
© 2023 The Authors. This article is an open access article distributed under the terms and conditions of the Creative
Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

25th International Conference on Harbor, Maritime and Multimodal Logistic Modeling & Simulation
20th International Multidisciplinary Modeling & Simulation Multiconference

2724-0339 © 2023 The Authors.
doi: 10.46354/i3m.2023.hms.007

Efficient Maritime Object Detection and Validation for
Enhancing Safety of Uncrewed Marine Systems

Ahmet Saglam1,* and Yiannis Papelis1,*

1Virginia Modeling, Analyses, and Simulation Center, Old Dominion University, 1030 University Blvd.,
 Suffolk, VA, 23435, USA

*Corresponding author. Email address: asaglam@odu.edu, ypapelis@odu.edu

Abstract

Safe operation of uncrewed maritime systems is a major concern in the presence of other vehicles or obstacles. Typically,
perception algorithms utilize sensor data to identify obstacles that must be avoided, and AI algorithms are used to interpret raw
sensor data for use in navigation and object avoidance algorithms. However, perception algorithms are typically computationally
expensive. In this paper, we present an efficient method for detecting obstacles using raw lidar data in the form of range or Point
Cloud, employing computationally efficient techniques that do not depend on trained models or AI matching. The approach
converts the sensor readings into the robot's local coordinate system, projecting it onto an occupancy map, and applying efficient
image processing techniques to detect obstacles. As a rapid and easy to implement algorithm, the proposed work provides a
practical solution for lidar-based maritime perception applications. This paper further focuses on detection of near-by objects
with simple shapes, such as buoys or totems, which are commonly used in near-shore and near-harbor maritime environments.
With the ability to detect obstacles efficiently, our algorithm can help ensure safe navigation when maneuvering these
environments. Results show that the algorithm can accurately detect buoys and totems with minimal false positives.

Keywords: Obstacle detection; lidar-based algorithm; unmanned systems; safe teleoperation

1. Introduction

Uncrewed maritime systems, such as autonomous
underwater vehicles (AUVs) and unmanned surface
vessels (USVs), have revolutionized various marine
applications (Molfino et al., 2014), ranging from
underwater exploration to maritime surveillance.
However, ensuring the safe operation of these systems
in the presence of other vehicles or obstacles remains a
critical challenge (Ahmed & Naamane, 2021; Bruzzone
et al., 2019). To address this concern, efficient and
reliable maritime object detection and validation
techniques are crucial for enhancing the safety of these
systems.

Traditionally, perception algorithms have been

employed to utilize sensor data, including lidar, to
identify obstacles and potential risks that must be
avoided. These algorithms often leverage AI techniques
to interpret raw sensor data, enabling accurate
detection and interpretation of the surrounding
environment. While effective, the computational
demands associated with these algorithms can limit
their practicality, especially for smaller vessels that are
space and power limited.

In this paper, we propose an alternative approach
for detecting obstacles in uncrewed maritime systems
that utilizes raw lidar data in the form of range or Point
Cloud. Our method deviates from the traditional
reliance on trained models or AI matching, instead
employing computationally efficient and

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:asaglam@odu.edu

 | 25th International Conference on Harbor, Maritime and Multimodal Logistic Modeling & Simulation, HMS 2023

straightforward techniques. By converting the sensor
readings into the local coordinate system of the robot,
projecting them onto an occupancy map, and applying
image processing techniques, we extract and validate
obstacle locations with high accuracy and minimal
computational overhead.

The remainder of this paper is structured as follows.
Section 2 provides an overview of the related work in
the field of LIDAR obstacle detection, highlighting the
existing approaches and their limitations. In Section 3,
we present our proposed LIDAR obstacle detection
algorithm, explaining its underlying principles and key
components. Section 4 presents the preliminary results
obtained from our experimental evaluation,
showcasing the performance and effectiveness of our
algorithm. Finally, in Section 5, we draw conclusions
based on our findings and discuss potential future work
to further improve the proposed approach.

2. Related Work

Numerous studies (Molina-Molina et al., 2021; Qiao et
al., 2021; X. Zhang et al., 2021) have investigated the use
of AI techniques for maritime obstacle detection,
aiming to enhance the safety and efficiency of
uncrewed marine systems.

One common approach in the literature is the
utilization of deep learning techniques for maritime
object detection. Convolutional neural networks
(CNNs) have been widely applied to process sensor
data, such as lidar or sonar, and extract features for
object recognition (Fu et al., 2021; Ma et al., 2019; Pan
et al., 2020; Shi et al., 2022; Xu et al., 2020). These
models are trained on large datasets containing
annotated maritime objects, enabling them to detect
various obstacles with high accuracy. However, the
computational complexity of deep learning models
poses challenges for real-time implementation,
especially in resource-constrained onboard systems.

