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Abstract 

Safe operation of uncrewed maritime systems is a major concern in the presence of other vehicles or obstacles. Typically, 
perception algorithms utilize sensor data to identify obstacles that must be avoided, and AI algorithms are used to interpret raw 
sensor data for use in navigation and object avoidance algorithms.  However, perception algorithms are typically computationally 
expensive.  In this paper, we present an efficient method for detecting obstacles using raw lidar data in the form of range or Point 
Cloud, employing computationally efficient techniques that do not depend on trained models or AI matching. The approach 
converts the sensor readings into the robot's local coordinate system, projecting it onto an occupancy map, and applying efficient 
image processing techniques to detect obstacles. As a rapid and easy to implement algorithm, the proposed work provides a 
practical solution for lidar-based maritime perception applications.  This paper further focuses on detection of near-by objects 
with simple shapes, such as buoys or totems, which are commonly used in near-shore and near-harbor maritime environments.  
With the ability to detect obstacles efficiently, our algorithm can help ensure safe navigation when maneuvering these 
environments. Results show that the algorithm can accurately detect buoys and totems with minimal false positives.  
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1. Introduction

Uncrewed maritime systems, such as autonomous 
underwater vehicles (AUVs) and unmanned surface 
vessels (USVs), have revolutionized various marine 
applications (Molfino et al., 2014), ranging from 
underwater exploration to maritime surveillance. 
However, ensuring the safe operation of these systems 
in the presence of other vehicles or obstacles remains a 
critical challenge (Ahmed & Naamane, 2021; Bruzzone 
et al., 2019). To address this concern, efficient and 
reliable maritime object detection and validation 
techniques are crucial for enhancing the safety of these 
systems. 

Traditionally, perception algorithms have been 

employed to utilize sensor data, including lidar, to 
identify obstacles and potential risks that must be 
avoided. These algorithms often leverage AI techniques 
to interpret raw sensor data, enabling accurate 
detection and interpretation of the surrounding 
environment. While effective, the computational 
demands associated with these algorithms can limit 
their practicality, especially for smaller vessels that are 
space and power limited. 

In this paper, we propose an alternative approach 
for detecting obstacles in uncrewed maritime systems 
that utilizes raw lidar data in the form of range or Point 
Cloud. Our method deviates from the traditional 
reliance on trained models or AI matching, instead 
employing computationally efficient and 
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straightforward techniques. By converting the sensor 
readings into the local coordinate system of the robot, 
projecting them onto an occupancy map, and applying 
image processing techniques, we extract and validate 
obstacle locations with high accuracy and minimal 
computational overhead. 

The remainder of this paper is structured as follows. 
Section 2 provides an overview of the related work in 
the field of LIDAR obstacle detection, highlighting the 
existing approaches and their limitations. In Section 3, 
we present our proposed LIDAR obstacle detection 
algorithm, explaining its underlying principles and key 
components. Section 4 presents the preliminary results 
obtained from our experimental evaluation, 
showcasing the performance and effectiveness of our 
algorithm. Finally, in Section 5, we draw conclusions 
based on our findings and discuss potential future work 
to further improve the proposed approach.  

2. Related Work

Numerous studies (Molina-Molina et al., 2021; Qiao et 
al., 2021; X. Zhang et al., 2021) have investigated the use 
of AI techniques for maritime obstacle detection, 
aiming to enhance the safety and efficiency of 
uncrewed marine systems. 

One common approach in the literature is the 
utilization of deep learning techniques for maritime 
object detection. Convolutional neural networks 
(CNNs) have been widely applied to process sensor 
data, such as lidar or sonar, and extract features for 
object recognition (Fu et al., 2021; Ma et al., 2019; Pan 
et al., 2020; Shi et al., 2022; Xu et al., 2020). These 
models are trained on large datasets containing 
annotated maritime objects, enabling them to detect 
various obstacles with high accuracy. However, the 
computational complexity of deep learning models 
poses challenges for real-time implementation, 
especially in resource-constrained onboard systems. 

Another line of research focuses on employing AI 
matching algorithms for maritime obstacle detection. 
These techniques utilize machine learning algorithms, 
such as support vector machines (SVMs) (Gupta & 
Gupta, 2021; Kaido et al., 2016) or random forests 
(Stanislas & Dunbabin, 2018; C. Zhang et al., 2020), to 
match sensor data with pre-defined obstacle patterns 
or templates. By training the algorithms on labeled 
datasets, they can identify obstacles based on 
similarities between the sensor readings and the 
patterns. Although effective in certain scenarios, these 
approaches may suffer from limited adaptability to 
varying environmental conditions and require 
substantial computational resources for matching. 

