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Abstract 
In department stores, heavier products, such as water, are assigned to specific areas, placing them first in pallets to avoid the 
damage of lighter products that complete the picking order and are put over these heavier products. This study analyses the 
impact of the allocation of heavy products and of the size of relating areas on picker routing policies, and compare this scenario 
with a situation in which an area dedicated to heavy product does not exist in the warehouse. S-Shaped and S-Shaped Advanced 
policies are implemented to respond to picking orders for different products to be allocated in pallets following rules dictated 
according to their weight. Through a simulative approach, conducted with MS ExcelTM software, their joint implementation was 
simulated by distinguishing various allocation areas within the warehouse to simulate the different types of products to be picked; 
the objectives functions cover the minimization of routes to fulfil orders, and the minimization of the total travelled distance. 
Warehouse storage capacity, picking list size, and the size of the specific allocations were the variables considered. The results of 
the two scenarios are presented separately and in aggregate form to appraise: (i) the impact of heavy product-specific allocation, 
(ii) the efficiency of the proposed solutions in terms of the total distance travelled by the pickers, and (iii) the achievable 
optimization margins. Finally, a possible future research proposal is presented. 

Keywords: Heavy Products; Order Picking; Simulation Approach; Routing. 

1. Introduction

Order picking is a fundamental process within the 
warehouse, and it accounts for approximately 55% of 
its total operating costs (Fumi et al., 2013; Andjelkovic 
& Radosavljevic, 2017). Under this assumption, 
optimizing the routing policy of pickers is a crucial 
aspect of the picking process in manual warehouses. 

Efficient order processing time and reduced picking 
duration are essential goals for process optimization. 
Numerous studies have focused on finding the optimal 
route, minimizing the time required by the picker to 
fulfil the entire picking list, and reducing the total 
distance travelled during the process. For a complete 

overview on this topic, readers can refer to Casella et al. 
(2023). 

More into detail, Zhou et al. (2022a) have evaluated, 
within a leaf warehouse, the performance resulting 
from the separate usage of Return and S-Shaped 
policies, rather than that resulting from their joint 
implementation. Specifically, given two storage 
locations to be visited, the best policy to adopt is 
recursively evaluated. 

In another study, Zhou et al. (2022b) have divided a 
warehouse with a fishbone layout into three classes A, 
B, and C according to the proximity of the warehouse 
area to the input/output (I/O) points. Then, they 
evaluated the performance of the Return and S-Shaped 
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routing policies in terms of the distances travelled by 
the pickers during order processing. 

In real-world scenarios, picking operations must 
consider specific product characteristics, such as its 
weight and fragility, to be executed effectively (Chabot 
et al., 2017). During picking operations, the different 
weight of various products must be evaluated for a 
proper pallet formation to avoid damage of products or 
stability problems of the whole pallet. In the study by 
Zhang et al. (2021), items were distinguished into food 
and non-food products and through this category 
constraint, the joint order batching and picker routing 
problem was analyzed, meeting the constraint that 
non-food products must be placed below food 
products. 

Žulj et al. (2018) have developed a solution method 
that considers product weight constraints when 
determining the picker routing strategy based on a real 
case of a German household product manufacturer. 
Again, Matusiak et al. (2014) have proposed a joint 
order-batching and picker routing method to address 
the combined precedence-constrained routing and 
order-batching problem. 

Weight constraints also play a role in selecting and 
evaluating the optimal allocation storage policies, as 
demonstrated by Trindade et al. (2021). Additionally, 
Trinidade et al. (2022) have developed an alternative 
heuristic procedure, in which product weight is one of 
the four main parameters for making allocation 
decisions. 

On the bases of these short premises, this paper 
introduces a dedicated area at the front of the 
warehouse, specifically designated for heavy products, 
which will be the initial stop of pickers during their 
picking tasks, given the fact that heavy items should be 
place at the base of a pallet. 

The objective of this paper is to determine the impact 
of heavy product allocation on the optimization of 
picking routing policies. Two scenarios are taken into 
account and reproduced using a MS ExcelTM software 
named “FORMULA 59”. In the first scenario, three 
layouts without a dedicated area are defined, with 
variations in the number of cross-aisles. The picking 
policy adopted is the S-Shaped Advanced (SSAD) so 
that the presence of cross - aisles, if any, can be 
exploited. The only area where a SSS was performed is 
the dedicated area for heavy products in the Scenario B. 
Of course, in both scenarios, the prior constraints of 
heavy products were applied. 

