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Abstract 

Emergency Medical Service (EMS) is a prehospital medical service. EMS faces many challenges to ensure efficient, effective, and 
equal service. Hospital selection is an important decision that impacts EMS performance, especially whiten an Emergency 
Department (ED) overcrowding context. The present paper aims to develop an EMS simulation model, a Design of Experiment 
(DOE) and an Artificial Neural Network (ANN) model as the first steps in developing a metamodeling-based optimization 
approach for optimizing hospital selection decisions. The simulation model was designed, validated and used to generate 3 
different data sizes that serves as input for ANN model. The ANN model performances are compared and analyzed for different 
values of hyperparameters. Metamodels gives promising results in terms of accuracy and robustness. They may be used as 
surrogate model to optimize hospital selection decision, transport time, and improve the patient overall health care experience  

Keywords: Hospital selection, Emergency medical service, Discrete Event Simulation, Design of Experiment, Artificial Neural 
Network. 

1. Introduction
Emergency medical service (EMS) is the prehospital

care service. It provides on-scene necessary care to 
stabilize patients and transport them to the hospital (if 
required). EMS quality impacts directly the patient’s 
welfare. Ensuring efficient, effective, and fair EMS 
service is compulsory to secure patient care experience 
(Aringhieri et al., 2017). 

EMS is a complex process marked by stochastic 
nature. Due to the multiple stakeholders (i.e., patients, 
human resources, government..) involved and their 
interrelationships. Analytical approaches like 
mathematical programming and queueing theory are 
difficult to use to express this complexity. As a result, 
simulation has been widely employed in the literature 

since this method enables accurate, detailed models of 
patient flow via the Emergency Medical Service (ECS) 
that account for complexity and stochasticity(L. 
Aboueljinane et al., 2013; Cimellaro et al., 2011)  

Simulation techniques are descriptive techniques to 
support decision-making. However, simulation 
techniques are time and data-consuming. 
Furthermore, they present many scenarios without any 
optimality proof (Defraeye & Van Nieuwenhuyse, 2015; 
Vanbrabant et al., 2019). To overcome these drawbacks 
Simulation-Based Optimization (SBO) is used. The 
method uses optimization techniques to determine 
optimal solutions then it evaluates them through 
simulation;  

Simulation-Based Metamodeling (SBM) is a 
common SBO method. SBM seeks an explicit expression 
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(i.e., metamodel) that modal simulation inputs/outputs 
relationship. The metamodel is a model that describes 
another modal. The metamodel expression is used as an 
objective function. 

  EMS faces many challenges on the strategic, 
tactical, and operational levels. The main crucial 
decisions are ambulance location, relocation, 
dispatching, routing, and hospital selection (Aringhieri 
et al., 2017; Lee, 2014). The ambulance location problem 
seeks an optimal ambulance base location. Relocation 
problems adjust ambulance location with temporal and 
geographical demand changes.  Dispatching decision 
assigns ambulance to an urgent call. The call is directly 
assigned if the ambulance is available. If not call is 
queued until the unit is available. After reaching the 
emergency site, the ambulance serves the patients and 
transfers them to the hospital (if necessary). The 
hospital selection problem seeks appropriate hospitals 
that optimize transfer time. After reaching the hospital, 
the ambulance is unavailable. It waits for an idle ED bed 
to discharge the patient. The waiting time until an 
ambulance is available is called turnaround time or 
offload time (Lee, 2014; Leo et al., 2016). 

ED is the main hospital entrance. ED treats accident 
victims as well as medical and surgical crises. ED 

overcrowding problems extend the waiting time and 
threaten patient life (Yousefi et al., 2018). ED 
performance cannot be enhanced just by resource 
scaling; sophisticated prioritization methods as well as 
innovative organizational designs may prove to be 
more successful than straightforward capacity 
planning (Leo et al., 2016). Thus, selecting an 
appropriate hospital is a crucial decision that should be 
managed.  

According to the literature, Hospital selection is one 
of the least researched topics in EMS literature (Lee, 
2014). Most studies focus on ambulance's location, 
relocation, dispatching, and routing policies (Caicedo 
Rolón & Rivera Cadavid, 2021). The objective of this 
paper is to investigate the impact of hospital selection 
policy on transfer time.  

