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Abstract

Energy efficiency is an important topic in the area of mobile computing. Developers are often unaware of the impact their choices on
data type use and algorithm design have on this non-functional property. Software energy consumption profiling can be utilized to
identify the energy behaviour of implemented methods, while pattern mining can be utilized to identify recurring patterns in the
methods being run. We present a methodology to combine energy consumption profiling and discriminative pattern mining to identify
energy efficiency patterns. In a study of eight sorting algorithms implemented in Java with the data types int, double and Comparable,
profiled on the Android platform, we manage to identify significant patterns in the source code of these 24 implementations. The
results show that patterns can be identified for both, the data type in use, and for the energy behaviour of efficient or inefficient sorting

algorithms, that explain the observed energy profiles.
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1. Introduction

Understanding and optimizing the energy consumption
of software has become an important concern for the soft-
ware engineering research community. This applies par-
ticularly in areas with limited resources, e.g. develop-
ing applications for mobile devices with constrained bat-
tery lifetime. Due to the omnipresence of mobile devices,
nowadays for developers it is crucial to have a solid knowl-
edge about an applications’ energy consumption, in order
to develop energy efficient applications. As pointed out
by Hasan et al. (2016), developers often lack the knowl-
edge or experience to optimize a given source code for
energy inefficiencies. In addition to that, as described by
de Oliveira Junior et al. (2019), developers often do not
share the knowledge of tools and methodologies to assess
the energy consumption of an application. This is particu-

larlyinteresting, given the fact, that the software engineer-
ing research community has been spending considerable
effort to provide methodologies and tools to better compre-
hend the connection between software structure, design
and API utilization (Hasan et al., 2016; de Oliveira Jinior
etal., 2019; Hindle et al., 2014; Hindle, 2012; Schuler and
Anderst-Kotsis, 2019; Rocha et al., 2019; Jabbarvand et al.,
2015; Wang et al., 2012; Wu et al., 2016).

Energy mining research has already shown that there
is a direct correlation between different algorithms for
the same problem and energy (e.g. sorting (Schuler and
Anderst-Kotsis, 2019)). It has also been shown that the
data types utilized play a role in energy consumption as
well. While previous research in that area already shows
the importance of good algorithm design for energy effi-
ciency, this does not help a software developer make in-
formed decisions about their design. There is a signifi-
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cant gap between the awareness that an algorithm has an
impact on energy consumption and how and where that
impact can be attributed to individual statements in the
algorithm.

In order to gain insights how software and algorithm
design affects energy consumption, we propose a novel
methodology to combine software pattern mining with
energy profiling. This combination allows a developer
to identify energy costly algorithms, and consequently
identify specific patterns in the code of the algorithm that
are responsible for the energy costs. This enables a rewrite
of the algorithm to be more energy efficient.

Software pattern mining has been used in various ar-
eas both in research and industry, e.g. mining duplicate
code (Qu et al., 2014), or mining faults (Di Fatta et al.,
2006), and also to the approach, e.g. the control flow of a
function (Henderson and Podgurski), mining in multiple
threads (Of3ner and Bohm) or the source code itself (Bal-
anyi and Ferenc, 2003). In this work, we utilize mining on
the source code in the form of abstract syntax trees (ASTSs).
The result of this are patterns, i.e. code snippets, that are
responsible for high energy consumption.

A thorough research on available studies in the field
yielded that the presented approach is the first one to com-
bine energy profiling with software pattern mining. In
summary, this paper makes the following contributions:

- Anovel combination of energy profiling and software
pattern mining based on abstract syntax trees.

- A methodology to identify patterns derived from an
in-depth analysis of abstract syntax trees which have
a negative impact on the energy consumption of the
examined source code.

- We present experimental results on the connection
between extracted patterns and software energy con-
sumption in Java. The results are obtained using a
benchmark that covers energy consumption of sorting
algorithms (Schuler and Anderst-Kotsis, 2019), and
available under (Krauss and Schuler, 2021)

- Patterns identifying energy costly source code. These
patterns can further be used as foundation to better
comprehend the energy implications in Java develop-
ment.

