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Abstract
Although orthopedics is becoming increasingly important as a medical domain, especially in emerging countries, the level ofautomation is still marginal and hardly any Industry 4.0 paradigms have been implemented. In this scientific work, solution conceptsfor holistic process automation in orthopedics are introduced so that prosthetic covers and orthoses for different body regions can beautomated by using AI and evaluated with sensor networks. In this process, body scan models are adapted to the conditions of theanatomy or prosthesis models, so that stability as well as fitting accuracy are given in comparison with the other half of the body.Automation in the field of orthopedics leads not only to a significant reduction in costs but can also help to close the research gapregarding objectifiability of results. The first partial aspects have already been successfully implemented for leg prostheses, armprostheses and shoe insoles with the aid of machine learning processes and physical models for elastic form fitting. As soon as theoverall process has been realized, the applicability will be validated in the following year of the project by means of clinical studies andevaluated by utilizing sensor networks for pressure and temperature measurements.
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1. Introduction

While many medical application domains have experi-enced increasing digitization in recent years, the field oforthopedic technology currently still relies on manual cus-tomization driven by expert knowledge. As a result, theproduction of orthoses in Austria is still a manual process,which is subject to the individual interpretations of themedical experts and the heterogeneous production pro-cesses.

In general, the field of computer-aided diagnostics andtherapy is still underrepresented in Europe and especiallyin Austria compared to the US and other innovative nations.While in the U.S. a radiographer (technologist in radiology)also independently performs computer-assisted analysison tomographic image data, in Austria this is still reservedfor radiologists only, although the profile of radiology tech-nicians is also constantly broadening (Rosenblattl, 2008).Orthopedic treatments are also becoming increasingly rel-evant in emerging countries. In these countries, too, or-
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thopedic expertise and human resources are still quite lim-ited, so the use of AI for process automation can providevaluable services here as well.
1.1. Motivation

As a result, WAKO Ltd. is aiming to digitize orthopedicsin the sense of Industry 4.0 with this research project.Currently, it is up to the orthopedic technician with hisdomain-specific expert knowledge to design and manufac-ture the orthoses based on experience and manual fitting.In the near future, a self-learning suggestion system withautomated patient-specific orthosis design should lead tosignificant process automation in the field of orthopedics.Ultimately, the well-tuned interaction of the patientwith his or her orthosis is decisive for increasing the qual-ity of life, which is, after all, the ultimate goal of mostorthopedic treatments. A particular challenge here is thatthe patient’s body is constantly changing during treat-ment, which is often even a desired outcome. This makesconstant adjustment of the fit of the orthosis unavoidable.To our knowledge, this can be achieved for the firsttime by an intelligently digitized orthosis as defined inthis research project.There are many treatments in which the orthosis is in-tended to exert pressure on specific parts of the body inorder to correct skeletal malpositions, for example in thegrowth phase of children, cf. scoliosis, pigeon chest (lat.
pectus carinatum), helmet therapy in case of plagiocephaly,aso.. The digitized orthosis as the objective of this researchproject can precisely measure the pressure exerted duringthe entire therapy and thus objectify the course of treat-ment quantitatively.
1.2. State of the Art

With regard to the particular research questions, variousalgorithms exist for the registration and transformationof 3D models. Rigid transformation methods for surface(BlenderTM, 2023) or object deformation (Joshi et al., 2007)are well established in common 3D modeling programslike Blender1. Besides various Blender program extensionsfor registration based on Iterative Closes Points (ICP) orDistance Maps, the Visualization Toolkit (VTK) (Schroederet al., 2006) focusing on the medical application domaincan be utilized for these mesh transformation tasks, too.By applying CT reconstruction paradigms, partial sur-faces of 3D volumes of different modality can be regis-tered against each other utilizing the iterative registrationprocess described by Backfrieder et al. (2017). The elas-tic registration process must meet the requirements of3D printing and physical strength. Finite element analy-sis as well as solid state analysis are successfully used in3D printing of elastically transformed 3D models (Schu-macher et al., 2015).

