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Abstract 
Agriculture is a key driver of global biodiversity and economy. In the recent years, the over-exploitation of water resources, 
climate change and pollution have led to a global water crisis, exposing the agricultural sector to significant risks in both the 
short and long term. For these reasons, the development, and the optimization of the technologies to efficiently manage the water 
consumption are the main weapons to reduce the impact on this valuable resource. The main aim of this study is to assess the 
application of a digital model (DM) to agricultural operations to ensure the correct supply of water and nutrients to crops, 
minimizing the consumption of resources and increasing the efficiency of the water management. The simulation model of an 
irrigation network has been developed on Flownex, a 1D, concentrated-parameter fluid dynamics simulation software dedicated 
to network simulations. To model the drip irrigation system a specific characterization was carried out through fluid-dynamic 
simulation (ANSYS Fluent). The developed tool has emerged as an evaluable solution to apply the benefits of DT to agricultural 
applications. Indeed, the DM can reliably predict the performance of the system in terms of water distribution considering 
different operating conditions. 
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1. Introduction

The main challenge for agriculture is to combine 
technology and digitalization with the tradition to 
achieve a balance between productivity, sustainability, 
and nutritional food availability (Abbasi et al., 2022). In 
the recent years, valuable resources such as water, soil 
and biodiversity have been overexploited and climate 
change and pollution have led to a global resource 
crisis. As a result, the agricultural sector is exposed to 
significant short and long-term risks (Okkan & 
Kirdemir, 2018). At the same time, the population 
growth is accelerating and according to FAO 
projections agricultural activities will need to produce 
almost 50% more food than in 2012 (Food and 
Agriculture Organization of the United Nations, 2023). 

In this context, the adoption of smart agricultural 
practices can significantly increase food availability 
and security, reduce resource consumption and 
production costs (Javaid et al., 2022). Also, considering 
the effects of climate change, the development and 
optimization of technologies for the efficient 
management of water consumption are the main 
weapons to reduce the impact on this precious resource 
(Ingrao et al., 2023). 

Starting from the review of the main technologies 
reported in the scientific literature, the low prevalence 
of digital twins (DT) for modeling agricultural water 
distribution and collection network was emerged 
(Purcell et al., 2023). The digital twin (DT) is an 
accurate digital representation of a real product, 
process, or a complex system (Cesco et al., 2023). 
Currently, DT is widely used in many disciplines such 
as manufacturing, automotive, aerospace, 
construction, smart cities, and energy sector (Zayed et 
al., 2023). According to (Purcell & Neubauer, 2023) 
there are three different data integration level between 
digital representation and real entity. The first level, 
called Digital Model (DM), is only a digital 
representation of the physical system, the Digital 
Shadow (DS) is the DM able to receive data from the real 
system autonomously and DT is the DS that can 
transfer information to the physical system. 

The main aim of this study is to assess the 
application of DM to agricultural operations, in order to 
ensure the correct supply of water and nutrients to 
crops, minimizing the consumption of resources and 
increasing the efficiency and sustainability of water 
use. The developed digital model (DM) has been tested 
and validated in the living labs and the future 
development will allow to carry out the link between 
the simulation model and intelligent IoT systems in the 
field to implement the DT of the irrigation network. 

In the next section, a state of the art is reported with 
the aim of analyzing the technologies for optimizing 
water management and DT application in the 
agricultural sector. Section 3 presents the description 
of the living lab, while section 4 highlights the details 
of the digital model developed and the results of the 

testing and validation of this model. 

2. State of the art

A review of the scientific literature was carried out with 
the aim of performing an analysis of qualitative and 
quantitative methods for optimizing water use in 
agriculture. In (Benyezza et al., 2023), external 
conditions of the plant have been monitored to 
optimize the water management, such as the 
assessment of the soil and environmental conditions. 
Alternatively, the evaluation of the intrinsic plant 
parameters, such as the sap ion concentration, can be 
used to directly monitor the crop requirements (Vurro 
et al., 2019).  