The S-Shaped policy (SSS) implies no use of cross-
aisles during picking, making it the simplest routing 
strategy for pickers (Al-Shboul, 2023). Consequently, 
the picker must travel through the entire corridor when 
necessary. The S-Shaped Advanced policy (SSAD), 
allows for the effective usage of cross aisles and is 
selected based on its superior performance in various 

warehouse configurations (Montanari et al., 2022). 

The results are presented for each scenario in terms 
of the average distance traveled by the pickers to fulfill 
picking orders and its standard deviation. Finally, a 
comparison between the two scenarios is conducted to 
determine the percentage of performance 
improvement achieved through the reduction of the 
distance travelled. 

The remainder of the paper is structured as follows: 
the next section (section 2) details the material and 
methods, including the methodology; section 3 
presents the results of the simulations and discusses 
them, followed by a conclusion section (section 4). 

2. Materials and Methods

2.1. Nomenclature 

The nomenclature adopted in this study is presented in 
Table 1, below. 

Table 1. Nomenclature.  

Symbol Description Unit 

R Storage Capacity - 
SL Size of the storage slot m×m 
Xf Shape factor of the warehouse - 
Wa Aisles width m 
I/O Input/output position of pickers - 
Hv Number of storage locations dedicated to 

heavy products 
- 

Ov Number of storage locations dedicated to 
non-heavy products 

- 

Ca Number of cross-aisles - 
LO Number of products (order lines) in each 

picking task  
- 

LO(H) Number of order lines characterizing each 
mission covered only by heavy products 

- 

N Number of picking tasks in each simulation  - 
M Number of simulations replicates - 
MA Number of simulations replicates in 

Scenario A 
- 

MB Number of simulations replicates in 
Scenario B 

- 

Rout_H Routing policy implemented in the heavy 
products area 

- 

Rout_O Routing policy implemented in the non-
heavy products area. 

- 

dm Average travel distance for each mission m 
SD(d) Standard Deviation of the travelled distance  m 
Red_% Percentual reduction of the distance 

travelled (from Scenario A to Scenario B) 
% 

2.2. Layout 

As already stated, for this study, two different scenarios 
were simulated, and each one involved various 
configurations of the warehouse layout. The different 
layout configurations used in the study are 
summarized in Figure 1 below. 
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Figure 1. Layouts adopted in the simulation campaign. 

2.3. Preliminary Assumptions 

In each scenario, various parameters were defined for 
setting the simulative campaign carried out through 
the software, as summarized in Table 2. 

Table 2. Fixed settings and values of the simulations. 

Symbol Value/Setting Unit 

R 2 400 - 
SL 1.00 × 1.25 m×m 
Xf 1 - 
Wa 5.40  m 
I/O Opposite Lateral Picking Same Side 

(OLPSS) 
- 

Rout_H S-Shaped Simple (SSS) - 
Rout_O S-Shaped Advanced (SSA) - 

It is important to point out that the value of Xf set at 
1 is to be seen as a “nominal” value. Due to the size 
constraints to be satisfied and being a parameter 
closely related to the specific layout, Xf may be subject 
to variation in a range of values. Efforts were made to 
maintain this range as close to 1 as possible while 
keeping the value of R fixed and adjusting the 
remaining parameters accordingly. 

The value of Wa was determined to enable two order 
picking trucks to travel in opposite directions 
simultaneously without causing congestion. This 
decision was made to ensure that the layout closely 
resembles real-world warehouse contexts. 

The rationale behind the choice of an OLPSS-type 
I/O policy is instead the physical flow of pickers within 
the warehouse. In scenario B, the layout consists of two 
distinct areas, one exclusively designated for heavy 
products and the other dedicated to all other types of 
products. The picker is thus required to pick the heavy 
products first in the mission order lines, and only after 
completing these picks, he/she will proceed by picking 
the remaining order lines. Extensive evaluations 
revealed that an OLPSS-type I/O policy provides the 
best access to both areas, considering the specific 
characteristics and constraints of the study. 

