable outcomes in the
scenarios studied here, co-evolution leads to instability.

Thus, the results presented here establish that even
when using leading-edge evolutionary optimization tech-
niques such as DE, operating on “super-human” trading
strategies such as ZIP, the co-evolutionary Red Queen dy-
namic of Van Valen (1973) manifests itself, with traders
constantly adapting and counter-adapting in strategy-
space just to stay where they are in terms of profitability.
Several avenues of further interesting research have been
discussed here, and results from exploring those issues
will be reported in future papers. The Python source-code
used for the simulations reported here is freely available
as open-source on GitHub (see Cliff (2012)), to allow other
researchers to readily replicate and extend this work.
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