Furthermore to apply SBM to hospital selection 
problems. To the best of our knowledge, no study 
tackles hospital selection through the SBM approach. 

The paper is organized into 7 sections. Section 2 
presents available literature reviews on EMS hospital 
selection. Section 3: present the EMS process. Section 4: 
present DOE. Section 5 depicts the SBM model. Section 
6 presents and discuss results while Section 7 sums up 
the study and highlights future research directions. 

2. Literature review
Hospital selection is one of the least researched topics

in EMS literature (Lee, 2014). Most studies focus on the 
ambulance's location, relocation, dispatch, and routing 
policies (Caicedo Rolón & Rivera Cadavid, 2021).  

(Caicedo Rolón & Rivera Cadavid, 2021) reviewed 
publications that address EMS hospital selection. They 
found that the primary aims are: (1) Designing a method 
for optimal patient assignment from ambulance to the 
hospital. (2) Designing a method to support Hospital 
Selection (HS) decision-making. (3) Developing mobile 
applications and information systems through the 
internet and exploring their implementation on HS 
decision-making. 

According to available literature, Hospital selection 
decision is treated under two approaches (i.e., single and 
combined). In the single approach, patient assignment to 
the hospital is studied as the main decision. In the 
combined approach, HS is part of a combined decision 
that may include different decision levels. For instance: 
Strategic-operational (e.g.,(El-Masri & Saddik, 2012)), 
Tactical-operational (e.g.,(Lina Aboueljinane et al., 
2014)), and operational-operational (e.g.,(Knyazkov et 

al., 2015)). HS may be included as one of the main 
decisions or just as part of the problem criteria. HS is 
studied under single or multiple HS criteria. The multiple 
criterion combination differs from study to study. The 
statistic below represents commonly used criteria (i.e., 
Single or a part of multiple criteria combinations). The 
most used criteria are closeness 83, 33%, hospital 
capacities 62.5%, and shortest queue or highest number 
of beds 45.83% (Caicedo Rolón & Rivera Cadavid, 2021).  

Closeness refers to the selection of the closest hospital 
to the emergency scene. While the hospital capacities 
criterion takes into account hospital resources and 
specialization. Indeed, under the shortest queue or 
highest number of free beds criterion, patients are 
directed to a hospital with a short waiting room queue 
length. If no patient is waiting, patients are directed to 
the hospital with the most empty ED beds (Lee, 2014). 
Other criteria are considered in the literature such as 
quality of service (e.g.,(Leo et al., 2016)), insurance 
coverage (e.g.,(Enders, 2010)), patient resources 
(e.g.,(Velásquez-Restrepo et al., 2011)), and patient wish 
(Caicedo Rolón & Rivera Cadavid, 2021). 

Closeness is considered a natural HS policy. In 
practice, the majority of the patient are assigned 



according to closeness criteria in either peacetime or 
disaster time (Auf der Heide, 2006; McCaig & Burt, 2001). 
The aim is to increase the chance of survival and lessen 
painful time. This policy may be considered suitable in 
the absence of ED crowding. It ensures maximum 
ambulance availability and the shortest time to begin 
service(Lee, 2014).  

However, EDs are experiencing overcrowding issues. 
The hospital selection dilemma is becoming increasingly 
important (Knyazkov et al., 2015). Available literature 
presents different hospital selection policies to improve 
the patient care experience. One of which is preferential 
policy. It is a selection policy that uses historical data on 
patient transfers to a hospital to calculate the likelihood 
to select each hospital(Enders, 2010). Furthermore, 
hospital selection may be subject to jurisdiction. Thus, 
the hospital must respond to an emergency event that 
occurs in a specific predetermined area(Caicedo Rolón & 
Rivera Cadavid, 2021). Besides, a shorter transfer policy 
assigns patients to a hospital that provides the shortest 
transfer time (i.e. transport time plus turnaround time). 
The objective is to reduce the response time(Enders, 
2010). 

Among others, ambulance diversion is a solution to 
smooth the flow and improve the patient care 
experience. The diversion policy may be defined as an HS 
policy that works in tandem with the ambulance 
diversion. The policy is based on factors such as the 
number of occupied ED beds and the number of waiting 
room patients (Burt et al., 2006; Deo & Gurvich, 2011; 
Johansson et al., 2010). Ramirez-Nafarrate et al. 
(Ramirez-Nafarrate et al., 2011) tested two hospital 
selection policies under two ambulance diversion 
policies. Results highlight the potential of designing 
suitable selection and ambulance diversion policies to 
improve the patient care experience. 