In order to monitor agricultural operations, there 
are several challenges that need to be overcome, 
namely the huge amount of data (input and output) 
that needs to be collected, transferred, processed, and 
stored, the lack of power supply and a proper internet 
coverage network in the field (Codeluppi et al., 2020). 
In this regard, IoT technologies and a low-power wide-
area network (LoRaWAN) can provide some advantages 
to this, as they are characterized by low power 
consumption (LPWAN), and they can provide long-
range communication in the open field without 
Internet access (Peña Queralta et al., 2019). In (Angin et 
al., 2020), a smart agriculture framework using 
LoRaWAN for field devices and artificial intelligence for 
drone image processing has been implemented to 
prevent and detect plant diseases and drought stress. 
The proposed framework can help farmers to reduce 
resource consumption and production costs, 
improving crop yield and nutritional value of the crop. 

The authors of (Preite et al., 2023) analyze the 
impact of the innovative strategies on reducing water 
consumption. They show that there are few studies that 
provide quantitative data to quantify the positive 
impact of the technologies used. In addition, the 
integration of different information sources, such as 
sensors, satellites, weather stations, etc., can be used to 
implement control systems and machine learning (ML) 
algorithms that manage the irrigation system based on 
the evaluation of different parameters. The integration 
of the control system with a machine learning 
algorithm led to the prediction of the drought situation 
considering different scenarios.  

In (Pylianidis et al., 2021), a limited number of 
studies have been reported on the application of DT for 
water management optimization in the agricultural 
sector. Most of them, were developed from the FIWARE 
platform, an open-source technology for the 
implementing smart models in different disciplines. 

This gap is an indication that the benefits of the 
digital twin, widely employed in other sectors, have not 
yet been applied in agriculture. Indeed, in agricultural 
sector there are several challenges that DT should 
overcome, such as limited investment made by the 
small holders and a deep interaction between non-
living and living systems (Alves et al., 2023). However, 
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DT can reduce operating costs, provide detailed 
information on various parameters, predict several 
operating conditions to implement a decision support 
system, perform predictive maintenance to develop an 
appropriate maintenance strategy, and make the 
system safer and more energy efficient, but often these 
have not yet been demonstrated in agriculture (Attaran 
& Celik, 2023).  

As a result, considering the literature analysis, DT, 
the integration of different parameters, and machine 
learning algorithms may be the key to the development 
of autonomous robotic solutions that allow advanced 
mechanization and management of water resources 
based on the developed model. 

3. Materials and methods

3.1. Living lab description 

A living lab has been designed to develop and test the 
developed water management model in collaboration 
with Azienda Agraria Sperimentale Stuard, located in 
Parma (loc. San Pancrazio, Italy).  The pilot case study 
focuses on a tomato crop. The tomatoes (Solanum 
lycopericum L. Cv. HEINZ 1301) were grown according 
to organic methods and were irrigated using a drip 
irrigation system with drippers every 30 centimeters. 
Organic fertilization was applied to each row of 
tomatoes with N, P, K; the fertilization plan was 
completed with the application of bio-stimulants.  

The experimental tests were performed on three 
rows of tomatoes (referred to as experimental rows). As 
shown in Figure 1, for each experimental row, a 
different water management decision was assumed for 
each trial, namely the 100%, 60% and 30% of the 
conventional water requirement, respectively. This 
allows the water stress and the growing conditions of 
the crop to be assessed based on the water supply. For 
this reason, the three experimental rows were not 
adjacent to each other, but were separated by boundary 
rows to avoid any negative interaction between the 
different water management. 

As can be seen in Figure 1, the distance between the 
each experimental and boundary row is 1.5 m and the 
length of each experimental row is 88 m. The irrigation 
network has been constructed using the following 
components: 

• Pump
• Accumulator
• Pressure reducing valve
• Filters
• Flow meters
• Valves (ON/OFF)
• Soil Humidity sensors
• Pipes (1 inch diameter)
• Pipe junctions
• Pipe bends

• Drip irrigation system

Specifically, the drip irrigation system is characterized 
by a lightweight non-self-compensating dripline (1 
inch diameter) with integrated flat drippers. The 
nominal flow rate of each one is 1 liter per hour. 

Figure 1. Layout of the designed living lab 

3.2. Irrigation network modeling 

As can be seen, the irrigation network has been 
designed using both standard components (i.e., pipes, 
bends, junctions) and unconventional devices (i.e., 
drippers of the drip irrigation system). To design the 
DM, all these components were digitally reproduced. 
For the former, the data were taken from software 
libraries and technical data sheets. For the latter, a 
specific characterization was carried out through fluid 
dynamic simulation. 

