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Abstract
Several biomedical applications, such as posture evaluation or gait monitoring, require the identification or at least comparison of motion trajectories. In this paper, we use a model-based approach for motion trajectory identification. The approach is based on the Dynamic-Time-Warping (DTW)-algorithm. However, the DTW-algorithm is computationally expensive, so we present a performance-optimized DTW-based identification approach. This approach utilizes the Douglas-Peucker algorithm to reduce the number of points of the motion trajectories. It is evaluated using a set of motion trajectories, demonstrating that the approach is able to achieve a significant speed-up while maintaining the accuracy of the DTW-algorithm for motion identification. This makes it possible to identify motion trajectories on embedded systems with low computational power commonly used in biomedical applications.
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1. Introduction

Embedded systems open up completely new opportunitiesin biotechnology and medical therapy. The integration ofsensors and actuators into an adaptive hardware/softwareplatform expands functionality to include the detection ofstates or the execution of actions. In this context, a widerange of applications can be found, particularly in therapyand rehabilitation, which can support conservative formsof treatment. The overall focus is on continuous data ac-quisition as well as online and offline data processing and,in particular, identification based on correlated sensor in-formation and data fusion. We have introduced in (Klinger,2016) and (Klinger, 2019) and (Klinger, 2021) several ap-plications and methods to acquire motion data to providea rehabilitation monitoring or a postural evaluation. Allthese applications were realized based on the platformwith integrated Internet of Things (IoT)-modules.
In this paper we present results for the speed-up ofmotion-trajectory identification from a set of motion-

trajectories saved in a motion-library. In focus are specificapplications, described in more detail in section 2, wherethe motion-trajectory identification is one of the centraltasks. Our objective is to integrate the whole motion tra-jectory identification into the IoT-modules to improve thePlug-and-Play (PnP)-factor of the system and to increasethe use of peripheral intelligence, formed in the ESP32-based IoT- modules (Espressif, 2019). We present an iden-tification algorithm, based on the dynamic time-warpingmethod, and its speed-up and performance optimizationto enable the use on IoT-modules with a limited computerperformance including an optimized application-specificreal-time processing.
2. Biomedical Applications and Embedded Sys-

tems

There are lots of biomedical applications existing usingmotion-trajectories for evaluation and/or control of bodymotions or movement of extremities. We describe some
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Figure 1. Low-level system architecture.

applications for prosthesis control, gait monitoring andposture evaluation, all based on our system platform in-cluding the use of IoT-modules.The system architecture is a key factor for supporting sta-tionary and mobile applications. Mobile applications havespecial requirements, for example in terms of portability,energy consumption, computing performance and inte-gration into existing infrastructures. Therefore, the sys-tem architecture used is based on the system we have intro-duced in (Klinger and Bohlmann, 2020). IoT-componentswere added to the original system to expand the range offunctions. These IoT-components enable wireless con-nection of the different system components to a centralunit. Using the platform architecture, the different mod-ules span their own network (by Bluetooth Low Energy(BLE) or wireless local area network according IEEE 802.11(WiFi)) and connect for a longer range to a gateway. Thisgateway, i.e. a smartphone, enables integration of the sys-tem via WiFi or Global System for Mobile Communication(GSM), i.e. cellular-secured Internet. To realize a platform-based system architecture providing a mobile operationwhich is only person- but not place-bound, the followingcharacteristics are essential:
C1 Independence from a specific equipment of the envi-ronment.C2 Integration of all required sensors into the platform.

These characteristics allow the platform to be almostuniversally adaptable. For example, the gait evaluationbased on shoe-integrated pressure sensors, described in(Klinger, 2016), have to be replaced by another sensor con-figuration to fit these requirements. Other current solu-tions, described in (Matuska et al., 2020) and (Bourah-moune et al., 2022), follow a different approach and out-source the functionality to external, non-personal equip-ment (chairs, cushions). This allows an application onlyin dedicated locations. The lowest level of the platformarchitecture used here, is depicted in Figure 1. The localIoT-System, called in the following SmartBox, consists al-