However, the ambulance diversion application 
produced conflicting results. It lengthens the transport 
time, delays care, raises the death rate, and reduces 
hospital revenue. As a result, many initiatives have been 
implemented to prevent ambulance diverts (Castillo et 
al., 2011; Patel et al., 2006).  

In the same perspective, (Lee, 2014)  investigated the 
effects of four HS policies (i.e. closer, deviation, join the 
shorter queue, and shorter transfer time) on response 
time. Then, they proposed a new policy based on three 
decision principles. So, the hospital selected is the closer, 
the less congested, and the more centrally located. 
Results show that the new policy outperforms the four 
policies. It reduced the response time by 90%, 68, 8%, 
99, 6%, and 67, 7% over the diversion policy, JSQ, closest 
policy, and STT respectively. However, results show that 
regarding the transfer time, the 3C policy‘s performance 
is not better than the other policies. The trade-off may 
be reached by adjusting the weight parameter w, which 
is operational scenario dependent. 

EMS performances are improved from two. The first is 
the system view that considers resource utilization, the 
number of patients received, etc. The second is the 
patient view that considers the care experience efficiency 
(length of stay) and effectiveness (survival rate) (Wears 
& Winton, 1993). The most used HS performance metrics 
are transport time and waiting time (i.e.,) with 33.33% 
each followed by mortality rate, resources utilization, 
and response time 8.33% each (Caicedo Rolón & Rivera 
Cadavid, 2021). Transfer time combines travel time (i.e., 
time to travel to hospital) and turnaround time (i.e., 
Period from arrival to hospital to Ambulance departure). 

Machine learning (ML) is a powerful decision tool. To 
the best of our Knowledge only one paper tackle hospital 
selection by using Machine learning(Caicedo Rolón & 
Rivera Cadavid, 2021).Therefore, there is no SBM 
application for hospital selection. In the present paper, 
we will develop Discrete Event Simulation (Section 3), 
DOE (Section 4) and the Artificial Neural Network 
metamodel (Section e 5) as first steps of simulation-
based metamodeling process in order to explore and 
optimize hospital selection policy to reduce the EMS 
patient transfer time. 

3. The DES model
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Figure 1: EMS process.

3.1. EMS system 

In this article, we modelled the EMS/ED process from 
the reception of the emergency call until the discharge 
of patient from the ED of the hospital. Figure 1 depicts 
this process in several steps. 

The process is triggered by an emergency call. The 
receptionist receives the call and screens it into an 
urgent and non-urgent call. Non-urgent calls do not 
require any action, the receptionist rejects them. 
Urgent calls are dispatched according to the 
ambulance dispatching policy. 

According to the literature, ambulances are 
dispatched following common practice: greedy policy 
(i.e., closest available)(Alanis et al., 2013; Dean, 2008). 
The dispatcher allocates the patient to the closest 
available ambulance. Otherwise, patients wait for an idle 
ambulance in a queue managed by FCFS policy. 
Ambulances are located in EMS bases. Dispatched 
ambulances are prepared and then directed to the 
emergency scene location. Patients receive on-site care, 
then travel to the selected hospital.  

Our modal is based on a specific HS policy. The 
territory is segmented into 10 demand areas. Each 
demand zone is assigned to a specific hospital. A hospital 
may be assigned to one or more emergency zone. 
However, a demand zone is assigned to one hospital. The 
total number of hospitals is four. The initial assignment 
is based on the minimum distance between the hospital 
and the emergency zone.  

After reaching the hospital, if a bed is available, the 
patient is transferred immediately and the ambulance is 
discharged. Otherwise, the patient waits in a queue. After 

patient’s discharge, the ambulance is restocked and 
cleaned to prepare for a future emergency. The 
ambulance is then considered available and can serve 
queued emergency calls according to FCFS policy. If the 
queue for ambulance is empty, it travels back to the 
ambulance base. We assume that the territory contains 
one central base. 

Hospital capacity is an important criterion that 
influences HS policy. According to literature, bed is the 
primary resource impacting ED overcrowding (Lee, 
2014). The present model includes hospital capacity 
constraints by including ED bed numbers in each 
hospital:  2, 3, 3, 4 beds in hospital 1, 2, 3 and 4, 
respectively. 