This thoughtful selection of parameters and policies 
allows for a robust and realistic simulative analysis of 
the impact of heavy product allocation on the 
optimization of picking routing policies in the 
warehouse scenarios under examination. The following 
section will delve into the details of the software used 
and the methodology employed for conducting the 
simulations. 

2.4. Simulation Tool Description 

To achieve the research objective, an adaptable tool 
called “FORMULA 59” was customized for warehouse 
design and management. The “HEAVY PRODUCTS add-
in” was integrated into the tool to allow for the creation 
of layouts tailored for stocking heavy products and to 
handle picking activities involving heavy products at 
the beginning of the order list. The following is a brief 
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overview of “FORMULA 59” (Figure 2), highlighting its 
analytic capabilities and its role in developing the 
simulation campaign in the logistics domain. Although 
the simulation campaign makes use of a subset of 
“FORMULA 59”'s functionalities only, this section 

aims to provide a clear understanding of its potential, 
facilitating future extensions and developments. As 
shown in Figure 2, “FORMULA 59” consists of two 
interconnected components: 

Figure 2. FORMULA 59 Simulation Model. 

• Geometric Tool (in blue): this component is
responsible for creating an abstract model of the
warehouse, generating picking points for each 
allocation within its boundaries. The geometric
tool uses various data, including warehouse
capacity, the number of transversal corridors,
allocation width and depth, corridor width, desired
aspect ratio of the warehouse, and entrance and
exit positions for the picker. The virtual
representation of the entire warehouse, produced
by the geometric tool, determines the warehouse
size, the surface saturation coefficient surface
coefficient rate, the shape factor, and, when
needed, the layout design of the warehouse. 
Notably, the system adheres to integer variables, 
which means that fractional allocations or 
corridors are not considered. Consequently, the
actual shape factor may slightly deviate from the
user's desired shape factor, considering the integer
constraints while closely approximating the
desired shape factor. The virtual warehouse model,
created by the geometric tool, associates each 
allocation with the corresponding picking point,
where the picker executes routine order fulfillment
tasks. The picking simulator accesses this model to
calculate picking mission distances within the
warehouse.

• Picking Simulator (in black): before utilizing the
picking simulator, instructions regarding product 
allocation in the warehouse are required. This
involves defining which product is stored in each 

allocation, characterized by a rotation index linked 
to the market demand for that specific product. 
This paper assumes an equal rotation index for 
each product, with the rule that heavy products are 
picked first during the procedure, ensuring they are 
placed at the bottom of the pallet. Future 
extensions can explore the impact of varying 
rotation indices on the results. 

As shown in Figure 2, the Geometric Tool has been 
enhanced by integrating the “HEAVY PRODUCTS add-
in”, which plays a crucial role in delineating the 
dedicated region for storing heavy products. This 
"heavy products" zone is strategically located at the 
forefront of the warehouse, close to the I/O. During the 
design phase, users have the flexibility to specify the 
storage capacity of this area. For Scenario B, as depicted 
in the previous Figure 1, this study allocates 5%, 10%, 
and 15% of the warehouse capacity, respectively, for 
the “heavy products” zone. The “Geometric Tool’s 
heavy products add-in” assists in defining this specific 
area for storing heavy products. 

Using all the available data, the tool calculates the 
average distance covered by the picker during picking 
missions, considering the list of market-requested 
orders and the selected routing policy for warehouse 
picking. The user can choose from a selection of routing 
policies, including the Return Routing Policy, SSS 
Routing Policy, Advanced Return Routing Policy, and 
SSAD Routing Policy. Based on previous research 
insights, the SSAD Routing Policy is preferred for 
normal products due to its commendable performance 
compared to the other three policies. This SSAD 
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Routing Policy is an extension of the SSS Routing 
Policy, incorporating the added capability to utilize 
cross aisles when beneficial. 

2.5. Simulation campaign 

As mentioned in the previous sections, the simulation 
campaign consists of two scenarios: 

• Scenario A: in this scenario (A_1 in Figure 1), there
is no dedicated area for heavy products; rather,
they are stored randomly within the warehouse. In
each mission an increasing percentage of order
lines involves picking heavy products, which serves
as a precedence constraint for the picker. The
picker first picks the heavy products and then
fulfils the remaining order lines.