The remainder of this work is structured as follows. In
section 2 we give an overview on the basis of our methodol-
ogy for energy and pattern mining, and also introduce the
benchmark suite used to evaluate our approach. Section
3 presents our approach to obtain patterns and examine
its correlation with energy consumption. In section 4 we
describe the data-set used to evaluate the presented ap-
proach. The results of our experiment are summarized in
section 5. Section 6 outlines possible threats to the validity
of the presented approach. Finally, section 7 concludes the
paper and gives perspectives on future work.

2. Background

2.1. Software Energy Consumption Profiling

Hoque et al. (2016) defines software energy profiling as
an approach to assess the energy consumed by an exam-
ined software. The foundation for obtaining an energy
profile is an energy or power model, that is able to ade-
quately approximate the energy characteristics of a soft-
ware Researchers further categorize respective models in
3 groups: utilization-based, event-based and code-analysis-
based models. A utilization-based model is computed via
the actual use of a specific component. E.g. specific Hard-
ware components CPU, Memory, GPS or Display. Event-
based models are obtained by correlation of system events
(e.g. system-calls) with energy recordings (Aggarwal et al.,
2014). The third category solely examines models for en-
ergy consumption based on the inspection of source code
(Hoque et al., 2016). The approach presented in this paper,
falls into the third category, as we seek to understand the
energy implications of algorithm design by an in depth
examination of syntax trees. The studied sample being
used for this purpose was originally obtained using a test-
bed (Schuler and Anderst-Kotsis, 2019). For better com-
prehension of this study we included an overview on the
approach below.

Algorithm 1: Test method after probe insertion.
input : algorithm - the sorting algorithm

len - the length of the array
type - the data type of the array elements

1 begin

2 PauseFor(2);

3 toSort «+ LoadDataToSort (len, type);

4 PauseFor(3);

5 LogStart0fExecution(algorithm);

6

7

8

sorted « Sort (algorithm, toSort);
LogEndOfExecution(algorithm);
PauseFor(3);

2.1.1. The MANA Approach

The MANA approach was initially described by Schuler and
Anderst-Kotsis (2018) and applies a combination of ap-
plication instrumentation and energy consumption mea-
surements to examine the energy characteristics of an
application. The approach further enables fine granular
attribution of energy consumption readings to particular
software entities of interest, e.g. methods.

The process applied in course of the MANA approach in
order to obtain energy readings for an application an at-
tribute them to software entities consists of a series of con-
secutive steps. First the subject application being analysed
is instrumented. Using a gradle plugin, MANA directly
alters the Android compilation process. The instrumen-
tation step is crucial, as for the analysis and the correct
attribution of the recorded energy profile, it needs to be
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Figure 1. Structure of our experiment test-bed, an Experiment Execution
Coordinator is both connected to the Monsoon Power Monitor and the
mobile device.

determined when a particular method was entered and
exited. To achieve this, MANA relies on the Android Debug
class, which allows to collect the call trace of an application
during run time. In order to give the reader a general idea
how the instrumentation is carried out, refer to algorithm
1, it shows the probes that are inserted during compilation
which start and stop the method tracing.

Once the application is instrumented, it can be deployed
to the test-bed depicted in Figure 1. For a detailed overview
on the test-bed refer to Schuler and Anderst-Kotsis (2019).
We outline the basic actors and their responsibilities as
follows:

The Experiment Execution Coordinator (EEC) is respon-
sible for deploying the instrumented application to an An-
droid device (2). It further executes the desired tests an
collects the call traces. Besides that, the EEC is also con-
nected to a measurement device. For the MANA approach,
we rely on measurements obtained using the Monsoon
HVPM (Monsoon Solutions, 2019) (3), a device which is
commonly used in mobile software energy consumption
research (Schuler and Anderst-Kotsis, 2020; Altamimi and
Naik, 2015; Di Nucci et al., 2017; Wang et al., 2013). Next
to the obtained call traces, the EEC collects energy read-
ings from the HVPM and further attributes the collected
energy profile to individual methods from the recorded
call trace. The EEC finally stores the recorded data which
comprises the call trace as well as the per method energy
consumption in a Neo4j graph database for further pro-
cessing and analysis. Using this approach, it is possible
to assess the energy consumption characteristics of any
arbitrary Android application or library.