We assume that the four hospitals receive walk-in 
patients at the same rate. Walk-in patients share 
hospital beds with ambulance patients. Ambulance 
patients are prioritized over walk-in patients. We do not 
consider any other patient prioritization rule (e.g., 
severity of injury). 

This study aims to analyze the effect of hospital 
selection policy on transfer time (i.e. time from the 
departure of ambulance with the patient from the scene, 
until the end of ambulance offload in the hospital. 

3.2. The DES model design 
The DES conceptual model of the EMS system was 

implemented in the simulation tool ARENA 14.0 on a 
laptop Intel CORE i5. The Arena model translates the EMS 
process depicted in Figure 1. To construct a realistic 
model, we used data of Fez EMS published in (Frichi et 
al., 2022) to determine travel times. We also inspired our 
EMS model parameters’ from other studies(Almehdawe et

al., 2016; Lee, 2014; Leo et al., 2016). 

Table 1: summarizes the model data.
Period of time  Distribution  

Dispatching time (min) 0.5+ ERLA(1.57,3) 



On-site service time (min) 0.999 + GAMM(12.2, 6.57) 

Offload time (min) UNIF (5 , 10) 

Bed service time () EXPO( 150)*(taux2+1) 

3.3. The DES model verification and validation 
Simulation model verification and validation are 

important steps. To complete this step we followed. 
(Kleijnen, 1995) recommendations. We started by verifying 
the model step by step. After we verify the intermediate 
outputs. Then we launch the Arena animation to trace 
and verify the overall system behavior. 

To validate the DES model, we performed a sensitivity 
analysis by varying the following input parameters of the 
DES model: arrival rate, number of beds, length of stay, 
and number of ambulances. We assess the impact of 
these changes on the following indicators: Queue for the 
ambulance, queue for beds in each hospital, transfer 
time, and resource utilization. We defined initial values 
based on real data, then we varied the values using the 
Arena tool: Process Analyzer (PAN). We increased 
sequentially the controls; the variation is in the range 
[+0%, +100%] with step 25%.  

When we rise the arrival rate the ambulance queue 
time rises considerably to reach an explosion point when 
durations become unacceptable from realistic, efficient, 
and effective perspectives. 

Also, the variation of bed number impacts the ED’s 
Length Of Stay LOS, and the transfer time. The variation 
in the number of ambulances affects the ambulance 
queue time durations. 

The verification and validation steps show that the 
model represents accurately the real system for the 
particular objectives of the study. 

4. The Design of Experiment
Simulation-based metamodels or surrogate models

are simplified models that capture the relationship 
linking the simulation model input and output. The 
mathematical estimation of metamodels is defined using 
a sample of input/output points obtained from the 
simulation model. The choice of this sample is important 
to ensure efficiency of the metamodel. It is usually based 
on the Design of Experiment (DOE). DOE is a robust data-
gathering and analysis tool that may be applied to a wide 
range of experimental scenarios. Within a simulation 
experiment, DOE determines the factor to be 
investigated, the levels of each element, and the number 
of simulations runs to ensure efficiency.

Indeed, (Sanchez et al., 2018) advocate using DOE to 
convert a simulation study into a DOE-based simulation 
experiment that provides the most information about 

the dynamics of the system under study while executing 
an appropriate number of simulation runs in a relatively 
short period. The resulting input/output database will 
subsequently be utilized to fit and validate metamodels. 

The DOE choice is metamodel’s type dependent. In 
fact, (Alam et al., 2004) claim that the choice of DOE 
influences metamodel's accuracy. They studied Artificial 
Neural Networks (ANN) using various DOEs to 
investigate this effect. They determined that when the 
metamodel is generally smooth (e.g., polynomial 
regression models or similar), typical experimental 
techniques may be appropriate. When the metamodel is 
more sophisticated and non-linear, traditional DOE is 
ineffective. As a result, the authors recommended a 
modified Latin hypercube DOE with a knowledge 
domain. 