The fluid dynamic properties of the pipes, bends, 
and junctions were set up using the Flownex® 
database. Specifically, a normal roughness for HDPE 
pipes (7 µm) was assumed for the pipes, while the 
normative ASME 16.9 was considered for the bends and 
junctions (ASME, 2023).  

With the aim of modeling the drippers, ANSYS 
FLUENT was used to reproduce their characteristic 
curve, i.e., pressure drop vs. flow rate. As shown in 
Figure 2, a physical model of the drip irrigation system 
was designed, and the fluid dynamic simulation was 
performed by setting valuable boundary conditions on 
the physical model. Indeed, the characteristic curve has 
been evaluated by varying the inlet velocity of the water 
and fixing the atmospheric pressure at the outlet 
section of the dripper.  
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Figure 2. Fluid dynamic simulation performed in ANSYS FLUENT 

As shown in Figure 3, the resulting characteristic 
curve was implemented into the Flownex® 
environment simulation to reproduce the behavior of 
the modeled component as a custom loss. 

Figure 3. Evaluated dripper characteristic curve (i.e., pressure drop 
vs flow rate) 

Finally, the boundary conditions of the model were 
set by evaluating the flow rate and pressure under 
different operating conditions. The flow rate and 
pressure data have been collected from the LoRaWAN 
meter and pressure gauge installed in the field, 
respectively.   

3.3. Flownex simulation environment 

The irrigation network model has been developed on 
Flownex®, a 1-D concentrated parameter fluid 
dynamics simulation software dedicated to thermal-
fluid network simulations. Flownex® is developed 
within an ISO 9001 and ASME NQA1 accredited quality 
system and it is also an extensively Validated and 
Verified (V&V) simulation software (Flownex, 2023).  

Thermal-fluid network analysis is based on the 
numerical solution of the governing equations of fluid 
dynamics and heat transfer. The software can solve the 
differential equations for mass (1), momentum (2), and 
energy conservation (3) to calculate the mass flow, 
pressure, and temperature distributions along a 
modeled network. For this purpose, it is essential to 

specify appropriate and realistic boundary and initial 
conditions for the modeled network (Sena & Hassan, 
2023).  

According to the Eulerian framework, the governing 
equations are: 

(1) 

(2) 

(3) 

Since in a mathematically complete system of 
equations the number of the equations must be equal to 
the number of the unknown variables, additional 
equations can be introduced. The unknown variables in 
most thermal fluid networks are flow velocity, 
pressure, and temperature. By solving the 
mathematical system for both steady-state and 
transient conditions, the software displays the 
distribution of these variables in various valuable 
formats. In addition, other processes, such as heat 
exchange or controller operation can be performed 
using a single environmental simulation. 

In particular, the differential governing equations 
and the additional closure equations were solved 
sequentially by Flownex® using a state-of-the-art 
implicit pressure correction solution method (IPCM) 
(Vikram et al., 2023). The flowchart describing the 
steps of this method is shown below in Figure 4. In this 
way, various parameters of the process can be 
evaluated and adjusted by acting on the number of 
iterations and on the convergence criteria for the 
solution.  

In the Flownex® environment simulation, 
elements, nodes, and boundary conditions can be used 
to create the basic building blocks to model a specific 
network. An element can be used to simulate a pressure 
drop or pressure rise component, such as a pipe or a 
duct and its length, an orifice, a fan, a pump, a valve, or 
other components. The characterization of a specific 
device can be combined with a secondary information, 
such as for example secondary pressure loss 
components (Zubair et al., 2021).  

To define the boundary conditions of a network, a 
boundary condition component associated with a node 
can be used. For the latter, the inputs can be the 
pressure, temperature, quality, enthalpy, mass source 
and volume flow. Since the software is based on solving 
the equations of conservation of mass, energy, and 
momentum, the inputs can only be in appropriate 
combinations (Flownex, 2023). 
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Figure 4. Implicit pressure correction solution method (IPCM) 
flowchart 

3.4. LoRaWAN network 

A LoRaWAN network has been implemented to monitor 
and control the irrigation system.  

The network consists of the following components: 

• Flowmeters to measure water flow periodically
(every 10 minutes) for each experimental row.

• Soil moisture sensors capable of assessing the
relative humidity, temperature, and soil
conductivity (Milesight EM500-SMTC, 2023).
They transmitted data every 10 minutes.

• Environmental sensor to monitor some
environmental parameters, such as temperature,
pressure, and C02 concentration (Milesight
EM500-CO2, 2023). At the same, the data is
collected every 10 minutes.