For this paper the authors rely on a benchmark that
was initially recorded using the MANA approach as part
of an empirical study to assess and compare the energy
characteristics of sorting algorithms on Android (Schuler
and Anderst-Kotsis, 2019). The context of the underly-
ing empirical study is sorting algorithms. In what follows,
we give a brief overview of the benchmarks characteris-
tics and how it was obtained (Schuler and Anderst-Kotsis,

Krauss and Schuler |

2019).

2.1.2. Sorting Algorithms Energy Benchmark

Using the MANA approach, a selection of 12 sorting al-
gorithms were examined for their energy characteristics
when using different input sizes and data types. Examined
input data sizes range from (1) 50, 000, (2) 75,000 to (3)
100, 000 elements. For each group arrays of data types int
(4 Byte), double (8 Byte) and java.lang.Comparable<Double>
were randomly generated.

Besides covering the average case for each of the se-
lected sorting algorithms, ordered and reverse-ordered ar-
rays have been defined, respectively. To summarize, the
energy consumption benchmark described in (Schuler
and Anderst-Kotsis, 2019) consists of 27 different tests
being executed per selected algorithm which results in
a total amount of 324 tests. In order to account for pos-
sible outliers, tests were sampled 25 times and resulting
measurements have been averaged.

By applying the MANA approach to the selected data set,
for each test being executed on the testbed, the parameters
electrical current in mA, voltage in V and duration of test
execution in nanoseconds were recorded. Using equation
1, energy consumption was computed by multiplying the
wattage W at time t with the difference between time t;
and t;_;. The collected parameters were attributed to the
examined sorting algorithms.

Jtz power(t)dt ~ > power(t;) x (t; = t;_;) (1)
h

i=0

Figure 2 summarizes the original results for the sorting
algorithms selected for this study. It is notable that for each
algorithm the energy consumption shows an increasing
trend when used with different data types. Furthermore,
the energy consumption of algorithms that are commonly
known to be efficient considering their time and space
complexity, is several magnitudes lower than the energy
consumption of its inefficient counterparts. Given this dif-
ference, and the fact that sorting algorithms are well stud-
ied considering their space and time-complexity, makes
this a valuable benchmark for further investigating the
cause of this effect. By mining for patterns in the algo-
rithms’ abstract syntax trees we seek to get insights on
the connection between the structural aspects of an algo-
rithm and its implications to the energy behavior.

2.2. Mining Patterns in Software

Mining patterns in software is conducted on many repre-
sentations of source code. Mining of text sequences has
been conducted often (Ishio et al.; Ueda et al.; Wang et al.;
Livshits and Zimmermann) but this reduces the options
to deal with the specifics of source code, such as differen-
tiating between branching structures that are contained
with each other, or calls between methods.
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Figure 2. Visual comparison of the the energy consumption of the examined sorting algorithms for different data types (Schuler and Anderst-Kotsis, 2019).

Graph representations have also been used with differ-
ent levels of granularity (Nguyen and Nguyen; Henderson
and Podgurski) and often considering not the source code
but the call graphs between different methods (Ofiner and
Bohm; Cheng et al.; Liu et al.). These approaches are use-
ful when the relationships between functions want to be
analyzed, and can gain further information as the control
and data flow can be considered for finding interesting
patterns.

Abstract Syntax Trees (ASTs) have been used as a rep-
resentation for pattern mining as well (Hanam et al.; Luan
etal.). They provide the advantage of directly represent-
ing the source code, similar to sequential structures, and
combine this advantage with the information on how the
structures and branches are contained, similar to graph
structures. As this work attempts to identify patterns that
can help the developers to understand what parts of their
code negatively impact energy consumption, ASTs have
been chosen as a representation.

The domain of discriminative pattern mining (Liu et al.;
Di Fatta et al., 2006; Cheng et al.; Thoma et al.) is based
on the core concept that patterns will occur with a differ-
ent frequency in between two groups. In literature these
groups are positive and negative testing groups that de-
nominate successful and failed tests respectively. This
concept can be expanded for the purpose of energy pattern
mining by considering 2 to n groups as necessary. For ex-
ample the groups efficient and inefficient would still denom-
inate positive and negative testing groups. But discrimina-
tive pattern mining can also consider the data types used in
the specific implementation of algorithms to denominate
the groups int, double and Comparable.

