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Abstract
Energy efficiency is an important topic in the area of mobile computing. Developers are often unaware of the impact their choices ondata type use and algorithm design have on this non-functional property. Software energy consumption profiling can be utilized toidentify the energy behaviour of implemented methods, while pattern mining can be utilized to identify recurring patterns in themethods being run. We present a methodology to combine energy consumption profiling and discriminative pattern mining to identifyenergy efficiency patterns. In a study of eight sorting algorithms implemented in Java with the data types int, double and Comparable,profiled on the Android platform, we manage to identify significant patterns in the source code of these 24 implementations. Theresults show that patterns can be identified for both, the data type in use, and for the energy behaviour of efficient or inefficient sortingalgorithms, that explain the observed energy profiles.
Keywords: Genetic Algorithms; Decision Support Systems; Knowledge Based Systems

1. Introduction

Understanding and optimizing the energy consumptionof software has become an important concern for the soft-ware engineering research community. This applies par-ticularly in areas with limited resources, e.g. develop-ing applications for mobile devices with constrained bat-tery lifetime. Due to the omnipresence of mobile devices,nowadays for developers it is crucial to have a solid knowl-edge about an applications’ energy consumption, in orderto develop energy efficient applications. As pointed outby Hasan et al. (2016), developers often lack the knowl-edge or experience to optimize a given source code forenergy inefficiencies. In addition to that, as described byde Oliveira Júnior et al. (2019), developers often do notshare the knowledge of tools and methodologies to assessthe energy consumption of an application. This is particu-

larly interesting, given the fact, that the software engineer-ing research community has been spending considerableeffort to provide methodologies and tools to better compre-hend the connection between software structure, designand API utilization (Hasan et al., 2016; de Oliveira Júnioret al., 2019; Hindle et al., 2014; Hindle, 2012; Schuler andAnderst-Kotsis, 2019; Rocha et al., 2019; Jabbarvand et al.,2015; Wang et al., 2012; Wu et al., 2016).
Energy mining research has already shown that thereis a direct correlation between different algorithms forthe same problem and energy (e.g. sorting (Schuler andAnderst-Kotsis, 2019)). It has also been shown that thedata types utilized play a role in energy consumption aswell. While previous research in that area already showsthe importance of good algorithm design for energy effi-ciency, this does not help a software developer make in-formed decisions about their design. There is a signifi-
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cant gap between the awareness that an algorithm has animpact on energy consumption and how and where thatimpact can be attributed to individual statements in thealgorithm.In order to gain insights how software and algorithmdesign affects energy consumption, we propose a novelmethodology to combine software pattern mining withenergy profiling. This combination allows a developerto identify energy costly algorithms, and consequentlyidentify specific patterns in the code of the algorithm thatare responsible for the energy costs. This enables a rewriteof the algorithm to be more energy efficient.Software pattern mining has been used in various ar-eas both in research and industry, e.g. mining duplicatecode (Qu et al., 2014), or mining faults (Di Fatta et al.,2006), and also to the approach, e.g. the control flow of afunction (Henderson and Podgurski), mining in multiplethreads (Oßner and Böhm) or the source code itself (Bal-anyi and Ferenc, 2003). In this work, we utilize mining onthe source code in the form of abstract syntax trees (ASTs).The result of this are patterns, i.e. code snippets, that areresponsible for high energy consumption.A thorough research on available studies in the fieldyielded that the presented approach is the first one to com-bine energy profiling with software pattern mining. Insummary, this paper makes the following contributions:
• A novel combination of energy profiling and softwarepattern mining based on abstract syntax trees.• A methodology to identify patterns derived from anin-depth analysis of abstract syntax trees which havea negative impact on the energy consumption of theexamined source code.• We present experimental results on the connectionbetween extracted patterns and software energy con-sumption in Java. The results are obtained using abenchmark that covers energy consumption of sortingalgorithms (Schuler and Anderst-Kotsis, 2019), andavailable under (Krauss and Schuler, 2021)• Patterns identifying energy costly source code. Thesepatterns can further be used as foundation to bettercomprehend the energy implications in Java develop-ment.