1 https://www.blender.org/

In the area of the recommendation system for the selec-tion/configuration of orthoses, the recent successes in thefield of Deep Learning allow to significantly improve theclassical and well-established expert systems in the med-ical environment in terms of extensibility (Ravuri et al.,2018). Furthermore, from the field of data science, sug-gestion systems for customer loyalty can be transferredto other domains by means of transfer learning (Zhanget al., 2020). So far, there is some scientific preliminarywork on soft sensing with considerations for the use inorthotics, but still away from actual applications on com-mercially deployable systems (Tan et al., 2020) (Zhao et al.,2016) (Villa-Parra et al., 2017). In most cases, these arealso concerned with assisting movement through sensor-controlled actuators rather than improving the fit of or-thoses.
1.3. Related Work

In the context of digitization for the production of cus-tomized 3D-printed orthoses, there are various competi-tors who offer a process for creating such orthoses. How-ever, none of these competitors offers an automated over-all process from the scan to the individual fitting to thefinal creation and optimization. One such competitor isOrtho-Team AG 2, which manufactures individualized or-thoses using an adaptive 3D printing process. Patientscan have 3D scans made at selected locations in Switzer-land, which are then used to manually create an orthosismodel in further steps. Other competitors are Trinckle3, Fior & Gentz 4, and Uniprox 5 offer orthosis configura-tors. These configurators allow the creation of orthoses ina semi-automated process, but are limited to certain bodyparts (hand: Uniprox ; legs: Trinckle and Fior & Gentz),or require a pre-created 3D model of the body part, whichmust be purchased independently of the process for cre-ating the orthosis. The orthosis configurator "Paramete"offered by Trinckle only allows a purely manual adjust-ment of the 3D models (orthosis, body part) using drag &drop. The configurator of Uniprox allows the parameter-ization of the orthosis with regard to some fixed valuessuch as material thickness or materials. The Fior & Gentzconfigurator, on the other hand, also allows parameterssuch as age, weight, height, athleticism or the clinical pic-ture to be taken into account when creating the orthosis.In addition, none of the competitors use sensors built intothe orthoses to determine pressure, temperature or hu-midity.In contrast to the aforementioned competitors, a fullyautomated, parameterizable process is to be developed inthis research project, which is not to be limited to specificbody parts, but which can be continuously expanded to

2 https://www.ortho-team.ch/3 https://trinckle.com/paramate.php4 https://www.orthesen-konfigurator.de/5 https://www.uniprox.de/de/handorthesen-konfigurator/
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include supported orthoses by means of a modular struc-ture. In addition, parameters such as clinical picture, age,weight, height or even the athleticism of the patient areto be automatically taken into account for the orthosescreated and analyzed and further optimized with the helpof sensors.A central basis for the process automation for the pro-duction of the orthoses was already created in a prelimi-nary project with a high-precision body scan taking intoaccount the position-related deformation of skin and tis-sue during the scan process. Nevertheless, any 3D bodyscan of the patient’s anatomy can be utilized as base for theproposed automated prothesis cover or orthesis modelling.The stretchable and permeable sensor networks, whichare provided by sendance GmbH, have been developed onthe basis of the LIT Soft Materials Lab’s research on softelectronics and robotics (Kettlgruber et al., 2020). Thereare also initial studies on the skin compatibility of the ma-terials used in the manufacture of soft electronics (Baum-gartner et al., 2020).
1.4. Research Questions and Project Foundation

Utilizing high-precision 3D surface models of the patient’sanatomy, the automated selection of the ideal orthosis ma-terial and blank can be carried out using a self-learningML recommendation system. Ideally, only a few patientparameters (weight, height, limb dimensions) are re-quired for the recommendation system. Thereby, the pre-selected orthosis model is adopted to the target anatomyin a fully automated way applying elastics mesh registra-tion. In this manufacturing process, the structure of thematerial (thickness, load limits, and structural integrity)must be preserved and rigid parts of the prosthesis covers,e.g. at closure points or sensor holders, must remain intheir exact rigid position during the fitting process.A key innovation of this research project is the ultra-thin and freely formable sensor network, that can be uti-lized for both, namely the quantitative evaluation of the fitaccuracy during the fitting of the orthosis but also later asa continuous monitoring of the pressure conditions dur-ing the daily wearing routine. In this way, it can also bedetermined whether the patient actually uses the medicalaid in everyday life or not.The sensor network allows the two-dimensional eval-uation of the pressure on the 3D anatomy of the patient,which will serve as a necessary feedback loop for the self-learning suggestion system in the future. It is also envis-aged that in future, in addition to pressure, temperatureand moisture will also be measured by sensors and usedfor increased wearer comfort.To enable an automated and self-adaptive system forelastic form fitting, hundreds of data sets of patients inthe areas of shoe insoles and lower leg orthoses covers arerequired respectively, all of them with associated manualand validated planning annotations provided by medicalexperts.