Latin Hypercube Design (LHD) is popular in the 
computer experiment(Viana, 2016).  LHD requires fewer 
data than other DOE (e.g., full factorial design) while 
ensuring a good space covering. Indeed, LHD samples 
each factor once at each level.  Besides the relationship 
between the number of design points and variables is 
linear, rather than exponential(Syberfeldt et al., 2008). LHD 
is recommended when the number of factors is high and 
the underlying function is unknown (Kleijnen, 2005). For 
more information about LHD see (Viana, 2016). In our 
study, we implement LHD in a tool MATLAB through the 
function lhdisign (n,p). We constructed three samples of 
sizes (200, 500, and 1000). We run the sampling plan on 
our simulation model.  We used the resulting database to 
feed our ANN metamodel. 

5. The ANN metamodel
Metamodel choice is based on widely known,

considered, and documented tools. ANN is a popular 
metamodel set using data provided through simulation. 
ANN can learn complex non-linear functions effectively
(Zeinali et al., 2015). These networks are usually composed 
of numerous layers. Each subsequent layer has a 
connection to the previous layer. The first is connected to 
the network input, and the final layer produces the 
network’s output. To improve the prediction and 
classification quality, the ANN adjusts the weights of 
each layer during the learning process(Kamber & Han,

2018). 

Before implementation, we pre-possessed data to 
optimize the learning performance. We encode 
categorical data and scale variables to state in a range [0, 
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1]. We split data into a training set and a validation set 
(i.e., 20%, 80%). Then we tune ANN hyperparameters. 

ANN is sensitive to hyperparameter tuning. According to 
the literature, there is no consensus about 
hyperparameter tuning. Generally, modelers follow a 

trial-and-error approach. We based our tuning on 
widely used values and the remaining on trial and error. 
Error! Reference source not found. depicts the ANN 
hyper-parameters and the corresponding widely used 
values. 

Table 2: Metamodel's hyperparameters. 
Metamodels Hyperparameters Range Frequent Our model choices 
Artificial Neural Networks Transfer function {RBF, linear, sigmoid, quadratic error, hyperbolic tangent, ReLU.} Sigmoid Sigmoid

Training function { levenberg-marquardt, backpropagation, feedforward} Backpropagation Backpropagation

Learning rate [0.1; 0,9] 0.45 0.1

Epochs [200; 800000] [200; 800000] 1500 30000

Number of layers [1; 4] 1 5 
Number of neurons [1; 66] 10

Momentum 0.1 0.1 0.5

To implement our ANN metamodel, we use WEKA 
tool. It is important to validate a metamodel before it is 
used in an SBM approach (Wang & Shan, 2007). The 
choice of metrics is dependent on the metamodeling 
purpose and application (Barton, 2020). For our study, we 
validated our ANN through the following accuracy 
metrics: Correlation Coefficient (CC), Root Mean 
Squared Error (RMSE), Mean Absolute Error (MAE), 
Root-Relative Error (RRE) and Root Relative Squared 
Error (RRSE). The tuning validation loop is repeated 
until reaching satisfactory results.  

6. Results and discussion
ANN metamodels are context dependent. We have to

lead our trial and error test to determine suitable 
hyperparameter values under the hospital selection 
context using 3 databases of different sizes (i.e., 200, 
500, 1000). To avoid underfitting and overfitting, each 
scenario was tested according to 10 cross-validation 
tests. We first started the tuning by using Weka's default 
hyperparameters (i.e.; Scenario SD). Then we tuned 
according to the literature widely used hyperparameters 
values (i.e.; Scenario SW). The first scenarios did not give 
promising results, as the coefficient of correlation CC is 
very low. We concluded that the strength of the 
relationship between variables was very low. 
Furthermore, error values were very high. Thus, to 
improve the metamodel’s performance, we tested more 
than 100 tuning scenarios, with different 
hyperparameter combinations selected according to 
trial and error approach guided by expert’s 
recommendations. Tables 3 depicts some of the 
scenarios that respect or are near the performance 
thresholds (i.e. S3 to S11). Tables 3 to 6 and Figure 3 show 
the multilayer perceptron’s performance under 
different scenarios. 