Discriminative pattern mining observes the frequency
of occuring patterns. Frequent subgraph or subtree min-
ing are complex issues in this domain. The reason being
that the search space, i.e. all permuations, of a single tree
is 2" where n is the amount of relationships in the tree.
As this is a complex topic that is highly relevant for the
scalability of pattern mining approaches many different
algorithms have been suggested as solutions (Yan et al.;
Henderson and Podgurski; Nguyen et al., b,a; Han et al,;

Ester et al.; Zaki). Generally these algorithms can be cate-
gorized into three different categories.

The apriori approach (Agrawal and Srikant) starts out
by creating all permutations of size 1. It then evaluates
these permutations and applies pruning, after which the
size is increased by 1, and the process is repeated until the
entire search space is evaluated.

Pattern growth algorithms (Zaki) start out with patterns
and only grow a given pattern in a direction that is guar-
anteed to be interesting according to a specified metric.
This ensures that only such patterns are grown that are
of interest in the mining context, and makes this type of
algorithm more efficient than apriori algorithms.

Non-optmiality guaranteeing methods, i.e. such meth-
ods that prioritize dealing with the search space in an effi-
cient way over guaranteeing that all possible instances of
the search space are evaluated. For example this is done
with clustering of the data (Ester et al.) or via a greedy
pruning of the search space (Luan et al.) which can also
be done based on regular apriori or pattern growth mech-
anisms.

As the search space in this work is restricted to 8 al-
gorithms with three data type implementations each, to-
talling 24 ASTs, an evaluation of the entire search space
is possible without tradeoffs. Thus the basis for this work
follows a pattern growth approach.

3. Methods
3.1. Encoding the Source Code

In order to have a uniform representation of the algorithms
being analysed, as a preparatory step we encode the source
code in form of an Abstract Syntax Tree (AST). In particu-
lar, our approach derives a per method AST, as the energy
profiles available in the data set have been recorded and
attributed with the same granularity. Thus, encoding a
class results in not only one, but a number of abstract syn-
tax trees which is equal to the number of methods being
present in the examined classes. The ASTs being derived
per method preserve the structural aspects of respective



method down to individual expressions. The encoding step
also takes method invocations into consideration. When-
ever a method contains non-recursive invocations to a
target method, the target method is inlined.

To prepare the selected data set for the experiment, us-
ing our approach, we obtained the abstract syntax tree for
each algorithm under analysis and stored its representa-
tion in a neo4j database. For parsing and constructing the
resulting syntax trees, we use ANTLR together with the of-
ficially maintained Java grammar available in the ANTLR
GitHub repository (https://github.com/antlr/grammars-
V4).

3.2. Mining Patterns from Evaluated ASTs

Mining patterns from an AST that was generated from
source code means that in the mining itself no dynamic
information, such as the call graph or branch execution
counts are available. The only dynamic information avail -
able is the non-functional features captured during the
profiling phase. These features allow us a classification
into groups and utilization of a discriminative pattern min-
ing approach. For this we mine on a per-method basis as
the profiling provides a value per method as well.

3.2.1. Preliminary Analysis

Discriminative pattern mining in literature usually splits
the dataset into two groups passing and failing according
to if the code has passed or failed a test (Di Fatta et al.,
2006). When considering energy consumption, methods
that have vastly different concerns and thus no semantic
and little syntactic overlap would be grouped into the same
class (Schuler and Anderst-Kotsis, 2019). To ensure that
meaningful patterns can still be mined from such a class
we conduct a preliminary analysis of the given methods.

Algorithm 2: Find Smallest Infrequent Pattern

input : asts - the given asts for mining
cnt - the total amount of asts

1 size « 0;
2 patterns « (;
3 while patterns = ¢ do
4 size + +;
/* Find patterns of size */

v

patterns « FrequentSubgraphs (asts, size);

/* Filter all patterns occuring in all ASTs
*/

6 patterns « Filter(patterns,);

output :patterns

This is done via algorithm 2. The algorithm attempts
to find the smallest patterns that show any difference, i.e.
any pattern with less than 100% frequency, between a
given group of ASTs, finding none if the ASTs are equiv-
alent. It finds the smallest infrequent patterns instead of
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the largest, as an infrequent structural difference in an
AST will always grow around core patterns resulting in
more and more infrequent patterns growing around this
one core pattern. While this algorithm does not provide a
similarity score its results provide the following insights:

- The ASTs correlate more with each other the larger the
found patterns are.