The focus of this research paper is to provide an out-look on the necessary development steps and the currentstate of development towards an ML-supported automatedmanufacturing system for custom-fit orthoses. The paperis structures as follows: Chapter 2 addresses the input datasets that enable the machine learning of the suggestionsystem. The implementation methods are explained inChapter 3, with the details of implementation in Chapter4. The first results and their discussion can be found inChapters 5 and 6. Finally, Chapter 7 shows the researchand development steps that are still pending.
2. Process Overview andMaterial

For adjustment of orthoses covers, several datasets arerequired. In general, the subsequently described processassumes that only one side of the body is affected in thecase of leg or arm orthoses. The basis for this is the scanof the healthy half of the body, e.g. lower leg, referred to asmesh Modelanatomy. This scan is mirrored onto the affectedside of the body, referred to as Model′anatomy. Furthermore,the 3D model of the prosthesis, denoted as Modelprothesis,must also be taken into account and the cover template,referred to as Modelcover, must be adapted. The final adap-tation is called Model′cover and must have a perfect fit to theprosthesis on the inside and a similar shape to the mir-rored body part on the outside, as well as elements to bestatically positioned for assembly. The four key datasetsinvolved are shown and delineated in Fig. 1.
2.1. Data Preparation for Deep Learning

Test data are allocated and processed in the two areas ofshoe insoles and orthosis covers, respectively.In the area of shoe insoles, either so-called blueprints,in which the patient leaves an imprint on a special foilwith their body weight or RBG scan of the foot sole areused. The impressions for the left and right leg are digi-tized via scan and processed and archived together withthe patient’s metadata in the form of an image. For thetraining of the AI models, n = 117 blueprint data sets and
n = 325 RGB scan data sets, which are available in the formof JPEG images with the resolution of 1084 × 451 pixelsfor blueprint images and 956 × 406 pixels for RGB scanimages, when each foot is extracted, are divided into thedata sets for training, validation and testing. Each foot arereferred to as ModelbpLeft and ModelbpRight, respectively forthe extracted foot. For the training of a machine learningprocess, the 3D planning models manually prepared byhuman experts are also required. Here, different correc-tive shapes of different sizes are applicable, see Fig. 2. Themanual planning variant with selection of the correctivein the most suitable size represents the ground truth forthe supervised learning procedure.In contrast to the shoe insole blueprints, several datasets per patient are required and prepared in the contextof orthosis covers. Only if the required four models for a
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Figure 1. Process Overview illustrated for prothesis covers. For a patientwith affected right leg, the healthy left leg gets 3D scanned, denoted as
Modelanatomy. The patient’s medical record is utilized to select an appro-priate cover template, denoted as Modelcover. The cover then gets adjustedaccording to the body scan, the selected cover template as well as the modelof the prothesis (Modelprothesis) leading to the fitting model Model′cover. Be-sides, the sensor grid gets adjusted to the patient anatomy too, allowingfor data evaluations on pressure, temperature and moisture during dailywearing.

Figure 2. When planning the patient-specific remedy in the form of a footorthosis adapted to the body shape, the orthopedist can select from a rangeof corrective devices in different sizes and position them on the 3D modelof the shoe insole according to the blueprint and the specific situation priorto the production process. In total, n = 6 different corrective elements fortoe, heel and ball respectively can get applied. It is further possible, that forone patient’s leg two or even all three foot regions need to get corrected.

patient study are available, this data set can actually beused for training, validation and testing of the AI model.Thereby, the input data-sets are available as triangulatedmeshes available in obj data format. The cover model
Modelcoverman , which has been adapted by medical expertsin a semi-automated way, represents the reference in the

sense of supervised learning, whereas the other 3 modelsrepresent the basis for the shape adaptation. While thereare orthoses for different body parts (forearm, upper arm,lower leg, thigh, etc.), the first step focuses on lower legcovers and n = 50 data sets are prepared for training.
3. Methodology

In this chapter, the current manual process is first outlinedbefore different AI algorithms for automatic adaptation arepresented and explained. The chapter is concluded withthe evaluation, on the one hand by applied sensor gridsand on the other hand simulation-based by means of FEManalytics.
3.1. PresentManual Process