While AI-based techniques have shown promise in 
maritime obstacle detection, they often suffer from 
computational complexity, which can limit their real-
time implementation and practicality. In this paper, we 
propose an alternative approach that circumvents the 
reliance on trained models or AI matching. By utilizing 

raw lidar data and employing computationally efficient 
and straightforward techniques, our method offers a 
practical solution for efficient maritime object 
detection and validation. 

3. LIDAR Obstacle Detection Algorithm

The overall algorithm is presented in Figure 1. The 
input is either 2D or 3D laser data. The data is 
preprocessed and then apply image processing 
techniques are applied to detect buoy or totems.  

3.1. Sensor Data and Preprocessing 

The input to our method is 3D or 2D laser scans. 
Although any sensor such as depth or ultrasound that 
measures distances can still work with the proposed 
method, we focused on specifically LIDAR devices 
because they are more accurate and faster than others. 

 When using a 3D LiDAR sensor, the distance 
measurements provided are in spherical coordinates: 
radius (r), elevation (ω), and azimuth (α). However, to 
work with the data more easily, it is necessary to 
convert these spherical coordinates (r, ω, α) to 
Cartesian coordinates (x, y, z). Typically, this 
conversion is handled internally, and the resulting data 
is reported as a point cloud. A point cloud represents a 
collection of data points within a specific coordinate 
system. In our case, these points offer measurements 
relative to the sensor's frame. 

A 2D LiDAR sensor, on the other hand, produces a set 
of measurements, commonly referred to as a "scan". 
Each measurement within the scan provides 
information about the distance to an object or obstacle 
at a specific angle. These angle values are usually 
evenly distributed, resulting in a dense set of 
measurements across the sensor's field of view. Similar 
to 3D, the readings are relative to the sensor and 
converted in Cartesian coordinates (x, y) to later 
process them. It is worth noting that 2D is subject to 
body motion and works best when the boat is flat while 
3D is more resilient to such movements. 

In order to accurately perceive and respond to 
obstacles or plan trajectories that avoid collisions, we 
need to compensate for the boat’s motion, and thus to 
orient the point cloud generated by the sensor. To do 
that, we transform the sensor data from local (LIDAR 
sensor) frame to a global frame.  

3.2. Occupancy Images for 3D LIDAR 

An occupancy image is a 2D grid representation of the 
environment that represents the occupancy or 
occupancy likelihood of each cell in the grid. In this 
case, we are interested in a slice of points that are 
parallel to the sea surface. Each cell in the occupancy 
image contains a value that indicates the occupancy 
state of that area. This value is usually binary, 
representing whether the cell is occupied (1, one) or 
unoccupied (0, zero). These images are generated by 
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mapping the sensor data onto them. The mapping of 
sensor data to the occupancy grid involves associating 
each measurement with its corresponding cell in the 
grid. 

In our algorithm, a two-dimensional occupancy 
image is generated based on a user-defined area of 
interest (ROI) around the boat. The ROI is defined by 
setting the boundaries of the environment in x, y, and 
direction.  

Let: 

𝐠𝐫𝐢𝐝_𝐬𝐢𝐳𝐞: cell size of the occupancy image 

𝐱𝐦𝐢𝐧: minimum boundary in the x direction 

𝒚𝐦𝐢𝐧: minimum boundary in the y direction 

𝐱𝐦𝐚𝐱: maximum boundary in the x direction 

𝒚𝐦𝐚𝐱: maximum boundary in the y direction 

𝐳𝐦𝐢𝐧: lower limit of the height range 

𝐳𝐦𝐚𝐱: upper limit of the height range 

𝐱𝐢𝐧𝐝𝐞𝐱:  x grid index of a specific point in the occupancy image 

𝐲𝐢𝐧𝐝𝐞𝐱:  y grid index of a specific point in the occupancy image 

𝐱𝐫𝐞𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧:  x resolution (number of cells)of the occupancy image 

𝐲𝐫𝐞𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧:  y resolution (number of cells)of the occupancy image 

Then, occupancy image dimensions can be found via: 

xresolution = (
(xmax  −  xmin)

grid_size
)

𝑦resolution = (
(ymax  −  𝑦min)

grid_size
)

xindex =  xresolution −  floor (
(point.x − xmin)

grid size
)  (1) 

𝑦index =  𝑦resolution −  floor (
(point.y − 𝑦min)

grid size
)  (2) 

The floor function is used to round down the 
division result to the nearest integer, ensuring that the 
resulting indices correspond to valid grid cells. 

Once we define the ROI and create the occupancy 
image, we initialize all the values in the cells as not 
occupied (0). By iterating over all points in the point 
cloud and filtering out the ones not in the ROI, we find 
the grid indices (𝐱𝐢𝐧𝐝𝐞𝐱, 𝒚𝐢𝐧𝐝𝐞𝐱) of a point (x, y) on the 
image using the equations (1) and (2) and then update 
the corresponding cell value from 0 to 1 (occupied). 