Another line of research focuses on employing AI
matching algorithms for maritime obstacle detection.
These techniques utilize machine learning algorithms,
such as support vector machines (SVMs) (Gupta &
Gupta, 2021; Kaido et al., 2016) or random forests
(Stanislas & Dunbabin, 2018; C. Zhang et al., 2020), to
match sensor data with pre-defined obstacle patterns
or templates. By training the algorithms on labeled
datasets, they can identify obstacles based on
similarities between the sensor readings and the
patterns. Although effective in certain scenarios, these
approaches may suffer from limited adaptability to
varying environmental conditions and require
substantial computational resources for matching.

While AI-based techniques have shown promise in
maritime obstacle detection, they often suffer from
computational complexity, which can limit their real-
time implementation and practicality. In this paper, we
propose an alternative approach that circumvents the
reliance on trained models or AI matching. By utilizing

raw lidar data and employing computationally efficient
and straightforward techniques, our method offers a
practical solution for efficient maritime object
detection and validation.

3. LIDAR Obstacle Detection Algorithm

The overall algorithm is presented in Figure 1. The
input is either 2D or 3D laser data. The data is
preprocessed and then apply image processing
techniques are applied to detect buoy or totems.

3.1. Sensor Data and Preprocessing

The input to our method is 3D or 2D laser scans.
Although any sensor such as depth or ultrasound that
measures distances can still work with the proposed
method, we focused on specifically LIDAR devices
because they are more accurate and faster than others.

 When using a 3D LiDAR sensor, the distance
measurements provided are in spherical coordinates:
radius (r), elevation (ω), and azimuth (α). However, to
work with the data more easily, it is necessary to
convert these spherical coordinates (r, ω, α) to
Cartesian coordinates (x, y, z). Typically, this
conversion is handled internally, and the resulting data
is reported as a point cloud. A point cloud represents a
collection of data points within a specific coordinate
system. In our case, these points offer measurements
relative to the sensor's frame.

A 2D LiDAR sensor, on the other hand, produces a set
of measurements, commonly referred to as a "scan".
Each measurement within the scan provides
information about the distance to an object or obstacle
at a specific angle. These angle values are usually
evenly distributed, resulting in a dense set of
measurements across the sensor's field of view. Similar
to 3D, the readings are relative to the sensor and
converted in Cartesian coordinates (x, y) to later
process them. It is worth noting that 2D is subject to
body motion and works best when the boat is flat while
3D is more resilient to such movements.

In order to accurately perceive and respond to
obstacles or plan trajectories that avoid collisions, we
need to compensate for the boat’s motion, and thus to
orient the point cloud generated by the sensor. To do
that, we transform the sensor data from local (LIDAR
sensor) frame to a global frame.

3.2. Occupancy Images for 3D LIDAR

An occupancy image is a 2D grid representation of the
environment that represents the occupancy or
occupancy likelihood of each cell in the grid. In this
case, we are interested in a slice of points that are
parallel to the sea surface. Each cell in the occupancy
image contains a value that indicates the occupancy
state of that area. This value is usually binary,
representing whether the cell is occupied (1, one) or
unoccupied (0, zero). These images are generated by

Saglam and Papelis |

mapping the sensor data onto them. The mapping of
sensor data to the occupancy grid involves associating
each measurement with its corresponding cell in the
grid.

In our algorithm, a two-dimensional occupancy
image is generated based on a user-defined area of
interest (ROI) around the boat. The ROI is defined by
setting the boundaries of the environment in x, y, and
direction.

Let:

𝐠𝐫𝐢𝐝_𝐬𝐢𝐳𝐞: cell size of the occupancy image

𝐱𝐦𝐢𝐧: minimum boundary in the x direction

𝒚𝐦𝐢𝐧: minimum boundary in the y direction

𝐱𝐦𝐚𝐱: maximum boundary in the x direction

𝒚𝐦𝐚𝐱: maximum boundary in the y direction

𝐳𝐦𝐢𝐧: lower limit of the height range

𝐳𝐦𝐚𝐱: upper limit of the height range

𝐱𝐢𝐧𝐝𝐞𝐱: x grid index of a specific point in the occupancy image

𝐲𝐢𝐧𝐝𝐞𝐱: y grid index of a specific point in the occupancy image

𝐱𝐫𝐞𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧: x resolution (number of cells)of the occupancy image

𝐲𝐫𝐞𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧: y resolution (number of cells)of the occupancy image

Then, occupancy image dimensions can be found via:

xresolution = (
(xmax − xmin)

grid_size
)

𝑦resolution = (
(ymax − 𝑦min)

grid_size
)

xindex = xresolution − floor (
(point.x − xmin)

grid size
) (1)

𝑦index = 𝑦resolution − floor (
(point.y − 𝑦min)

grid size
) (2)

The floor function is used to round down the
division result to the nearest integer, ensuring that the
resulting indices correspond to valid grid cells.