• Scenario B: this scenario includes an area within
the warehouse specifically dedicated to heavy
products of different sizes. Three distinct layouts
were analysed for Scenario B: B_1 (size of the
dedicated area = 5% R), B_2 (size of the dedicated
area = 10% R), and B_3 (size of the dedicated area
= 15% R).

In all the scenarios, three further cases were 
identified resulting from the presence of a different 
number of cross-aisles within the area for non-heavy 
products (in cases B_1, B_2 and B_3) rather than 
within the layout (case A_1). Specifically, layouts with 
0 cross-aisles were considered, with 1 cross-aisle 
rather than 2 cross-aisles. 

The simulation campaign leverages the following 
variables: 

• Hv: the number of storage slots designated for
heavy products in Scenario B is determined by three
different percentages of the total R: 5%, 10%, and
15% of R, respectively. The Table 3 below
summarizes the different values of Hv.

Table 3. Hv values for R=2 400. 

Hv% Hv 

5% 120 
10% 240 
15% 360 

• Ov: the number of storage slots designated for non-
heavy products in Scenario B is computed as the
complementary values to the respective Hv values
(Eq.1).

𝑂𝑣 = (𝑅 − 𝐻𝑣) (1) 

• Ca: the number of cross-aisles in each layout

analysed. Three different conditions are studied: 0 
cross-aisles, 1 cross-aisle, and 2 cross-aisles. In 
Scenario B, the cross-aisles are inserted in the area 
dedicated to non-heavy products. 

• LO: it represents the number of items per picking
mission. Four different cases were considered, with
10, 20, 50, and 100 items picked per mission. This
value includes both heavy and non-heavy products.
In Scenario A, since there is no dedicated area for 
heavy products, a number of order lines including
heavy products (LO(H)) has been set within each
mission. These values are equal to the percentages
used for Hv in Scenario B. In Scenario B, the need to
set a specific number of order lines dedicated to
heavy products (LO(H)) within each mission is not
required due to the presence of the dedicated area
for heavy products. All products in the warehouse
share the same rotation index by assumption, 
which means they have an equal probability of
being ordered. The percentage of warehouse
capacity designated for heavy products (Hv)
directly corresponds to the probability of
encountering these heavy products in the order list
during the picking process. For example, if 10% of
the warehouse capacity is designated for heavy
products (Hv = 10% R), then there is a 10% chance
that any product in the order list will be a heavy
product. This simplifies the simulation process in
Scenario B, as the probability distribution of heavy
and non-heavy products is already determined by
the designated percentage of Hv. As a result, the
simulation campaign in Scenario B focuses on
analysing the impact of different layouts, cross-
aisle configurations and the size of the dedicated
area for heavy products on the picker's routing
policies and travelled distance, without the need to
explicitly set a specific number of order lines
dedicated to heavy products in each mission. The
presence of the dedicated area ensures that heavy
products are readily available for picking, and the
simulation explores how different factors affect the
efficiency of the picking process in this specific
scenario.

In each Mth simulation, a total of 10 000 picking 
missions were simulated. The total number of 
simulations performed (M) is determined as the sum of 
the number of simulations performed in Scenario A 
(M_A) and the number of simulations performed in 
Scenario B (M_B). Each scenario includes various 
combinations of layouts, cross-aisles and heavy 
product area sizes, leading to a total of 72 simulations 
(36 in Scenario A and 36 in Scenario B). 

The equations for calculating the total number of 
simulations are as follows: 
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𝑀 =  𝑀𝐴 + 𝑀𝐵 = 36 + 36 = 72    (2) 

where: 

𝑀𝐴 =  𝑛°𝐶𝑎 ∙ 𝑛°𝐿𝑂(𝐻) ∙ 𝑛°LO = 3 ∙ 3 ∙ 4 = 36    (3) 

𝑀𝐵 =  𝑛°𝐻𝑣 ∙ 𝑛°𝐶𝑎 ∙ 𝑛°LO = 3 ∙ 3 ∙ 4 = 36 (4) 

Finally, a comparison between the two scenarios was 
carried out and the percentage reduction of the 
distance travelled by the picker (Red%) moving from 
the Scenario A to the Scenario B was calculated 
according to the Equation 5. 