« The ASTs correlate less with each other the more pat-
terns are found.

- The size of the pattern is an indicator of what size should
be used for the pattern mining in following steps. Due
to patterns growing around a core restricting to smaller
sizes improves the precision, meaning how many pat-
terns with a similar core meaning are mined.

3.2.2. Discriminative Pattern Mining

Algorithm 3: Discriminative Frequent Subgraph Mining

input : classes - the grouped asts for mining
minSupport - minimum support threshold
minDiff - minimum difference between
classes
1 patternsPerClass « 0);
/* Frequent subgraph mining per class.
Patterns have a support frequency in

percent */
2> for classin classes do
3 patternsinClass « FrequentSubgraphs (class,
minSupport);
4 | patternsPerClass.add(patternsinClass)

/* Filtering patterns occuring more often in
one class */
5 distinctPatterns « Distinct (patternsPerClass) ;
6 for distinctPattern in distinctPatterns do
7 | forclassinclasses do

8 support «
patternsPerClass.class.distinctPattern;

9 for cmpClass in classes do

10 if cmpClass # class then

1 classSupport «

patternsPerClass.class.distinctPattern;

12 if minDiff > (support — classSupport)
then
13 | patterns.add(distinctPattern);

oﬁtput .patterns

Discriminative Pattern Mining is usually done for fault
localization (Di Fatta et al., 2006; Cheng et al.; Henderson
and Podgurski). Because of this it usually only discrimi-
nates between passing and failing, and provides metrics
thatare specific to these two classes. As we attempt to mine
energy consumption we are not necessarily restricted to
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Table 1. Curated list of examined algorithms, sample taken from benchmark described in Schuler and Anderst-Kotsis (2019).

Time Complexity Space Complexity

Algorithm Best Case Average Case ~ Worst Case Worst Case
Quicksort Iterative Q(nlog(n)) ©(nlog(n)) o(n?) O(log(n))
Mergesort Iterative ~ Q(nlog(n)) ©(nlog(n)) O(nlog(n)) o(n)

Heapsort Q(nlog(n)) ©(nlog(n)) O(nlog(n)) o(1)

Shellsort Q(nlog(n)) ©(n(log(n))*) oO(n(log(n))*) ©(1)
Selectionsort Q(n?) e(n?) o(n?) o1)
Insertionsort Q(n) o(n?) o(n?) o@1)

Shakersort Q(n) e(n?) o(n?) 0(1)

Bubblesort Q(n) o(n?) o(n?) o@1)

two classes inefficient and efficient but could also compare
along more efficiency classes. We also compare differences
between the datatypes int, double and Comparable, which
show a visible difference in all algorithms in Figure 2, and
have been proven to be statistically significant between
int and Comparable as well as double and Comparable by
Schuler and Anderst-Kotsis (2019).

To enable discriminative pattern mining on an indeter-
minate amount of classes we introduce the Discriminative
Frequent Subgraph Mining algorithm 3 algorithm. The
algorithm works by conducting frequent subgraph mining
on each of the given classes returning patterns with a given
minimum support threshold, i.e. how often the pattern must
at least occur in over all ASTs. This step provides all pat-
terns relevant in a given class that may be responsible for
its non-functional behaviour, e.g. why it is energy efficient
or energy inefficient. To reduce false positives in a second
step the patterns are filtered via minimum difference which
ensures that false positives, i.e. patterns occurring often in
more than one class, are reduced. The remaining patterns
are likely candidates, that in the context of energy pat-
tern mining, explain why a class is inefficient or efficient
compared to others.

This filtering approach however comes with a caveat,
namely that outliers are filtered out in the first step via
minimum support threshold. These outliers are important
as they may negate the assumption that a found pattern is
responsible for energy behaviour. This makes it necessary
that following the mining approach the ASTs in the dataset
are checked for containment of the identified pattern to
determine and explain possible outliers.