• On/Off hydraulic valves installed in each
experimental row to control the water supply
(MClimate T-Valve, 2023).

• Gateway provides the connection between the
above component and a cloud where the data is
collected and processed (Gateway LoRaWAN
Milesight UG67, 2023).

• Network Server (NS).

Specifically, the flowmeters, sensors and valve 
communicate with the gateway via LoRa. The gateway 
transmits the data to the NS over an IP-based network. 
At this level, the collected data is processed to test and 

validate the DM. In addition, future development will 
allow the connection between the NS and the DM to 
take a leap to develop a DT of the irrigation system. 

4. Results and Discussion

4.1. Digital Model development 

As can be seen in Figure 5, the digital reproduction of 
the irrigation network has been performed using the 
Flownex® component, the Flownex® database, the 
evaluated characteristic curve of the drippers, and the 
collected data. 

The DM provides the distribution of the water along 
the network by setting the following boundary 
conditions: 

• Flow rate of the header pipe

• Atmospheric pressure at the dripper outlet

4.2. Data Acquisition 

 The LoRaWAN devices installed in the field were used to 
monitor and collect the data on valuable parameters. 
Specifically, the flowmeters transmitted the cumulative 
value of the water supply every 10 minutes for each 
experimental row. This means that the flow rates have 
been calculated by dividing the transmitted values by the 
water supply period.  

In this way, the evaluated flow rate of the header pipe 
was used as a boundary condition to set up the digital 
model. In order to carry out the research activities, each 
experimental row is characterized by a different water 
supply, reflecting the assumed water management 
decision.  

4.3. Testing and validating of the digital model 

The developed DM was tested and validated 
considering different operating conditions. 
Specifically, four field tests were carried out during the 
2023 crop season. With the aim of preliminary 
evaluating different operating conditions, the water 
distribution along the network was monitored by 
varying the flow rate in the header pipe.  

In this step, the value of the header pipe pressure, 
and the flow rates for each experimental row were 
collected and the error between the simulation 
estimate and the measured parameters was calculated 
using the following equation (4): 

(4) 

As a result, the distribution of the evaluated errors is 
displayed in Figure 6. 
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Figure 5. DM of the irrigation network
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Specifically, the x-axis  shows the range of the 
errors considered, while the y-axis reports the 
number of defect occurrences for each indicated 
range. As can be seen, most of the error percentages 
are between 0% and 4%. Approximately, more than 
80% of the samples are characterized by an error 
within this range. This result indicates that the DM 
perform with a high degree of accuracy for the tests 
performed.  

Once the DT is developed, the DM will have to be 
tested and validated in order to evaluate and 
compare the accuracy with which it performs.  

4.4. Proposed framework for digital twin 

The proposed framework provides a solution for 
monitoring and controlling the water supply to the 
crop. As shown in Figure 7, the water supply 
adjustments will be performed by collecting the soil 
relative humidity (%RH) data to meet the applied water 
management decision for each experimental row. 
Specifically, the LoRaWAN valves will be 
activated/deactivated by comparing the acquired soil 
relative humidity value with the maximum and 
minimum control values set by the user. The latter 
parameters reflect the different water management 
decision and are set by evaluating the texture and the 
water capacity of the soil.  

In addition, the developed DM will be able to detect 
anomalous operating conditions by analyzing the fluid 
dynamic parameters. In this case an alarm message will 
be sent to the user to check and restore the performance 
of the network.  

Figure 7. Framework to control water supply for each experimental 
row 

5. Conclusions

Agricultural operations are facing with several 
challenges in recent years. The application of 
agriculture 4.0 with the interaction between IoT 
technologies and smart model can help the farmers to 
manage water efficiently. The developed DM has 
emerged as an evaluable solution to apply the benefits 
of DT to agricultural applications. Indeed, the 
developed DM can reliably predict the behavior of the 
system in terms of water consumption under different 
operating conditions. 

Future development will allow to set up the DT by 
connecting the DM to the implemented LoRaWAN 
network. This means that the DT will be a control tool 
able to interface with IoT instruments in the field both 
in input (data acquisition from sensors) and in output 
(valve control).   

Figure 6. DM error distribution 
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In addition, once the DT is tested and validated, ML 
algorithms can be implemented to improve the 
performance of the system.  
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