The remainder of this work is structured as follows. Insection 2 we give an overview on the basis of our methodol-ogy for energy and pattern mining, and also introduce thebenchmark suite used to evaluate our approach. Section3 presents our approach to obtain patterns and examineits correlation with energy consumption. In section 4 wedescribe the data-set used to evaluate the presented ap-proach. The results of our experiment are summarized insection 5. Section 6 outlines possible threats to the validityof the presented approach. Finally, section 7 concludes thepaper and gives perspectives on future work.
2. Background

2.1. Software Energy Consumption Profiling

Hoque et al. (2016) defines software energy profiling asan approach to assess the energy consumed by an exam-ined software. The foundation for obtaining an energyprofile is an energy or power model, that is able to ade-quately approximate the energy characteristics of a soft-ware Researchers further categorize respective models in3 groups: utilization-based, event-based and code-analysis-
based models. A utilization-based model is computed viathe actual use of a specific component. E.g. specific Hard-ware components CPU, Memory, GPS or Display. Event-based models are obtained by correlation of system events(e.g. system-calls) with energy recordings (Aggarwal et al.,2014). The third category solely examines models for en-ergy consumption based on the inspection of source code(Hoque et al., 2016). The approach presented in this paper,falls into the third category, as we seek to understand theenergy implications of algorithm design by an in depthexamination of syntax trees. The studied sample beingused for this purpose was originally obtained using a test-bed (Schuler and Anderst-Kotsis, 2019). For better com-prehension of this study we included an overview on theapproach below.

Algorithm 1: Test method after probe insertion.
input : algorithm - the sorting algorithm

len - the length of the array
type - the data type of the array elements

1 begin
2 PauseFor(2);
3 toSort← LoadDataToSort(len, type);
4 PauseFor(3);
5 LogStartOfExecution(algorithm);
6 sorted← Sort(algorithm, toSort);
7 LogEndOfExecution(algorithm);
8 PauseFor(3);

2.1.1. TheMANAApproach
The MANA approach was initially described by Schuler andAnderst-Kotsis (2018) and applies a combination of ap-plication instrumentation and energy consumption mea-surements to examine the energy characteristics of anapplication. The approach further enables fine granularattribution of energy consumption readings to particularsoftware entities of interest, e.g. methods.

The process applied in course of the MANA approach inorder to obtain energy readings for an application an at-tribute them to software entities consists of a series of con-secutive steps. First the subject application being analysedis instrumented. Using a gradle plugin, MANA directlyalters the Android compilation process. The instrumen-tation step is crucial, as for the analysis and the correctattribution of the recorded energy profile, it needs to be
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Figure 1. Structure of our experiment test-bed, an Experiment ExecutionCoordinator is both connected to the Monsoon Power Monitor and themobile device.

determined when a particular method was entered andexited. To achieve this, MANA relies on the Android Debugclass, which allows to collect the call trace of an applicationduring run time. In order to give the reader a general ideahow the instrumentation is carried out, refer to algorithm1, it shows the probes that are inserted during compilationwhich start and stop the method tracing.Once the application is instrumented, it can be deployedto the test-bed depicted in Figure 1. For a detailed overviewon the test-bed refer to Schuler and Anderst-Kotsis (2019).We outline the basic actors and their responsibilities asfollows:The Experiment Execution Coordinator (EEC) is respon-sible for deploying the instrumented application to an An-droid device (2). It further executes the desired tests ancollects the call traces. Besides that, the EEC is also con-nected to a measurement device. For the MANA approach,we rely on measurements obtained using the MonsoonHVPM (Monsoon Solutions, 2019) (3), a device which iscommonly used in mobile software energy consumptionresearch (Schuler and Anderst-Kotsis, 2020; Altamimi andNaik, 2015; Di Nucci et al., 2017; Wang et al., 2013). Nextto the obtained call traces, the EEC collects energy read-ings from the HVPM and further attributes the collectedenergy profile to individual methods from the recordedcall trace. The EEC finally stores the recorded data whichcomprises the call trace as well as the per method energyconsumption in a Neo4j graph database for further pro-cessing and analysis. Using this approach, it is possibleto assess the energy consumption characteristics of anyarbitrary Android application or library.For this paper the authors rely on a benchmark thatwas initially recorded using the MANA approach as partof an empirical study to assess and compare the energycharacteristics of sorting algorithms on Android (Schulerand Anderst-Kotsis, 2019). The context of the underly-ing empirical study is sorting algorithms. In what follows,we give a brief overview of the benchmarks characteris-tics and how it was obtained (Schuler and Anderst-Kotsis,