𝑅𝑒𝑑% =  
𝑑𝑚𝐵 − 𝑑𝑚𝐴

𝑑𝑚𝐴
∙ 100 (5) 

The next Table 4 summarizes the numerical values of 

each variable considered. 

Table 4. Values of the variables adopted for the simulative campaign. 

Symbol Value/Setting 

Hv% 5% - 10% - 15% 
OV% 95% - 90% - 85% 
Ca 1 - 2 - 3 
LO 10 - 20 - 50 - 100 
LO(H) 5%LO - 10%LO - 15%LO 
M 72 
MA 36 
MB 36 
N 10 000 

3. Results and Discussion

The simulation campaign involved 36 simulations for 
each scenario, with each simulation comprising 10 000 
picking missions to calculate the mean distance (dm) 
travelled by the picker for a mission and its Standard 
Deviation (SD(d)). Results are presented in Tables 5, 6 
and 7. In each table the results of the two Scenarios are 
presented but Table 5 refers to no cross-aisles layout, 
Table 6 refers to single cross-aisle and Table 7 refers to 
the layout characterized by the presence of two cross-
aisles. 

Table 5. dm e SD(d) values - Case with 0 Cross-Aisles. 

Scenario A B 

LO(H) 5% 10% 15% Hv 5% 10% 15% 

LO 
dm

[m] 
SD(d) 

dm

[m] 
SD(d) 

dm

[m] 
SD(d) LO 

dm

[m] 
SD(d) 

dm

[m] 
SD(d) 

dm

[m] 
SD(d) 

10 868.47 118.29 918.91 115.86 938.55 114.23 10 785.38 96.07 746.93 93.52 711.02 87.13 

20 1 379.69 142.35 1 442.27 138.52 
1 

483.02 136.39 20 1 189.38 121.42 1 125.84 114.13 
1 

073.24 107.71 

50 
2 

206.49 
178.62 

2 
345.05 

175.44 
2 

458.51 
179.22 50 1 840.64 154.01 1 766.81 140.83 

1 
705.93 

131.82 

100 3 114.27 257.14 3 335.27 256.20 3 501.33 254.99 100 2 
550.49 

232.89 2 
438.02 

213.95 2 361.15 199.06 

Table 6. dm e SD(d) values - Case with 1 Cross-Aisle. 

Scenario A B 

LO(H) 5% 10% 15% Hv 5% 10% 15% 

LO 
dm

[m] 
SD(d) 

dm

[m] 
SD(d) 

dm

[m] 
SD(d) LO 

dm

[m] 
SD(d) 

dm

[mt] 
SD(d) 

dm

[m] 
SD(d) 

10 709.29 101.53 753.74 100.27 768.40 100.30 10 647.44 79.64 621.04 75.50 600.15 72.52 
20 1 124.26 118.45 1 169.13 114.61 1 197.28 113.63 20 969.18 96.18 924.97 91.68 890.17 85.30 
50 1 865.55 113.04 1 939.35 117.15 2 013.14 121.26 50 1 542.56 92.84 1 491.43 87.75 1 454.43 85.00 

100 2 493.60 139.15 2 666.08 142.65 2 803.29 146.09 100 2 048.29 118.45 1 997.68 108.17 1 965.31 103.69 

Table 7. dm e SD(d) values – Case with 2 Cross-Aisles. 

Scenario A B 

LO(H) 5% 10% 15% Hv 5% 10% 15% 

LO 
dm

[m] 
SD(d) 

dm

[m] 
SD(d) 

dm

[m] 
SD(d) LO 

dm

[m] 
SD(d) 

dm

[m] 
SD(d) 

dm

[m] 
SD(d) 

10 693.76 106.97 736.41 106.88 751.95 106.33 10 637.75 85.30 612.28 82.46 592.72 77.43 
20 1 093.36 126.33 1 134.57 120.91 1 181.31 123.91 20 950.87 102.63 908.95 96.79 876.55 88.94 
50 1 756.19 110.79 1 848.70 114.90 1 922.26 122.00 50 1 485.11 84.23 1 439.01 82.51 1 407.04 80.66 

100 2 331.89 112.64 2 499.46 122.94 2 638.66 127.35 100 1 923.16 85.07 1 885.67 81.75 1 862.58 78.82 

From the data analysis, it is evident that the placement of a dedicated heavy products area in 
Scenario B impacts the average distance travelled by 
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the picker to fulfil missions, irrespective of the number 
of cross-aisles. The inclusion of the dedicated area in 
the front part of the warehouse reduces the average 
distances travelled in all the simulated configurations. 
As shown in detail in Figures 4a-4b-4c, in Scenario A, 
as the number of heavy products to be processed 
increases, the distance travelled by the picker also 
increases. On the other hand, ceteris paribus, in Scenario 
B the trend is naturally the same, but the distance is 
much lower than in Scenario A. 