Right now, Wako Ltd. offers a semi-automated work-flow process for orthopedists to adjust the orthoses in apatient-anatomy specific way. Therefore, the software
Geomagic Freeform (3DSystems, 2023) is customized viaautomated process pipelines and features the use of a hap-tic 3D mouse for precise 3D navigation and interaction.While some elements such as the zipper or locking ele-ments are placed in an automated way, the orthoses shapeitself needs to be adjusted by the medical expert by drag-ging the 3D mesh model according to the reference patientanatomy. Thereby, the reference patient anatomy is pro-vided either as 2D blueprint projected onto the 3D shoeinlay mesh or as 3D body scan meshes in case of lower legorthoses covers. Nevertheless, the current process showssome notable drawbacks. It takes a lot of time to drag thetemplate model to perfectly fit the patient anatomy in allthree dimensions and the results are subjective and a mat-ter of experience. Furthermore, tools such as freeformsoffer a broad palette of functionality but lead to a steeplearning curve, too. Thus, to allow for both, cost reductionand quantitative results, an automated process for adap-tive modelling of orthoses and shoe insoles is necessitated.
3.2. Automated Adjustment

For automated adjustment, two different aspects need tobe handled. At first, an AI model gets trained to predict thetarget transformation. Subsequently, an ARAP (as-rigid-as-possible) algorithm is utilized to deform the model ac-cording to the AI prediction.While the final mesh deformation strategy can be ap-plied in a generic way by utilizing the ARAP algorithm,different AI models and strategies are required for the var-ious body parts to consider as delineated in the subsequentparagraphs.
3.2.1. AI Prediction on Shoe InlaysFor training the AI model on predicting the shoe inlaycorrectives, the blueprints and RGB foot images are usedas visual input for training of the correctives, cf. Fig. 3
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Figure 3. Exemplary input images for blueprint and RGB footprint. First,the artifacts are removed from the background form and the line drawingsof the medical experts. Then the images are split into left/right foot, mir-rored and normalized.

h x w

Convolution 2D

MaxPooling

8 16 32

Dropout

Dense

32

16

3

h
w

image height
image width

Figure 4. By applying four convolutional layers the input image is gettingdown-scaled to finally allow the categorical classification by using fully-connected layers

for one particular blueprint and RGB input image, respec-tively. Therefore, input images get mirrored to the samebody side and the PhotoScissors version 0.96 algorithmis used to remove background artefacts from the visualinput data. To enriched the amount of training data, sev-eral data augmentation strategies get applied. Thereby,blurring, gamma corrections, histogram adaptions andaffine rigid body transformations are utilized. The chosennetwork architecture is shown in Fig. 4. Further details onthe chosen Tensorflow network architecture, the variousdata augmentation strategies and a quantitative evalua-tion of the achieved results can be found in Bauernfeindet al. (2023).
3.2.2. AI Prediction on Covers for Legs and ArmsHandling input tensors of varying size, as it would be re-quired for meshes of different size and resolution, is alwayshard to handle for deep learning architectures. Thus, theautomated mesh adjustment problem as delineated in Fig.6 is reduced from continuous 3D to discrete 2D domain.For tubular limbs such as upper arm, lower arm, upper

6 https://photoscissors.com/; accessed on 14.04.2023

Figure 5. Illustration of the projection from the 3D mesh to 2D imagesfor lower leg cover template, orthogonal to the skeleton axis (grey). At
n = 512 equidistant axial slice positions (red ellipsis), the distances at 1°rotational granularity get evaluated (blue lines). The discrete and sampledcircumference of some slices are charted in the lower row with all of themstacked in the lower right. Thus, the pre-processing allows to derive imagesof size 512 × 360 for input meshes of arbitrary resolution.

leg and lower leg, the inner limb skeleton is calculatedby utilizing principal components analysis. Utilizing thederived skeletal representation, the axial circumferencesat discrete positions get projected from 3D space to a 2Dimage space similar to cylinder projection in U,V texturecoordinate mapping. The transformation from 3D to 2Dtogether with exemplary results is presented in Fig. 5.
Thanks to this transformation strategy, all threerequired input models for training (Model′anatomy,

Modelprothesis, Modelcover) as well as the semi-automatically adjusted cover model (Model′cover) astarget result can get transformed from 3D to 2D represen-tation, allowing for conventional multi-channel tensorrepresentation in training encoder/decoder deep learningnetwork architecture such as U-net Ronneberger et al.(2015). Therefore, the conventional 3-channel RGB layeris replaced by the three model layers as delineated beforein contrast to Ronneberg’s U-net.
3.3. Sensor-Based Evaluation