Once we define the ROI and create the occupancy
image, we initialize all the values in the cells as not
occupied (0). By iterating over all points in the point
cloud and filtering out the ones not in the ROI, we find
the grid indices (𝐱𝐢𝐧𝐝𝐞𝐱, 𝒚𝐢𝐧𝐝𝐞𝐱) of a point (x, y) on the
image using the equations (1) and (2) and then update
the corresponding cell value from 0 to 1 (occupied).

In our implementation, we experimented with
different parameters in order to capture the features as
much as possible with such a huge data with a lot of
noise. For example, choosing a bigger grid size
resulting in losing small objects in the image, while a

Figure 1. Implementation of the proposed obstacle detection algorithm.

 | 25th International Conference on Harbor, Maritime and Multimodal Logistic Modeling & Simulation, HMS 2023

smaller grid size increased the computational
complexity. Eventually, considering the size of the
objects, e.g., buoys, totems, we want to detect, and the
range and accuracy of our sensor, we chose the
following parameters that captures objects effectively:
𝐠𝐫𝐢𝐝_𝐬𝐢𝐳𝐞: 0.03 meters

𝐱𝐦𝐢𝐧 : − 20 meters, 𝒚𝐦𝐢𝐧 : − 20 meters
𝐱𝐦𝐚𝐱: 20 meters, 𝒚𝐦𝐚𝐱: 20 meters
𝐳𝐦𝐢𝐧: 0.1 meters, 𝐳𝐦𝐚𝐱: 1.5 meters from sea surface
𝐱𝐫𝐞𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧: 1333 𝐲𝐫𝐞𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧: 1333

An example of occupancy image created from a 3D
LIDAR is shown in Figure 2. The topmost image (Figure
2-a) captures the scene from a camera. Figure 2-b and
2-c depict screenshots from a top down and a
horizontal view of the Point Cloud data visualized in
RViz, a robotics visualization tool. Lastly, Figure 2-d is
binary occupancy image, where the white pixels show
the occupied cells. Please note that the resolution does
not reflect the actual size of the created image.

(a)

(b)

(c)

(d)
Figure 2. (a) Image of the environment with a buoy and
totem. (b, c) Top down and horizontal view of the captured
LIDAR data represented as Point Cloud. (d) Binary
occupancy image created from the Point Cloud in this
scene.

3.3. Morphological Operations

LIDAR data contains noise due to sensor limitations or
environmental factors such as white capping. After
creating the binary image in the previous section, it is
necessary to perform morphological operations to
remove small, isolated noise points and obtain a
cleaner binary image before proceeding with further
analyses.

Morphological operations are a set of mathematical
functions, known as non-linear filters in image
processing. Two basic morphological operators are
Dilation and Erosion. Dilation expands the boundaries
of objects, while erosion removes pixels from object
boundaries. These operations are performed on binary
images using a small binary filter or kernel known as a
structuring element. The structuring element scans the
image and modifies the pixels based on its size and
shape. Commonly used shapes for structuring elements
include rectangles, ellipses, and crosses, as depicted in
Figure 3, which showcases 5x5 structuring elements
with different shapes.

Figure 3. Structuring element shapes of size 5x5

To achieve cleaner binary images, it is crucial to
analyze various sizes and shapes of structuring
elements while considering the order of applying
dilation and erosion. In Erosion, the size of the element
determines the extent of shrinking performed, with
larger shapes resulting in greater shrinkage. In
dilation, as the structuring element increases in size,
the resulting areas of the objects also become larger,
and isolated islands of pixels also increase in size.

Saglam and Papelis |

After experimenting with numerous operations,
such as applying erosion followed by dilation or vice
versa, using different structuring element shapes
(rectangle, ellipse, cross), and sizes (2x2, 3x3, 5x5, 7x7,
9x9), we found out that the combination of dilation
with a 5x5 cross-shaped element, followed by erosion
with a 3x3 rectangle-shaped element, and another
erosion with a 2x2 rectangle-shaped element, yielded
the best results for objects located within a 20-meters
radius. With this order, we first group nearby areas into
a single object and then remove isolated noisy regions.
Also, using a larger structuring element for dilation
allows for capturing neighboring pixels effectively, and
a smaller structuring element for erosion helps
preserve larger areas.