ways of an ESP32 (Espressif, 2019) and application specificsensors; here we have only connected an micro-electro-mechanical systems (MEMS)-sensor with 6-axis (acceler-ation (x, y, z) and gyro (x, y, z)), an MPU6050. The smart-phone is connected for configuration and data exchange,for example to download all raw-data saved on the ESP32.The other levels are not in focus here, only a short descrip-tion should be enough: The cloud database is the sink forall data from all local IoT-systems and the source for alldata mining and data-based fusion and identification op-erations. This architecture integrates all IoT-systems andsupports different modes and their corresponding scenar-ios (Klinger and Bohlmann, 2020). In all applications, wetry to improve the PnP-character when attempting to fita system mode that requires as little system complexityfor measurement and ease of operation as possible. Thismeans that the smartphone is only necessary for certainindications and events. A more advanced system mode,which allows the raw data of the measurement to be trans-ferred at certain times from the local system to a cloudarchitecture and thus also to a server for evaluation, hasalready been presented in (Klinger and Bohlmann, 2020).
Especially for gait monitoring and posture evaluationthe main task consists in the comparison of trajectoriesin order to identify specific movements. In the followingsubsections we introduce this context in more detail. In ad-dition, we will cite related work in subsection 2.3 to betterclassify this paper.

2.1. Posture Evaluation

Good posture is the end product of a complex combinationof mechanical, neurological and psychological factors, in-cluding muscle strength and flexibility, vision, sense oftouch, balance, self-esteem, kinesthetic awareness and awell-functioning vestibular system (Goodman and Fuller,2015). Good posture is desirable when sitting and standing,as well as when walking and running (Heidenfelder, 2011;Ito, 2008). Because of the number of parts and functionsinvolved in good posture, a postural assessment can servea variety of purposes, but let us here focus on problemstriggered from lots of hours when working from home re-ducing the movement possibilities for compensation andaggravating all posture problems.A major challenge is the calibration of an approximatelyindividual perfect posture. What is needed is an absolutepositioning, which cannot be achieved with the MEMS-sensors. Currently, the calibration is performed by a setof motion prescriptions (Krankenkasse, 2008), which aresupplemented by various stretching movements of thearms and movements of the upper body and head accord-ing to fixed calibration movements. The SmartBoxes, anESP32-based microcontroller including the required sen-sor systems, are shown in Figure 2; the both upper ones forposture evaluation, the both on the ankles for gait moni-toring (see section 2.2) (Klinger, 2021). The central tasksare for example:
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Figure 2. Position of the SmartBoxes for posture evaluation and gait moni-toring.

1. Detection of prolonged rigid postures.2. Detection of risky postures, by crossing legs, strongunilateral bending to the right left or front.3. Sensitization of the user through recognition of per-sonal habitual postures.4. Suggestion of compensatory movements according toa selection based on detected postures.
For tasks 2 to 4 an identification and a library of motiontrajectories is essential. As mentioned, this identificationof motion trajectories is in focus, taking the reliability ofthe identification and the required computing power intoaccount.
2.2. Gait Monitoring

The evaluation of the gait of apparently healthy personsis an important method to analyze an imbalance or dys-function which can result in health problems. These prob-lems can be evaluated using a continuous gait monitoringto identify pathological or abnormal gaits. Paying atten-tion to how you walk and run reduces unnecessary musclestrain (Hartmann et al., 2013). In addition, this gait mon-itoring can be used to monitor and optimize movementsequences within the sports segment.Our first approach, presented in (Klinger, 2016), was basedon force-sensors, measuring at three different positions inthe sole, shown in Figure 3. The results of this system, pre-sented in Figure 4, provide detailed information related tothe three sensor positions. The disadvantage of the systemis the complexity and the integration of the sensor facilityinto a shoe or the addition of the appropriately equippedsole to a normal shoe, taking into account the constraintthat both shoes must be equipped. So the new system willfollow a much more PnP paradigm and consist only of theso-called SmartBoxes, realized as simple wearables. Thismeans that a special shoe is no longer necessary, making

Figure 3. Positions of the force sensors in side the sole.