In addition, having heavy products all located in a 
specific area of the warehouse also minimizes the 
impacts of the routing policy used (SSS), which does 
not allow cross-aisles to be used to reach warehouse 
locations. This is evident in the layout without cross-
aisles (Figure 4a). In fact, it can be seen that the 
discrepancy is generated between the dark blue line (Hv 
= 5%) and the light blue line (Hv = 15%) as order lines 
increase, while as the number of cross-aisles increases 
(Figure 4b and 4c) this discrepancy tends to disappear. 

Figure 4a. Case with 0 cross-aisle: Trend of dm. 

Figure 4b. Case with 1 cross-aisle: Trend of dm. 

Figure 4c. Case with 2 cross-aisle: Trend of dm. 

The impact of the routing policy (SSS) on the 

distance travelled is also mitigated when heavy 
products are concentrated in a specific area. This is 
particularly evident in layouts without cross-aisles. As 
the number of heavy products to be processed increases 
in Scenario A, the distance travelled by the picker 
increases as well. However, in Scenario B, the trend is 
opposite, and the distance travelled decreases as the 
size of the dedicated area increases. The next Figures 5a 
-5c illustrate these opposite trends between these two
scenarios, represented for the case of 100 LO each
mission.

Figure 5a. Case with 0 cross-aisle and 100 LO: Trend of dm. 

Figure 5b. Case with 1 cross-aisle and 100 LO: Trend of dm. 

Figure 5c. Case with 2 cross-aisles and 100 LO: Trend of dm. 

This reduction in distance can be justified with the 
presence of a precedence constraints for picking heavy 
products. With the dedicated area located near the I/O 
points, all heavy products are concentrated in a specific 
area of the layout. This minimizes the distances 
travelled for picking these products, leading to an 
overall efficiency gain. The reduction in distance 
becomes more pronounced as the size of the dedicated 
area and the number of heavy products increase. This is 
an important result, as the same products affect in an 
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opposite manner the performance just by changing 
their position inside the warehouse. 

Furthermore, the inclusion of cross-aisles in the 
non-heavy products area of Scenario B attenuates their 
impact on the distances travelled. Figure 6a shows that 
adding a single cross-aisle has a more significant 
impact on dm than adding another cross-aisle, even 
with different Hv values (Figures 6b and 6c). 

Figure 6a. Scenario B: Hv 5%: Trend of dm varying Ca and LO. 

Figure 6b. Scenario B: Hv 10%: Trend of dm varying Ca and LO. 

Figure 6c. Scenario B: Hv 15%: Trend of dm varying Ca and LO. 

Based on Figure 6a, i.e. a warehouse, with Hv of 5%, 
the inclusion of a single cross aisle into the non-heavy 
products area impacts the value of dm much more 
significantly than the addition of another cross aisle, 
resulting in the layout with two cross-aisles in the 
non-heavy product area. In fact, the gap between the 
dark-blue line (0 cross-aisles) and the blue line (1 
cross-aisle) is much more relevant than the gap 
between the blue line and the light-blue line (2 cross-
aisles). This phenomenon is not affected by the size of 
the areas, as it is also found in Figures 6b and 6c 

characterized by different Hv values. 

The benefits achieved when shifting from Scenario A 
to Scenario B are summarized in Tables 8, 9 and 10, 
where the percentage reduction of dm (Red%) was 
calculated for different numbers of cross-aisles. These 
tables confirm that the greatest increase in 
performance is achieved in layouts without cross-
aisles due to the concentration of products in a limited 
area. 