4. Evaluation

We based our study on the sorting algorithm benchmark
described in Schuler and Anderst-Kotsis (2019). How-
ever, we did not include the originally examined algorithm
Quicksort Dual Pivot. The main reason for this was, the
original study referred to an implementation which is part
of the Java standard library and therefore the algorithm is
designed in compliance with general OO-principles. This
however, makes it hard to factorize the relevant syntax
trees to allow for a meaningful comparison in this study.
Additionally, for each sorting algorithm examined in the
original benchmark, we only consider its iterative coun-
terpart, excluding the recursive version. As a result the

final curated list of algorithms used in this study contains
the 8 algorithms presented in Table 1.

From the original study we obtained the source code
of each selected algorithm together with its energy and
run-time characteristics. For each of the algorithms we
computed the abstract syntax trees down the the expres-
sion level using ANTLR (cf. Section 3). If possible method
calls were inlined. The resulting syntax trees are stored
in a Neoj database with attributed energy and run-time
characteristics, respectively.

5. Results

To identify patterns in algorithms that have a negative
impact on the energy consumption, the encoded ASTs
of the given algorithms need to be clustered into groups.
Figure 2 shows the evaluated sorting algorithms with their
respective energy consumption in mJoule. Table 1 also
shows the time complexity for these algorithms. From
this the following clustering approaches become apparent:

Inefficient vs. efficient
Selection- Insertion- Shaker- and Bubblesort show
a similar efficiency that is worse than all other algo-
rithms denoting the inefficient group. As the other
algorithms show similar behaviour they can be de-
noted as their own group to compare to the efficient
group.

Datatypes
The datatype Comparable shows an energy ineffi-
ciency compared to int and double, which showa simi-
lar energy consumption to each other. This difference
has been shown to be statistically significant (Schuler
and Anderst-Kotsis, 2019), it is worth investigating
if responsible patterns can be identified.

The discussion hereafter is based on the ASTs of the
algorithm implementations as they were instrumented
and profiled for energy consumption. The source code,
ASTs and results of the mining approach are available in
(Krauss and Schuler, 2021).

5.1. Preliminary Analysis

The methods presented in this work attempt to mine pat-
terns exclusively on a structural basis, not taking into con-
sideration dynamic information such as which AST nodes



were actually called or how often, or the call graph between
functions and classes.

As the analysis compares sorting algorithms, serving
the same goal it can be assumed that a structural compari-
son makes sense, for comparing inefficient and efficient
algorithms. For the datatypes however, pattern mining
is irrelevant if an individual algorithm is implemented
differently for the different datatypes. E.g. in the three al-
gorithms Quicksort-int, Quicksort-double and Quicksort-
Comparable only the used datatype should be different. As
an initial step we compared the three datatype versions
of each sorting algorithm with each other to verify this,
using algorithm 2.

The resulting analysis shows absolutely no differences
between double and int, and only one core difference to
Comparable for every algorithm. This difference is always
the invocation to Comparable.compareTo, with different
pattern sizes, as algorithms contain method invocations,
the pattern is found with a size 2 via Expr « MethodInvoc.
In the cases of QuickSortIterative we find 7 patterns of size
3 and in MergeSortlterative we find 9 patterns of size 3, all
of them growing around compareTo or the absence of it.

This finding also indicates that an analysis of the data
types and inefficient vs. efficient algorithms should be
conducted around a pattern size of 3. It has also been pre-
viously suggested that smaller patterns are more useful
for evaluation (Cheng et al.), and a size 3 is the minimal
size promising patterns seem to be identifiable.

5.2. Comparison of Data Types

The preliminary investigation has already shown that the
call to the function compareTo is the pattern likely explain-
ing why the comparable data type is more energy inef-
ficient than int and double. Conducting discriminative
pattern mining in the datatype categories does indeed not
yield any further patterns. Figure 3 shows how most pat-
terns are grouped. They are either not discriminative, oc-
curing in all three data type implementations, or always
occur in the int and double algorithms together but not the
Comparable. The third option, only occuring in Comparable
is omitted from the figure.