Figure 4. Normal gait, one step, right leg: Vertical Force plotted over timefor 3 sensors (1 (red), 2 (green), 3 (blue), sum(1,2,3) (magenta), see Figure 3.

it much easier and more economical to use. However, thisalso means that only the aggregated force information isavailable, which is shown in Figure 4 in magenta as anenvelope. Whether the information, which is measured onthe basis of the 6-dimensional MEMS-sensors and trans-formed into forces, is sufficient, is still under testing. Anew function is also in central focus: The comparison ofthe two force curves in both feet, which is achieved on thebasis of a trajectory comparison. For this purpose, unlikein posture evaluation, no library of trajectories is neces-sary, but the current trajectory of one foot is used as acomparative trajectory of the other foot. The objective isto detect inequalities in the gait pattern and to use theseagainst the background of a preventive evaluation in or-der to quickly detect common causes of gait disorders, forexample due to neurological, orthopedic or psychologicalreasons. This vice-versa gait monitoring is a new projectin the context of biomedical applications.
2.3. Related Work

There are several approaches to motion identification,reflecting the wide range of applications. For example,Chambers et al. provide an extensive review in (Cham-bers et al., 2015) of the use of wearable microsensors fordetecting sport-specific movements (e.g. tennis, golf). Inparticular, they highlight the added value of using multiplesensors whose measurements are combined.
There are also attempts to use motion identificationto help with the rehabilitation of patients, such as os-
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teoarthritis (Huang et al., 2017). The cited authors usesupport vector machines as a way to detect various move-ments of the knee joint and identify rehabilitation exer-cises. While the data is measured with a wearable sen-sor, the classification is performed on a desktop computer(running MATLAB (TheMathWorks,Inc., 2023)). Thismakes the approach unsuitable for identifying movementsin near real-time.The presented approach in this paper aims at makingsuch an identification possible instantly on a microcon-troller, or IoT-System. This requires a significant reduc-tion in the computational effort without losing accuracy,making it possible to deliver instant feedback to the userwithout the need for a desktop computer or a time delay.
3. Identification of motion trajectory

Movements can be performed at different speeds, i.e. thetrajectory does not change, only the time required formovement. From this arises for the task here the require-ment to identify two trajectories consisting of time seriesof positions as the same, even if they differ in their tem-poral course.The 6-axis information of the MEMS-modules must beconverted into a time series of positions and an orienta-tion, the so-called quaternions. Subsequently, the compar-ison of two trajectories, for example the trajectory of themovement just detected, with one trajectory each from acomparison library is performed. The comparison is donewith the method of dynamic time-warping, which will bedescribed in the following section.We subsequently evaluate the optimization potential re-lated to our requirements in section 3.2.
3.1. Dynamic Time-warping trajectory identification

The Dynamic-Time-Warping (DTW)-algorithm (Jablon-ski, 2012; Srivastava and Sinha, 2016) is used to checksequences of values of different lengths in a pattern matchfor matches. For this purpose, the dynamic time nor-malization algorithm generates warping paths by whichmatches can be detected by backtracking and differencemeasures despite time distortion or different speeds. Theeponymous "warping" of sequences allows us to detectcommonalities and matching patterns between sequenceseven when they differ in length or speed. We use the al-gorithm to lend captured motion trajectories with motiontrajectories from a library.For example, if two different walking sequences areto be examined for matches (gait monitoring, see sec-tion 2.2), the algorithm is able to detect identical patternseven if the walking speed or distance traveled is different.In addition, pattern measurement and pattern recog-nition in value series can be used to examine similar sys-tem developments even over different time periods. Forthis reason, the DTW-algorithm is also used in forward-looking technologies such as Machine Learning to train

the analysis and reaction capabilities of self-learning sys-tems and to evaluate data sets more efficiently. Differentrules and conditions are applied:
• Each value of a sequence must be compared with oneor more values of the second sequence (and vice versa).• The first value of a sequence must be compared withthe first value of the second sequence.• The last value of a sequence must be compared with thelast value of the second sequence.• The mapping of the value series of the first sequenceto the value series of the second sequence must in-crease monotonically. Values at the beginning and endof the sequences must therefore match in their posi-tions, without omission or overlap.