Figure 4 shows the result of the morphological
operations applied on a binary image created from 3D
LIDAR. In all images in Figure 4, white pixels depict
occupied cells. However, for clarity, we put red solid
lines around the pixels indicating totems and yellow
dashed lines around noise pixel. As we can see in Figure
4 bottom-right image, the noise shown in top-left
image is cleared successfully.

Figure 4. Morphological operations

3.4. Finding Contours

Now that we have a better binary image, we can extract
contours. Contours refer to the continuous curves or
boundaries that delineate the shape of objects within an
image. Similar to implementation of morphological
operations, we retrieve contours with the help of
OpenCV function implementing the algorithm of
(Suzuki, 1985). To find contours using this method, we
need to specify:

1. Contour retrieval mode, which determines the
hierarchical relationship between contours.
Options include:

a. retrieving only the outermost contours

b. retrieving all contours in a flat list

c. retrieving all contours in a hierarchical
tree structure

2. Contour approximation method, which
determines how the contour points are
approximated and compressed. One option is to
compress horizontal, vertical, and diagonal
segments into their respective end points. The
other option is to store all the contour points
without approximation.

Regarding the retrieval mode, we focus solely on the
outermost contours since we do not need to analyze
parent-child relationships or inner object parts. As for
the approximation method, although the second option
preserves detailed contour information, it generates a
large number of points, consuming more memory and
slowing down subsequent processing. Since we did not
observe significant improvements compared to the
first option, we decided to compress the points.

Upon applying the Suzuki’s algorithm, we simplify
the extracted contours while preserving their overall
shape by employing the Douglas-Peucker algorithm
(Saalfeld, 1999). This algorithm simplifies a curve or
polygon by recursively dividing it into smaller
segments and then approximating each segment with a
line. Therefore, reducing the number of vertices leads
to computational efficiency and better generalization
of the shape.

Figure 5 illustrates the outcome of contour
extraction from the image resulting from the
previously applied morphological operations (Figure 4
- bottom left). The left image displays the result of the
initially obtained contours, while the right image
demonstrates the application of Douglas-Peucker's
algorithm. Please note that red circles are drawn
around the extracted contours (pink) to better
emphasize them.

Figure 5. Finding Contours

3.5. Detection of Obstacles

To detect buoys, totems, or similar objects, we compute
the minimum enclosing circles based on the previously
retrieved contours. We utilize the Smallest Enclosing
Disks method (Welzl, 2005) implemented in OpenCV to
find the centers and radii of the smallest circles that
completely enclose the input contours.

 25th International Conference on Harbor, Maritime and Multimodal Logistic Modeling & Simulation, HMS 2023

After finding all the circles, we reject circles that are
either too small or too big compared to the size of
totem-like obstacles. Finally, we mark the remaining
circles as obstacles. Figure 6 (left) visualizes the source
sensor data, Point Cloud, which was used to create the
binary images shown earlier in Figures 4 and 5. Figure
6 (right) displays the detected obstacles after applying
all the aforementioned image processing techniques.

4. Preliminary Results

We have implemented the proposed work in Ubuntu
18.04 environment using ROS (Robotics Operating
System) and OpenCV libraries with C++ programming
language.

The algorithm is tested using sensor data captured
from Velodyne's VLP-16 lidar sensor mounted on our
Wave Adaptive Modular Vessel (WAM-V) boat (Figure
7). We recorded the data using rosbag, a set of tools for
recording from and playing back to ROS data including
Point Cloud. The sensor sends out Point Cloud at the
rate of 10 Hz.

Figure 7. WAM-V with Velodyne LIDAR

The tests are conducted on a Dell computer with
12Th Gen Intel Core i7-12700Hx20, NVIDIA GeForce RTX
3080 Ti GPU, and 64 GB RAM. We analyzed a sequence
of 30 lidar samples, all of which contained two
obstacles. Our algorithm was able to detect these
totems 28 times successfully. In two frames, it detected
only one of the obstacles. In average, it took only
0.0042 secs per frame to output the obstacles.

In Figure 8, we show another application our

algorithm on a real data obtained from the same device.
Figure 8(a) captures the environment from a camera
mounted exactly on top of the lidar with the same
horizontal angle. The laser data is visualized in Rviz in
Figure 8(b). Figure 8(c) depicts the binary image
created from this reading. While the result of processed
image is presented in Figure 8(d), the detected
obstacles are displayed in Figure 8(e).