2019).
2.1.2. Sorting Algorithms Energy BenchmarkUsing the MANA approach, a selection of 12 sorting al-gorithms were examined for their energy characteristicswhen using different input sizes and data types. Examinedinput data sizes range from (1) 50, 000, (2) 75, 000 to (3)100, 000 elements. For each group arrays of data types int(4 Byte), double (8 Byte) and java.lang.Comparable<Double>were randomly generated.Besides covering the average case for each of the se-lected sorting algorithms, ordered and reverse-ordered ar-rays have been defined, respectively. To summarize, theenergy consumption benchmark described in (Schulerand Anderst-Kotsis, 2019) consists of 27 different testsbeing executed per selected algorithm which results ina total amount of 324 tests. In order to account for pos-sible outliers, tests were sampled 25 times and resultingmeasurements have been averaged.By applying the MANA approach to the selected data set,for each test being executed on the testbed, the parameterselectrical current in mA, voltage in V and duration of testexecution in nanoseconds were recorded. Using equation1, energy consumption was computed by multiplying thewattage W at time t with the difference between time tiand ti–1. The collected parameters were attributed to theexamined sorting algorithms.

∫ t2
t1

power(t)dt ≈
n∑

i=0
power(ti) × (ti – ti–1) (1)

Figure 2 summarizes the original results for the sortingalgorithms selected for this study. It is notable that for eachalgorithm the energy consumption shows an increasingtrend when used with different data types. Furthermore,the energy consumption of algorithms that are commonlyknown to be efficient considering their time and spacecomplexity, is several magnitudes lower than the energyconsumption of its inefficient counterparts. Given this dif-ference, and the fact that sorting algorithms are well stud-ied considering their space and time-complexity, makesthis a valuable benchmark for further investigating thecause of this effect. By mining for patterns in the algo-rithms’ abstract syntax trees we seek to get insights onthe connection between the structural aspects of an algo-rithm and its implications to the energy behavior.
2.2. Mining Patterns in Software

Mining patterns in software is conducted on many repre-sentations of source code. Mining of text sequences hasbeen conducted often (Ishio et al.; Ueda et al.; Wang et al.;Livshits and Zimmermann) but this reduces the optionsto deal with the specifics of source code, such as differen-tiating between branching structures that are containedwith each other, or calls between methods.
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Figure 2. Visual comparison of the the energy consumption of the examined sorting algorithms for different data types (Schuler and Anderst-Kotsis, 2019).

Graph representations have also been used with differ-ent levels of granularity (Nguyen and Nguyen; Hendersonand Podgurski) and often considering not the source codebut the call graphs between different methods (Oßner andBöhm; Cheng et al.; Liu et al.). These approaches are use-ful when the relationships between functions want to beanalyzed, and can gain further information as the controland data flow can be considered for finding interestingpatterns.
Abstract Syntax Trees (ASTs) have been used as a rep-resentation for pattern mining as well (Hanam et al.; Luanet al.). They provide the advantage of directly represent-ing the source code, similar to sequential structures, andcombine this advantage with the information on how thestructures and branches are contained, similar to graphstructures. As this work attempts to identify patterns thatcan help the developers to understand what parts of theircode negatively impact energy consumption, ASTs havebeen chosen as a representation.
The domain of discriminative pattern mining (Liu et al.;Di Fatta et al., 2006; Cheng et al.; Thoma et al.) is basedon the core concept that patterns will occur with a differ-ent frequency in between two groups. In literature thesegroups are positive and negative testing groups that de-nominate successful and failed tests respectively. Thisconcept can be expanded for the purpose of energy patternmining by considering 2 to n groups as necessary. For ex-ample the groups efficient and inefficient would still denom-inate positive and negative testing groups. But discrimina-tive pattern mining can also consider the data types used inthe specific implementation of algorithms to denominatethe groups int, double and Comparable.
Discriminative pattern mining observes the frequencyof occuring patterns. Frequent subgraph or subtree min-ing are complex issues in this domain. The reason beingthat the search space, i.e. all permuations, of a single treeis 2n where n is the amount of relationships in the tree.As this is a complex topic that is highly relevant for thescalability of pattern mining approaches many differentalgorithms have been suggested as solutions (Yan et al.;Henderson and Podgurski; Nguyen et al., b,a; Han et al.;