This indicates that the compareTo method call is respon-
sible for the energy consumption overhead over int and
double. However we can not conclusively claim that this is
the only reason Compare is less energy efficient, as this is
also the only data type that is a class and not a primitive
data type, which int and double are.

5.3. Inefficient vs. Efficient Algorithms

To find patterns that may be responsible for the differ-
ent energy behaviours of sorting algorithms we compared
the two groups inefficient (Selection- Insertion- Shaker-
Bubblesort) and efficient (QuickSortIterative, Mergesor-
titerative, Heapsort, Shellsort) via discriminative pattern
mining. The minimum supportthreshold for each group was
set to 0.75, i.e. a pattern must occur in 75% or more trees of
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Figure 3. Most patterns occur in all data type implementations (left), while
some occur only in double and int as Comparable has a method invocation
at the position of the lower Expr node (right).

at.mana.ForStmt
at.mana.PostIncrementExpr

at.mana.Block

A 4

A 4

at.mana.PostIncrementExpr

Figure 4. A nested for loop conducting a linear increment in both the inner
and outer loop is responsible for the inefficient run-time performance as
well as the energy performance of sorting algorithms.

agroup tobe relevant. To compare the differences between
the groups minimum difference was set to 0.75, i.e. There
must be at least an 75% difference between occurrences
of efficient to inefficient and vice versa. The combination
of those two settings means that essentially we mine only
patterns that occur either mostly in the efficient or mostly
in the inefficient groups.

As the preliminary analysis yielded a pattern size of 3
to be an interesting search space this size was chosen. In-
deed a search of < 3 yields no patterns at all. The size of
3 yields a pattern around the Method Declaration in the
efficient search space, as all algorithms share a variable ini-
tialization occuring before the loops conducting the sort.
This pattern already identifies the variables utilized by the
efficient algorithms in the loops itself but not its use. Thus
we extended the pattern size to 4, which starts showing 12
patterns exclusive to the inefficient space where the loops
favor increments of the loop variable, and 3 assignments
exclusive to how the loop variables are handled in the ef-
ficient algorithms, we continued increasing the pattern
size after this, but larger pattern sizes only show patterns
grown around these core patterns but not yielding addi-
tional information.
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The reason the inefficient algorithms are energy ineffi-
cient seems to be that all of them contain two nested for
loops. The inner nested for loop conducts a PostIncrement
which is exclusive to the inefficient algorithms. The pat-
tern has one outlier in its class, the InsertionSort which
conducts a PreIncrement (j—— instead of j++) in the inner
loop. This is essentially the same functionality, but from
the perspective of pattern mining not equal in one node,
and thus an outlier. The outer loop of all these algorithms
conducts a PostIncrement, identified in two patterns, one
shared with ShellSort, and one shared with MergeSort.
Figure 4 shows a pattern of size 5 containing both loops
and respective increments exclusive to the negative search
space. Listing 1 shows how ShellSort instead improves its
efficiency by using an expression for the inner loop steps
instead of a linear decrement or increment.

Listing 1. Nested for-loop in ShellSort does not produce O(n?). The inner
loop iterates only over every h’th element.

i < N; i++) {

for (int j = i; j >=h &&
(alj].compareTo(al[j - h]l]) <0 ); j -=h )
Util.swap(a, j, j - h);

for (int i = h;

6. Threats to Validity

Although our study shows promising results, there are
several threats to its validity.

First, we only consider sorting algorithms. Therefore,
the generalizability of our results is limited. However, we
believe, that the presented approach can easily be applied
to different algorithm domains. Second, the results of our
study are based on a dataset which was initially recorded on
one device. It is likely that when the energy consumption
is recorded on a different device, the energy behaviour will
be different. However, in this study we are only interested
in the relative energy difference between the examined
algorithms. We are confident, that our results still hold if
applied to data that was recorded on a different device.

Another threat to validity stems from how the min-
ing was conducted. We conducted the mining only on the
structural information of the source code represented as
an AST. This omits information that could be gathered
from the hot path, and thus provide additional informa-
tion which parts of the code contribute most to the energy
consumption as they are executed more often than others.
Not utilizing this, however does mean that there are no
additional threats from the instrumentation that would be
introduced by analyzing the hot paths that could possibly
influence the energy measures. Also the patterns we find
occur related to the step variables of the loops, which are in
the hot path of sorting algorithms. This threat is primarily
to the generalizability of the approach.