As stated previously, adjustment steps mostly rely on ex-pert knowledge by a (medical) professional and subjec-tive feedback by the patient. Utilizing a sensor grid thatdistributes sensing points across the orthopedic solutionallows for quantitatively and objectively assessing its fit.Beyond key indicators for fit (applied pressure) and skinhealth (e.g. via surface temperature or humidity to indi-cate inflammations and abrasions), it further allows forextracting adherence and usage statistics (cf. Ngueleu et al.(2019)) as features for automated adjustments of futureorthoses. To be able to utilize such a sensor grid for thispurpose, it must comply with several requirements: (I)skin compatibility, (II) adaptability to various 3D forms

https://photoscissors.com/


           

Figure 6. Illustration on the automated mesh adjustment for a lower-leg prothesis cover. An anatomical scan of the healthy right leg (denotedas mirrored Model′anatomy) is acquired and used for adjustment along theorthosis area (orange color) to perfectly match the right leg in shape. Incontrast, at the upper and lower parts of the prothesis (in red color), a tightfit according to the prothesis model Modelprothesis is required for stability.The resulting cover model Model′cover finally can get post-processed in asemi-automated manner.

of orthopedic solutions, and (III) cost-effectiveness. Thelatter could, for example, be realized by the self-learningML system by optimizing type, positioning, and count ofsensors employed. Factors such as confidence in the fit(full confidence → no sensors), previously seen pressurepatterns (some areas receive no pressure → now validationsensors needed), or degree of non-fit (low pressure values→ unlikely abrasions → no temperature/humidity sensorsneeded) will help the system in self-optimizing cost andcomplexity as long as the sensor grid itself is customizablein a sufficient manner.
3.4. Fine-Tuning in Manufacturing and Customization

Although it can be assumed that AI models can and willcontribute to a very high degree of automation in the nearfuture, manual inspection of the fitted models by medicalexperts is still indispensable. The orthopedists alone areresponsible for the manufactured models, so it must bepossible to make any corrections to the fit in a few simplesteps in a post-processing step prior to 3D printing. Forthis purpose, a UI was implemented using Three.js. Usingelastic grids, the selected diameters can be adjusted locallyand transformed using ARAP algorithms, see Fig. 7.
4. Implementation
For the algorithmic aspects, we utilize Python in version3.9 as well as Tensorflow in version 2.10 together with the
Keras backend. For aspects of data pre-processing and dataaugmentation, we utilize imgaug version 0.4.For visualization and 3D mesh manipulation, the VTK

Figure 7. Illustration of the semi-automated adjustment in case of requiredpost-processing. With a grid aligned according to the skeleton centerline,the user can move local grid elements to allow for elastic mesh deformationutilizing the ARAP algorithm.

framework version 9.1 is accessed via available Pythonwrappers.On the UI side for semi-automatic adjustment of themeshes or for customizing and post-adjusting the ad-justed models, the web technology used is three.js in ver-sion r151.To handle the hybrid stack of programming languagesand platform that are required in this holistic project foun-dation, automated database wrappers and object mappingstrategies are implemented to allow for smooth and noveltechnology interoperability and thus reduce the requiredprogramming effort, see Praschl et al. (2023) for details.
5. Results and Evaluation

In this chapter, the currently available prototypes for auto-matic shape adjustment and sensor integration are testedand evaluated.
5.1. Automated Shape Adjustment

With respect to the shoe inserts, which are determinedbased on the blueprints and RGB images respectively, thefirst AI model can be considered a successful proof of con-cept. Although only about 1000 training images could beused so far, the classification results for individual modelcorrectives, such as Q1(transverse meta padding in size1-5) and Q2(transverse meta padding in size 2-5) witha validation accuracy of 96% and 84%, respectively, arealready remarkable.For the tubular models for arms and legs, the 3D modelcan be successfully transformed into 2D projection images,which will be used for training U-Net deep learning archi-tectures in the future. As can be seen in Fig. 8, the bodyshape stands out very well in the 2D representation. Theleft image covers a high resolution of 512 × 360, whereasthe right image is quantized by a factor of 4, i.e. only 128
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Figure 8. For each of the sampled axial slices along the skeleton of thebody limb (x-axis), centerline projections at a granularity of 1◦ degree getevaluated (y-axis) and the distances are plotted a scalar pixel values . Theright 2D projection is calculated at significantly lower resolution.