More and more algorithms could be accelerated by sev-eral orders of magnitude by implementing them on GPUs.Here, the application on an ESP32 is in focus to identifyacquired motion-trajectories locally to get an advantagefrom the use of peripheral intelligence, so speed-up byparallelization is not appropriate.
3.2. Performance Optimization

The DTW-algorithm compares two trajectories based onthe samples that form the respective target trajectory.DTW gives a non-linear (elastic) alignment. The com-plexity of computing DTW is O(m · n) wherem and n arerepresenting the length of both sequences.In order to run the algorithm on a module with low com-puting power, strategies have to be found to reduce thecomputational effort. Thus, the objective must be to re-duce the number of descriptive points of a trajectory. Thenumber of points of a trajectory depends on the samplingfrequency. In order to be able to describe a movement suffi-ciently accurately, the sampling rate must be at least 30 Hzup to 100 Hz for the movements in focus here. Reducingthe sampling frequency means an equidistant reductionand thus no information-related reduction of the samplingpoints. What does this mean? Depending on the motionbeing performed, sampling points may or may not containredundant information. For a straight line, only two pointsare necessary, all intermediate points are practically re-dundant. This does not apply for curve that is not modeledon a ideal circular path. Here, many more sample pointsare necessary to be able to map the course accordingly.The Douglas-Peucker algorithm (Douglas and Peucker,1973; Winnepenninckx, 2016) is a curve smoothing algo-rithm in the field of vector graphics. The objective is tosimplify a line given by a sequence of points by omittingindividual points (weeding) in such a way that the roughshape is preserved. The degree of coarsening is controlledby specifying the maximum distance between the originalpoints and the approximating line.This algorithm is well suited for this application, sinceit omits individual points by preserving other ones, so itreduces the runtime complexity of the DTW-algorithm.
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Figure 5. Douglas-Peucker-algorithm: Reduction of descriptive non-redundant points of a trajectory.

Figure 6. Example for Douglas-Peucker

In Figure 5 an example is shown, describing the recur-sive algorithm by the steps 1 to 6. Here it can be seen thatthe algorithm, starting in step 1, omits intermediate pointswith low information content. To determine the informa-tion content of a point in a geometry, first the farthestpoint is determined from the starting point. Now thesepoints are connected with an imaginary line. All pointswhich lie between the two points in the order given by thepolygon are now considered in relation to this line. If allthese points are in the minimum distance to the line, theyare omitted, if some are outside, the new point furthestaway is again connected to the starting point with an imag-inary line. Again, all points between the starting point andthe new point are considered in relation to the new line.If a point lies outside again, the procedure is repeated un-til no point lies outside. Points within the distance aredefined as redundant. The point considered relevant isdefined as the new starting point. The entire procedureis repeated until all points of the polygon are defined asrelevant or irrelevant. As mentioned, the advantage of thisis that no new points are defined, only unnecessary onesare omitted. And, of course, the algorithm allows differ-ent Peucker-Level (PL), described by different maximumdistances. This helps to scale the number of points, de-scribing the original trajectory and thereby the complexity.In Figure 6 another example with a curve (white points)is shown and a corresponding PL. In the next section wewill evaluate this optimization with a verification process.