In our implementation, we experimented with 
different parameters in order to capture the features as 
much as possible with such a huge data with a lot of 
noise. For example, choosing a bigger grid size 
resulting in losing small objects in the image, while a 

Figure 1.  Implementation of the proposed obstacle detection algorithm. 
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smaller grid size increased the computational 
complexity. Eventually, considering the size of the 
objects, e.g., buoys, totems, we want to detect, and the 
range and accuracy of our sensor, we chose the 
following parameters that captures objects effectively: 
𝐠𝐫𝐢𝐝_𝐬𝐢𝐳𝐞: 0.03 meters

𝐱𝐦𝐢𝐧 : − 20 meters, 𝒚𝐦𝐢𝐧 : − 20 meters 
𝐱𝐦𝐚𝐱:  20 meters,   𝒚𝐦𝐚𝐱:  20 meters 
𝐳𝐦𝐢𝐧: 0.1 meters,          𝐳𝐦𝐚𝐱: 1.5 meters from sea surface 
𝐱𝐫𝐞𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧:  1333         𝐲𝐫𝐞𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧:  1333 

An example of occupancy image created from a 3D 
LIDAR is shown in Figure 2. The topmost image (Figure 
2-a) captures the scene from a camera. Figure 2-b and
2-c depict screenshots from a top down and a 
horizontal view of the Point Cloud data visualized in
RViz, a robotics visualization tool. Lastly, Figure 2-d is
binary occupancy image, where the white pixels show
the occupied cells. Please note that the resolution does
not reflect the actual size of the created image.

(a) 

(b) 

(c) 

(d) 
Figure 2. (a) Image of the environment with a buoy and 
totem. (b, c) Top down and horizontal view of the captured 
LIDAR data represented as Point Cloud. (d) Binary 
occupancy image created from the Point Cloud in this 
scene. 

3.3. Morphological Operations 

LIDAR data contains noise due to sensor limitations or 
environmental factors such as white capping. After 
creating the binary image in the previous section, it is 
necessary to perform morphological operations to 
remove small, isolated noise points and obtain a 
cleaner binary image before proceeding with further 
analyses. 

Morphological operations are a set of mathematical 
functions, known as non-linear filters in image 
processing. Two basic morphological operators are 
Dilation and Erosion. Dilation expands the boundaries 
of objects, while erosion removes pixels from object 
boundaries. These operations are performed on binary 
images using a small binary filter or kernel known as a 
structuring element. The structuring element scans the 
image and modifies the pixels based on its size and 
shape. Commonly used shapes for structuring elements 
include rectangles, ellipses, and crosses, as depicted in 
Figure 3, which showcases 5x5 structuring elements 
with different shapes.  

Figure 3. Structuring element shapes of size 5x5 

To achieve cleaner binary images, it is crucial to 
analyze various sizes and shapes of structuring 
elements while considering the order of applying 
dilation and erosion. In Erosion, the size of the element 
determines the extent of shrinking performed, with 
larger shapes resulting in greater shrinkage. In 
dilation, as the structuring element increases in size, 
the resulting areas of the objects also become larger, 
and isolated islands of pixels also increase in size. 
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After experimenting with numerous operations, 
such as applying erosion followed by dilation or vice 
versa, using different structuring element shapes 
(rectangle, ellipse, cross), and sizes (2x2, 3x3, 5x5, 7x7, 
9x9), we found out that the combination of dilation 
with a 5x5 cross-shaped element, followed by erosion 
with a 3x3 rectangle-shaped element, and another 
erosion with a 2x2 rectangle-shaped element, yielded 
the best results for objects located within a 20-meters 
radius. With this order, we first group nearby areas into 
a single object and then remove isolated noisy regions. 
Also, using a larger structuring element for dilation 
allows for capturing neighboring pixels effectively, and 
a smaller structuring element for erosion helps 
preserve larger areas.  

Figure 4 shows the result of the morphological 
operations applied on a binary image created from 3D 
LIDAR. In all images in Figure 4, white pixels depict 
occupied cells. However, for clarity, we put red solid 
lines around the pixels indicating totems and yellow 
dashed lines around noise pixel. As we can see in Figure 
4 bottom-right image, the noise shown in top-left 
image is cleared successfully.  