The granularity of the approach itself may present a
threat to the experiment design. We intentionally chose
a high level of granularity, branches, statements and
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Figure 5. Comparison of average wattage between different data types for
all examined algorithms (Schuler and Anderst-Kotsis, 2019).

method calls, as we assume that the energy consumption
will be less likely attributable to more fine granular struc-
tures. A future comparison between different granularity
levels is needed to verify if this assumption holds true.

7. Conclusion and Outlook

Schuler and Anderst-Kotsis (2019) have clearly shown that
energy energy profiling can identify the energy consump-
tion impact of different algorithm implementations and
data types utilized. This work expands upon this concept
and combines it with software pattern mining to also iden-
tify patterns in the source code that may be responsible for
this behaviour. The results show that we can successfully
identify such pattern, both in the energy consumption
resulting from using different data types, introduced by
the additional compareTo call on the Comparable datatype,
and in the implementation of an algorithms from the use of
nested for loops iterating in single steps without skipping
any value over the entire data set.

The insights gained, especially concerning the ineffi-
cient algorithms and the identified nested for loop pat-
tern are of particular interest to give an explanation on the
power behavior of the examined algorithms. Figure 5 de-
picts the average power for the sorting algorithms (Pinto
and Castor, 2017). What’s interesting is that all efficient
algorithms show an expected divergence in average power
between examined data types, meaning the smaller the
data type being used, the lower the average power (Pinto
and Castor, 2017). This does not apply to the inefficient
group in Figure 5. Therefore, we believe that the identi-
fied nested for loops could serve as a possible explanation
for this behavior. In essence, the effect of the nested for
loop on the average power is likely to superpose the effect
examined considering power differences in data types.

This shows that using energy profiling via pattern min-
ing, specifically to identify patterns that have a negative
impact on energy consumption, can help to identify such
patterns, and identify what datatypes to consider or con-



structs to avoid when designing an algorithm. In the fu-
ture, identifying such patterns in code may help develop-
ers write code with energy efficiency in mind, which isa
current issue in software development (Hasan et al., 2016).

Our approach can be applied on any scale of software,
and applied to programming languages other than Java,
as only an AST representation of the source code is needed,
Energy measurements need to be provided according to
the MANA approach, on a per-method basis.

7.1. Future Work

In the future we want to conduct an investigation of en-
ergy patterns in a larger setting. Energy consumption can
be attributed towards method calls, as seen by the call
to compareTo in the Comparable data type. This in itself
bears further investigation if the type as a class instead of a
primitive also influences the energy behaviour, which can
be achieved by modifying the algorithms accordingly and
conducting an additional energy performance evaluation.

The presented results were achieved with a relatively
high level look at the source code, considering only control
structures (for, if, ...) and statements but not the exact na-
ture of a statement. While and For loops arguably should be
considered the same type of node during pattern mining.
In a similar vein the outlier in the inefficient algorithms
which utilizes a variable decrement instead of an incre-
ment might also be considered the same. This indicates
that multiple granularity levels of code may be interesting
for observing patterns, and could be done by introducing a
taxonomy where more fine granular concepts are general-
ized, e.g. generalizing while and for into loop, and in turn
generalizing loop and if into branching statements. Fur-
ther investigation of acceptable pattern sizes to identify
patterns responsible for energy-behaviour is necessary,
and how finely granular patterns can be to still attribute
them to energy behaviour.

This work relies solely on the AST of given source code,
ergo a static approach of mining. Static approaches are
advantageous over dynamic ones as they do not require
code execution and thus have less set-up effort and a de-
creased run-time. However since the energy consumption
is measured, which requires execution of the code as a dy-
namic approach these advantages do not come into play
for the presented approach. Future work will also consider
additional information in the AST structures that can be
extracted from call traces, to not only consider the source
code, but also execution details. Care must be taken to
ensure that conducting these traces will not negatively
influence the energy measurement.
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