4. Verification
To verify the optimized motion-trajectory identificationwe have used a verification setup, described by a set oftemplate-vectors and test-vectors. The sensor values ofthe 6-axis sensor on the ESP32-module are acquired (ac-celeration and rotation rate each in x, y and z). Subse-quently, the sensor values are transformed into a trajectoryand corresponding orientation by means of data fusion,stored as a time series as quaternions. The following DTWbased on quaternions, compares the data of the respec-tive test set with each element from the trajectory library(templates).An identification of the test set is realized with a dis-tance metric. Every comparison of two trajectories witha distance metric smaller than a given radius leads to amapping of the current trajectory to the library trajectory,so there is a positive identification. This radius dependson the number of points of each trajectory, thus both ex-plicitly on the data rate of the sensor system, and on thecorresponding PL.This radius can be determined by a calibration mech-anism when the system is first used. Such a calibrationmechanism could ask the user to perform given motions,and thereby determines an optimal radius for discriminat-ing between identified and unidentified trajectories.The following motion-trajectories are defined:
• DownThe right arm is raised horizontally, the elbow is bentat a right angle. The hand is now moved down so thatthe forearm points downward. The starting position isthen assumed.• LeftThe right arm is raised horizontally, the elbow is bentat a right angle. The hand is now moved to the chestand back again.• RightThe right arm is raised horizontally, the elbow is bent ata right angle. The arm is now stretched out and movedback to the starting position.• TwistThe right arm is raised horizontally, the elbow is bentat a right angle. Now the hand is moved once back andforth over the ulna and radius.• UpThe right arm is raised horizontally, the elbow is bentat a right angle. In contrast to the down movement, thearm is rotated upward at the elbow and brought back tothe starting position.

During the verification, we have chosen one of thetemplate-vectors as test-vector and try to identify thiscompared to the template-vectors. Every test-setup con-sists of 60 tests, where different test-vectors are chosenand identified with the DTW-algorithm.The results of the different verification setups areshown in Figure 7. Five different PL have been defined,reducing the number of points of the template-vector and
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Figure 7. Specification of identification reliability and computing time depending on the respective Peucker-Level.

the test-vector from 100% down to 1%. Therefore, theprocessing time can be reduced remarkable with a minorloss of identification reliability. The best result is givenby PL2: Here the identification reliability is still on 100%,the speed-up by reducing redundant points has a factor of23,5. The computing power to derive the sample-pointsaccording the PL hardly noticeably deteriorate the result,so that there is a very good speed-up of 20.The verification results show that the efficiency of theidentification of the motion trajectories can be improvedenormously. Using IoT-devices in the context of wearables,this is a major advantage. In the summary, we will discussthe limitations and challenges of the approach presentedhere.

5. Conclusions

The use of a platform for the acquisition and processingof data and states in biomedical applications allows highsystem complexity for different application scenarios andalso provides high system flexibility. An integration ofmicrocontroller-based IoT-modules into the platform en-ables decentralized intelligence, so functions and evalu-ations can be executed locally and therefore i.e. an iden-tification of application-specific events can be realized ata low system level. This helps to reduce communication

effort and improves a realtime high level data fusion basedon simple events and not on an unmanageable amount ofdata. For such low-level data-based methods much com-puting time and computing performance is required.
In this paper, the objective was to execute an reliableidentification of motion-trajectories already on the Smart-Boxes (IoT-modules, ESP32) in order to have a more sim-ple application in mobile operation; in other words tohave a better PnP-behavior. This identification of motion-trajectories is used in different application scenarios, wehave focused here on posture evaluation (see section 2.1)and gait monitoring (see section 2.2). We have reduced thecomputational effort for this identification process withvery high reliability by a factor of 20. Using the DTW-algorithm and Douglas-Peucker smoothing algorithm, wehave realized a scalable solution by defining different PL.The management of different PL is simple because a higherPL omits only more points, never generate new ones.However, there are some limitations of these results. Inparticular, this concerns the matching between templateand test vectors, which is presented here in an idealizedway. To improve the hit rate, it is useful if the test vec-tor, related to a specific movement, has a clearly definedstart and end point. Otherwise, artifacts from other move-ments will get into the alignment. Such a mixed motion isnot present in the test vectors used here and therefore a
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challenge.The further work has the following key aspects:
• Establishing the connection between the two ankle-attached SmartBoxes in order to be able to perform aPnP gait monitoring.• Establishing and testing new communication architec-tures between the communication participants Smart-Boxes and smartphone, depending on the operatingmode.• Extension of verification patterns and procedures tooptimize the reliability of trajectory identification.• Optimization of calibration and initialization proce-dures.• Taking the direction in 3-d space between the first twoand the last two points of a trajectory into account, inorder to get a quick decision at which stage of a move-ment (e.g. beginning, middle, end) the comparison ismade.• Testing the power consumption in different scenariosto get a reliable statement about the operating time inmobile operation.
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