Figure 4. Morphological operations 

3.4. Finding Contours 

Now that we have a better binary image, we can extract 
contours. Contours refer to the continuous curves or 
boundaries that delineate the shape of objects within an 
image. Similar to implementation of morphological 
operations, we retrieve contours with the help of 
OpenCV function implementing the algorithm of 
(Suzuki, 1985). To find contours using this method, we 
need to specify: 

1. Contour retrieval mode, which determines the
hierarchical relationship between contours.
Options include:

a. retrieving only the outermost contours

b. retrieving all contours in a flat list

c. retrieving all contours in a hierarchical
tree structure

2. Contour approximation method, which 
determines how the contour points are
approximated and compressed. One option is to 
compress horizontal, vertical, and diagonal
segments into their respective end points. The
other option is to store all the contour points 
without approximation.

Regarding the retrieval mode, we focus solely on the 
outermost contours since we do not need to analyze 
parent-child relationships or inner object parts. As for 
the approximation method, although the second option 
preserves detailed contour information, it generates a 
large number of points, consuming more memory and 
slowing down subsequent processing. Since we did not 
observe significant improvements compared to the 
first option, we decided to compress the points. 

Upon applying the Suzuki’s algorithm, we simplify 
the extracted contours while preserving their overall 
shape by employing the Douglas-Peucker algorithm 
(Saalfeld, 1999). This algorithm simplifies a curve or 
polygon by recursively dividing it into smaller 
segments and then approximating each segment with a 
line. Therefore, reducing the number of vertices leads 
to computational efficiency and better generalization 
of the shape.  

Figure 5 illustrates the outcome of contour 
extraction from the image resulting from the 
previously applied morphological operations (Figure 4 
- bottom left). The left image displays the result of the
initially obtained contours, while the right image
demonstrates the application of Douglas-Peucker's
algorithm. Please note that red circles are drawn
around the extracted contours (pink) to better
emphasize them.

Figure 5. Finding Contours 

3.5. Detection of Obstacles 

To detect buoys, totems, or similar objects, we compute 
the minimum enclosing circles based on the previously 
retrieved contours. We utilize the Smallest Enclosing 
Disks method (Welzl, 2005) implemented in OpenCV to 
find the centers and radii of the smallest circles that 
completely enclose the input contours. 
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After finding all the circles, we reject circles that are 
either too small or too big compared to the size of 
totem-like obstacles. Finally, we mark the remaining 
circles as obstacles. Figure 6 (left) visualizes the source 
sensor data, Point Cloud, which was used to create the 
binary images shown earlier in Figures 4 and 5. Figure 
6 (right) displays the detected obstacles after applying 
all the aforementioned image processing techniques. 

4. Preliminary Results

We have implemented the proposed work in Ubuntu 
18.04 environment using ROS (Robotics Operating 
System) and OpenCV libraries with C++ programming 
language.  

The algorithm is tested using sensor data captured 
from Velodyne's VLP-16 lidar sensor mounted on our 
Wave Adaptive Modular Vessel (WAM-V) boat (Figure 
7). We recorded the data using rosbag, a set of tools for 
recording from and playing back to ROS data including 
Point Cloud. The sensor sends out Point Cloud at the 
rate of 10 Hz. 

Figure 7. WAM-V with Velodyne LIDAR 

The tests are conducted on a Dell computer with 
12Th Gen Intel Core i7-12700Hx20, NVIDIA GeForce RTX 
3080 Ti GPU, and 64 GB RAM. We analyzed a sequence 
of 30 lidar samples, all of which contained two 
obstacles. Our algorithm was able to detect these 
totems 28 times successfully.  In two frames, it detected 
only one of the obstacles. In average, it took only 
0.0042 secs per frame to output the obstacles.   

In Figure 8, we show another application our 

algorithm on a real data obtained from the same device. 
Figure 8(a) captures the environment from a camera 
mounted exactly on top of the lidar with the same 
horizontal angle. The laser data is visualized in Rviz in 
Figure 8(b). Figure 8(c) depicts the binary image 
created from this reading. While the result of processed 
image is presented in Figure 8(d), the detected 
obstacles are displayed in Figure 8(e). 

5. Conclusions and Future Work

We proposed an image-processing based obstacle 
detection algorithm that aims to overcome the 
limitations of existing AI-based approaches, offering a 
rapid and easy-to-implement solution for lidar-based 
maritime perception applications. By focusing on the 
detection of nearby objects with simple shapes, such as 
buoys or totems, our algorithm provides a practical and 
efficient solution for enhancing safety and security in 
uncrewed marine systems. The results of our 
experiments demonstrate the accuracy and 
effectiveness of our algorithm, with minimal false 
positives, thereby showcasing its potential for real-
world deployment. 

Our method, which is based on Point Cloud 
processing and image segmentation is computationally 
very effective. However, determining the buoy-like 
objects in a complex environment using this approach 
is challenging because other items would interfere the 
detection of them. 
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Figure 8. Another example of totem-like obstacle 
detection using our technique. 

Figure 6. Detected obstacles from the previous scene 
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