RMSE is a widely used metric to asses metamodel’s 
accuarcy(Zeinali et al., 2015). However, RMSE values are 

analyzed differently. There is no consensus about RMSE 
thresholds. The common decision rule is the lesser is the 
better. To get over this limit, (Zeinali et al., 2015) 
combined RMSE with another metric 𝟏

𝟏+𝑹𝑴𝑺𝑬
 in order to 

have values in a range [0, 1]. They compare metamodel’s 
performance for different data size, problem, and 
metamodels, then they choose the best metamodel 
among the trained metamodels (No threshold).  (Singh et 
al., 2005) affirmed that half of the standard deviation of 
the measured data may be considered the maximum 
threshold for RMSE and MAE. Based on this 
recommendation another metric is developed: RMSE-
observations standard deviation ratio (RSR), which 
divide the RMSE by the standard deviation of the 
observations. Similarly, no threshold is determined for 
RSR, the rule remains the same the lesser is the better 
(Moriasi et al., 2007). 
To assess our metamodels, we used the following 
thresholds. Min = 0.5 for Correlation Coefficient CC (i.e., 
for moderate to very strong correlation) and (Singh et 
al., 2005) thresholds as max for MAE and RMSE. For the 
remaining metrics, we consider the rule lesser is better. 

For the database size 200, RMSE, and MAE for the first 
scenarios are below the thresholds, however, the other 
errors are very high. Moreover, the correlation 
coefficient is very low, the relationship is very weak for 
all the scenarios. The metamodels cannot be used to 
describe the EMS's system behavior. 

For the database size 500, RMSE, and MAE are below 
the thresholds (i.e., the half of the standard deviation of 
0.112). However, the CC is very low (i.e., under thresholds 
for all scenarios), and the remaining errors are very high 
(i.e., beyond 90%).  

For the database size 1000, RMSE and MSE are beyond 
the thresholds, however, they are inferior to 200 and 500 
cases’ errors.  Similarly, RAE, and RRSE values are low. 
Furthermore, the correlation coefficient is below the 0.6 
thresholds. The relationship may be qualified as strong. 



The promising scenario according to the aforementioned 
reasons is scenario 8. The metamodel may be used to 
explore the effects of changing hospital selection policy.

Table 3: Metamodel tuning scenarios.
Hyper parameters Transfer function Training function  Learning rate  Epochs  Number of layers  Momentum  Batch size 

SD Sigmoïd Back propagation 0.3 500 5 0.2 100 
SW Sigmoïd Back propagation 0.45 1500 1 0.1 100 
S3 Sigmoïd Back propagation 0.1 500 5 0.5 32 
S4 Sigmoïd Back propagation 0.1 500 5 0.5 64 
S5 Sigmoïd Back propagation 0.1 1000 5 0.5 64 
S6 Sigmoïd Back propagation 0.1 10000 5 0.5 64 
S7 Sigmoïd Back propagation 0.1 20000 5 0.5 64 
S8 Sigmoïd Back propagation 0.1 30000 5 0.5 64 
S9 Sigmoïd Back propagation 0.1 40000 5 0.5 64 
S10 Sigmoïd Back propagation 0.1 35000 5 0.5 64 
S11 Sigmoïd Back propagation 0.1 35000 1 0.5 64 

Table 4: Metamodel performance results (Size: 200). 
Scenarios SD SW S3 S4 S5 S6 S7 S8 S9 S10 S11 

CC 0.1344 0.0132 0.031 0.031 0.0307 0.0757 0.0808 0.0799 0.0804 0.08 0.027 
MAE 0.1416 0.1075 0.1337 0.1337 0.1436 0.173 0.182 0.1878 0.1904 0.1892 0.0895 
RMSE 0.196 0.1923 0.1888 0.1888 0.2049 0.2671 0.2891 0.302 0.311 0.3071 0.144 
RAE (%) 179.1791 136.053 169.1837 169.1837 181.6 218.9768 230.3831 237.6825 241.0293 239.4372 113.25 
RRSE (%) 152.1841 149.273 146.5993 146.5993 159.07 207.3791 224.4222 234 241.449 238.3712 111.82281 
T 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.187 

Table 5: Metamodel performance results (Size: 500). 
Scenarios SD SW S3 S4 S5 S6 S7 S8 S9 S10 S11 

CC 0.3933 0.0092 0.4351 0.435 0.4831 0.53882 0.5309 0.5234 0.5178 0.5208 0.0013 
MAE 0.08 0.0772 0.0825 0.0825 0.08 0.081 0.0828 0.0831 0.0845 0.836 0.0792 
RMSE 0.14 0.1447 0.1316 0.1316 0.1387 0.1788 0.1883 0.1928 0.1968 0.1948 0.1471 
RAE (%) 138.4473 120.4949 128.8485 128.8485 124.86 126.5 129.2639 129.8238 131.9907 130.6 123.64 
RRSE (%) 105.5 105.7704 96.2306 96.2306 101.35 130.7121 137.6312 140.9647 143.8476 142.4 107.5 
T 0.1865 0.1865 0.1865 0.1865 0.1865 0.1865 0.1865 0.1865 0.1865 0.1865 0.1865 

Table 6: Metamodel performance results (Size: 1000). 