Figure 9. The generic forearm orthosis shown at the top initially has a poorfit with regard to the patient’s anatomy (middle row) and is significantlybetter adapted to the respective body shape by adjusting the axial distancesand with the aid of the ARAP algorithm (bottom row).

axial slices are sampled at 4◦ increments with respect tothe angle. Nevertheless, even with the low-resolution dis-play, the body anatomy is very well resolved. This is animportant finding, as it allows the size of the input tensorsto be kept relatively compact (small input images and thusa lower amount of model weights) for the Deep Learningmethods to be applied.Regarding the model shape adjustment to follow, theseoptimized local distances will allow to perfectly fit modeltemplates and patient anatomy in future as first test runswith the ARAP elastic deformation applied in an axial wayindicate, cf. Fig. 9.
5.2. Sensor-Integration

The sendance-grid provided by sendance GmbH satisfiesthe previously stated requirements (cf. section 3.3) by us-ing a gelatin-based biogel or medical fabric as a medium(I), stretchable and deformable circuitry (II), and fully cus-tomizable sensor positions, types, etc. (III), see Koeppe

et al. (2022). Additionally, to further allow seamless in-tegration into the proposed process, sendance GmbH iscurrently implementing (1.) a fully digitized and auto-mated production process with production machines thatcan produce the customized grids directly in the ortho-pedic manufacturer’s facility, and (2.) an IoT-like cloudinfrastructure to close the data feedback loop (i.e. gathersensor data and feed it back to the ML system).
6. Discussion and Conclusion

Automation in orthopedics can be in a variety of areas,from shoe insoles to prosthetic covers to orthotics for armsand legs. With the solution concept presented, AI can beused to automate the process one step further. While verypromising results are already available for individual pro-cess steps, the overall system must be implemented as aseamless manufacturing process in the next few years ofthe project. A major benefit will come specifically from thenovel sensor technology, which will be able to quantita-tively assess wearing comfort and fit very well.A current limiting factor is the lack of generalizabilityin orthopedics. Many different body parts require verydifferent medical remedies. While in the course of thiswork exemplary areas are addressed and automated bymeans of AI, the holistic generalization is still the contentof future research.Currently, the amount of training data for the AI modelshas to be significantly increased and the bias in the classdistribution, especially for shoe insoles, has to be compen-sated by applying data science methods. The way in whichthe input data is prepared will also require innovation inthe area of data augmentation, since affine aspects suchas the position and orientation of the models do not needto be varied in a meaningful way, cf. Procrustes Align-ment, and yet a larger artificial stock of training data willbe necessary.
7. Outlook

In this final chapter, an outlook is given on the upcomingdevelopments both on the part of automated model fittingand on the part of sensor technology.
7.1. AutomatedModel Adjustment

In this area, the aim in the future is to gradually advancethe level of automation and expand it to new body regions,such as the head with custom-fit helmet technology. Fur-thermore, the quantitative feedbacks of the sensor net-works must also be taken into account in the future.In the case of orthoses, the aesthetic aspect is of courseof central importance in addition to functional expediencyand accuracy of fit. Wako Ltd. will therefore enable thebranding of its own orthosis through individual textureimages used for a 3D embossing pattern. It is thereforeconceivable to apply the logo of one’s own soccer club to



           

the orthosis cover. To ensure that the embossing does notinvalidate the stability of the overall model, an FEM (finiteelement modeling) analysis is currently being developedfor this purpose. FEM will then be used to validate andconfirm the findings from the sensor technology.In the field of medical applicability, a clinical study willbe started in the course of the calendar year 2023 togetherwith experts and patients of local orthopedic clinics or theMedical Faculty of Johannes Kepler University Linz (KUK).
7.2. Sensing

While we will further research on suitable sensor types,parameterizations, etc. to gather feedback data for our MLsystem, we also intend to investigate utilizing the gridsfor providing feedback to the patient directly. A supposed“bad fit”, caused by a lack of adherence to, e.g., training rou-tines or intended usage, could be prevented by clear (andundeniable) communication of observed usage (Bashiret al., 2022) or introducing gamification mechanics to fa-cilitate adherence Dannehl et al. (2016), forming a promis-ing opportunity when integrated on a broad scale with anautomated system.
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