5. Conclusions and Future Work

We proposed an image-processing based obstacle
detection algorithm that aims to overcome the
limitations of existing AI-based approaches, offering a
rapid and easy-to-implement solution for lidar-based
maritime perception applications. By focusing on the
detection of nearby objects with simple shapes, such as
buoys or totems, our algorithm provides a practical and
efficient solution for enhancing safety and security in
uncrewed marine systems. The results of our
experiments demonstrate the accuracy and
effectiveness of our algorithm, with minimal false
positives, thereby showcasing its potential for real-
world deployment.

Our method, which is based on Point Cloud
processing and image segmentation is computationally
very effective. However, determining the buoy-like
objects in a complex environment using this approach
is challenging because other items would interfere the
detection of them.

Acknowledgements

A portion of this work was supported by a grant from
the Commonwealth Cyber Initiative of Coastal Virginia
(COVA CCI).

3D LIDAR

Figure 8. Another example of totem-like obstacle
detection using our technique.

Figure 6. Detected obstacles from the previous scene

Saglam and Papelis |

References

Ahmed, M. M. M., & Naamane, A. (2021). Decentralized

navigation control of multiple vehicles with

obstacle avoidance. 152–161.

Bruzzone, A., Massei, M., Sinelshchikov, K., Fadda, P.,

Fancello, G., Fabbrini, G., & Gotelli, M. (2019).

Extended reality, intelligent agents and

simulation to improve efficiency, safety and

security in harbors and port plants. 88–91.

Fu, H., Song, G., & Wang, Y. (2021). Improved YOLOv4

marine target detection combined with CBAM.

Symmetry, 13(4), 623.

Gupta, V., & Gupta, M. (2021). Automated object detection

system in marine environment. 225–235.

Kaido, N., Yamamoto, S., & Hashimoto, T. (2016).

Examination of automatic detection and tracking

of ships on camera image in marine environment.

58–63.

Ma, L. Y., Xie, W., & Huang, H. B. (2019). Convolutional

neural network based obstacle detection for

unmanned surface vehicle. Mathematical

Biosciences and Engineering: MBE, 17(1), 845–

861.

Molfino, R., Zoppi, M., Dinale, A., & Muscolo, G. (2014).

A robotic vehicle for freight delivery in urban

areas. 10–12.

Molina-Molina, J. C., Salhaoui, M., Guerrero-González,

A., & Arioua, M. (2021). Autonomous marine

robot based on AI recognition for permanent

surveillance in marine protected areas. Sensors,

21(8), 2664.

Pan, M., Liu, Y., Cao, J., Li, Y., Li, C., & Chen, C.-H.

(2020). Visual recognition based on deep

learning for navigation mark classification.

IEEE Access, 8, 32767–32775.

Qiao, D., Liu, G., Lv, T., Li, W., & Zhang, J. (2021). Marine

vision-based situational awareness using

discriminative deep learning: A survey. Journal

of Marine Science and Engineering, 9(4), 397.

Saalfeld, A. (1999). Topologically consistent line

simplification with the Douglas-Peucker

algorithm. Cartography and Geographic

Information Science, 26(1), 7–18.

Shi, B., Su, Y., Lian, C., Xiong, C., Long, Y., & Gong, C.

(2022). Obstacle type recognition in visual

images via dilated convolutional neural

network for unmanned surface vehicles. The

Journal of Navigation, 75(2), 437–454.

Stanislas, L., & Dunbabin, M. (2018). Multimodal sensor

fusion for robust obstacle detection and

classification in the maritime RobotX

challenge. IEEE Journal of Oceanic Engineering,

44(2), 343–351.

Suzuki, S. (1985). Topological structural analysis of

digitized binary images by border following.

Computer Vision, Graphics, and Image Processing,

30(1), 32–46.

Welzl, E. (2005). Smallest enclosing disks (balls and

| 25th International Conference on Harbor, Maritime and Multimodal Logistic Modeling & Simulation, HMS 2023

ellipsoids). 359–370.

Xu, Z., Huo, Y., Liu, K., & Liu, S. (2020). Detection of

ship targets in photoelectric images based on

an improved recurrent attention convolutional

neural network. International Journal of

Distributed Sensor Networks, 16(3),

1550147720912959.

Zhang, C., Bin, J., Wang, W., Peng, X., Wang, R.,

Halldearn, R., & Liu, Z. (2020). AIS data driven

general vessel destination prediction: A

random forest based approach. Transportation

Research Part C: Emerging Technologies, 118,

102729.

Zhang, X., Wang, C., Jiang, L., An, L., & Yang, R. (2021).

Collision-avoidance navigation systems for

Maritime Autonomous Surface Ships: A state of

the art survey. Ocean Engineering, 235, 109380.