Overall, the results indicate that dedicating a specific 
area for heavy products in the warehouse has a positive 
impact on the efficiency of the picking process. This 
allocation strategy reduces the average distances 
travelled by pickers and minimizes the impact of 
routing policies and cross-aisles. It thus offers valuable 
insights for optimizing order picking operations in 
manual warehouses and highlights the importance of 
considering product characteristics and layout design 
in logistics management. 

Table 8. Red% Values: Case with 0 cross-aisles layout. 

Hv 

LO 5% 10% 15% 

10 -9.6% -18.7% -24.2%
20 -13.8% -21.9% -27.6%
50 -16.6% -24.7% -30.6%

100 -18.1% -26.9% -32.6%

Table 9. Red% Values: Case with 1 cross-aisle layout. 

Hv 

LO 5% 10% 15% 

10 -8.7% -17.6% -21.9%
20 -13.8% -20.9% -25.7%
50 -17.3% -23.1% -27.8%

100 -17.9% -25.1% -29.9%

Table 10. Red% Values: Case with 2 cross-aisles layout. 

Hv 

LO 5% 10% 15% 

10 -8.1% -16.9% -21.2%
20 -13.0% -19.9% -25.8%
50 -15.4% -22.2% -26.8%

100 -17.5% -24.6% -29.4%

Once again, the assumption that the greatest 
increase in performance is achieved in the absence of 
cross-aisles is confirmed by these outcomes, precisely 
because of the concentration of products in a limited 
area. 

4. Conclusions

In conclusion, optimizing the routing policy of pickers 
in manual warehouses is essential for reducing the total 
travel time and distance covered by the operators. 
Product characteristics and constraints must be 
considered when determining the best routes for 
operators to efficiently execute picking operations. 

In this study, two separate warehouse scenarios 
were simulated in the presence of heavy products and 
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with a precedence constraint for the operator to comply 
with during the picking phases. In a first scenario 
(scenario A) there is no dedicated area for this type of 
products, which are included in variable percentage in 
the order lines of picking missions. A second scenario 
(Scenario B), on the other hand, involves the inclusion 
of a dedicated area of variable size, located at the front 
of the layout. Further simulated variations concern the 
number of cross-aisles included in the layout, as well 
as the size of each picking mission, in terms of number 
of lines order. The simulation campaign as a whole 
featured 72 different configurations, with 10 000 
picking missions to be fulfilled in each scenario. 

An analysis of the results obtained showed a relevant 
impact on the performance deriving from the inclusion 
of the dedicated area. In fact, concentrating heavy 
products in a restricted area close to the I/O depot 
allowed for shorter travel distances of the pickers. As 
the size of the dedicated area increases, the decrease in 
the distance travelled becomes even more pronounced. 
The presence of cross-aisles in the layout showed 
instead an opposite effect. While cross-aisles improve 
the accessibility to non-heavy products, their presence 
also increases the overall distance travelled, especially 
when heavy products are spread throughout the 
warehouse. Overall, the benefit of having no cross-
aisles was most significant when the dedicated area for 
heavy products existed. 

In addition, in the absence of cross-aisles in the 
layout, an effect of the size of the area itself was also 
observed. Specifically, as the size increases, the average 
travelled distance reduces further. This result is evident 
for picking missions with a high number of LO (50 or 
100). Under these conditions, the distance travelled by 
pickers can be reduced by more than 32%. 

The inclusion of cross-aisles lessens this effect, as 
the impact of cross-aisles is lower than proportional to 
the number of cross-aisles inserted. In fact, in terms of 
benefits, the maximum reduction occurs with the 
inclusion of the first corridor, while increasing the 
number of aisles has a progressively decreasing effect. 
Moreover, this phenomenon does not depend on the 
presence of the dedicated area or the size of the same, 
as it has been observed in both scenarios. 

Future research could investigate the presence of a 
“threshold” in the size of the dedicated area, beyond 
which the cost-effectiveness of that area becomes low 
and does not justify its implementation. Exploring 
different warehouse layouts and additional parameters 
such as variable turnover index could also provide 
valuable insights. 

Ultimately, this study highlights the importance of 
tailored warehouse design and order picking strategies. 
By properly placing dedicated areas for specific product 
types and considering layout configurations, 
warehouse managers can optimize the picking process 
and improve the overall efficiency of the system. 
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