Scenarios SD SW S3 S4 S5 S6 S7 S8 S9 S10 S11 

CC 0.4861 0.0721 0.5438 0.5438 0.6539 0.799 0.8167 0.8311 0.829 0.8311 0.0722 
MAE 0.0698 0.0626 0.0551 0.0551 0.0528 0.0432 0.0405 0.0384 0.0391 0.0388 0.0645 
RMSE 0.109 0.1176 0.0964 0.0964 0.0879 0.0712 0.0687 0.0657 0.0663 0.0658 0.119 
RAE(%) 130.91 117.3823 103.2877 103.2877 98.9552 80.9933 75.96 71.9782 73.2 72.6992 120 
RRSE(%) 97.686 105.3891 86.3548 86.3548 78.7341 63.7866 61.5462 58.8273 59.4239 58.9361 106 
T 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 

CC: Correlation coefficient. 

T: Thresholds   

7. Conclusion
This paper studies hospital selection decisions for 

emergency medical services. For this purpose, we first 
implemented a discrete event simulation that mimics 
the EMS process from the reception of a call until the 
patient’s discharge from the ED. We then used the 
developed simulation model with LHD DOE to construct 
input-output databases with different sizes, that best 
explores the solution space. These databases were 

finally used to train and test ANN metamodels with 
different combinations of hyperparameters.  

The present study was limited by many constraints. 
First, the problem nature. In fact, the study requires 
many fields: simulation, DOE, ML, ANN and so on. 
Furthermore, ANN tuning impacts the metamodel's 
performance. There are many scenarios that should be 
explored and tested. However, it is infeasible to explore 
all the scenarios, thus defining promising one is 
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important. However, the available literature do not 
provides enough guidance owing to the fact that 
hospital selection decision is generally under looked 
especially under metamodeling context.  Choices are 
generally based on trial and error. 

The present study may be extended in several ways. 
ANN data are dependent on the modeler’s choices. In 
fact, metamodel hyperparameter conditions the 
metamodel performance. According to the literature, 
metamodel’s tuning is generally based on a trial-and-
error approach. Future studies should consider 
developing a framework to determine optimal 
hyperparameters. In this context, Hyper parameters 
optimization may be based on more exhaustive 
methods such as monarch butterfly
optimization(Bacanin et al., 2020b), swarm intelligence(Bacanin

et al., 2020a), Bayesian optimization(Cho et al., 2020), multi-

threaded training(Połap et al., 2018), evolutionary optimization(Cui 

& Bai, 2019), genetic algorithm(Han et al., 2020), harmony 
search algorithm, simulated annealing, Pareto 
optimization, gradient descent optimization of a 
directed acyclic graph and others. In addition, the 
mathematical expression of the developed ANN 
metamodel may serve to predict the performance of 
different input (i.e. hospital selection strategies) and 

provides insightful answers to what-if scenarios 
However, we have no proof of the scenario’s optimality 
without proof of their optimality. Thus, the preset study 
may be extended to cover optimization needs by using 
the analytical expression of the ANN metamodel as an 
objective function in an optimization model. This may 
provide a powerful decision support tool, for hospital 
selection decision-making. Finally, (Aringhieri et al., 2017)

claim that EMS performance should be considered from 
different perspectives(Aringhieri et al., 2017). They 
considered a tradeoff between equity, efficiency, and 
effectiveness. In our study, we considered transfer time 
as a metric for hospital selection decisions. However, 
considering the transfer time as metrics covers just a 
part of the previous aspects. Other metrics should be 
considered, to explore the effects of optimal transfer 
time on effectiveness metrics (i.e., survival rate and 
morbidity rate), and ensure overall performance. 
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