Ester et al.; Zaki). Generally these algorithms can be cate-gorized into three different categories.The apriori approach (Agrawal and Srikant) starts outby creating all permutations of size 1. It then evaluatesthese permutations and applies pruning, after which thesize is increased by 1, and the process is repeated until theentire search space is evaluated.
Pattern growth algorithms (Zaki) start out with patternsand only grow a given pattern in a direction that is guar-anteed to be interesting according to a specified metric.This ensures that only such patterns are grown that areof interest in the mining context, and makes this type ofalgorithm more efficient than apriori algorithms.
Non-optmiality guaranteeing methods, i.e. such meth-ods that prioritize dealing with the search space in an effi-cient way over guaranteeing that all possible instances ofthe search space are evaluated. For example this is donewith clustering of the data (Ester et al.) or via a greedypruning of the search space (Luan et al.) which can alsobe done based on regular apriori or pattern growth mech-anisms.As the search space in this work is restricted to 8 al-gorithms with three data type implementations each, to-talling 24 ASTs, an evaluation of the entire search spaceis possible without tradeoffs. Thus the basis for this workfollows a pattern growth approach.

3. Methods

3.1. Encoding the Source Code

In order to have a uniform representation of the algorithmsbeing analysed, as a preparatory step we encode the sourcecode in form of an Abstract Syntax Tree (AST). In particu-lar, our approach derives a per method AST, as the energyprofiles available in the data set have been recorded andattributed with the same granularity. Thus, encoding aclass results in not only one, but a number of abstract syn-tax trees which is equal to the number of methods beingpresent in the examined classes. The ASTs being derivedper method preserve the structural aspects of respective
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method down to individual expressions. The encoding stepalso takes method invocations into consideration. When-ever a method contains non-recursive invocations to atarget method, the target method is inlined.To prepare the selected data set for the experiment, us-ing our approach, we obtained the abstract syntax tree foreach algorithm under analysis and stored its representa-tion in a neo4j database. For parsing and constructing theresulting syntax trees, we use ANTLR together with the of-ficially maintained Java grammar available in the ANTLRGitHub repository (https://github.com/antlr/grammars-v4).
3.2. Mining Patterns from Evaluated ASTs

Mining patterns from an AST that was generated fromsource code means that in the mining itself no dynamicinformation, such as the call graph or branch executioncounts are available. The only dynamic information avail-able is the non-functional features captured during theprofiling phase. These features allow us a classificationinto groups and utilization of a discriminative pattern min-ing approach. For this we mine on a per-method basis asthe profiling provides a value per method as well.
3.2.1. Preliminary AnalysisDiscriminative pattern mining in literature usually splitsthe dataset into two groups passing and failing accordingto if the code has passed or failed a test (Di Fatta et al.,2006). When considering energy consumption, methodsthat have vastly different concerns and thus no semanticand little syntactic overlap would be grouped into the sameclass (Schuler and Anderst-Kotsis, 2019). To ensure thatmeaningful patterns can still be mined from such a classwe conduct a preliminary analysis of the given methods.

Algorithm 2: Find Smallest Infrequent Pattern
input : asts - the given asts for mining

cnt - the total amount of asts
1 size← 0;
2 patterns← ∅;
3 while patterns = ∅ do
4 size + +;

/* Find patterns of size */
5 patterns← FrequentSubgraphs(asts, size);

/* Filter all patterns occuring in all ASTs
*/

6 patterns← Filter(patterns,);
output :patterns

This is done via algorithm 2. The algorithm attemptsto find the smallest patterns that show any difference, i.e.any pattern with less than 100% frequency, between agiven group of ASTs, finding none if the ASTs are equiv-alent. It finds the smallest infrequent patterns instead of

the largest, as an infrequent structural difference in anAST will always grow around core patterns resulting inmore and more infrequent patterns growing around thisone core pattern. While this algorithm does not provide asimilarity score its results provide the following insights:
• The ASTs correlate more with each other the larger thefound patterns are.• The ASTs correlate less with each other the more pat-terns are found.• The size of the pattern is an indicator of what size shouldbe used for the pattern mining in following steps. Dueto patterns growing around a core restricting to smallersizes improves the precision, meaning how many pat-terns with a similar core meaning are mined.
3.2.2. Discriminative PatternMining

Algorithm 3: Discriminative Frequent Subgraph Mining
input : classes - the grouped asts for mining

minSupport - minimum support threshold
minDiff - minimum difference betweenclasses

1 patternsPerClass← ∅;
/* Frequent subgraph mining per class.

Patterns have a support frequency in
percent */

2 for class in classes do
3 patternsInClass← FrequentSubgraphs(class,

minSupport);
4 patternsPerClass.add(patternsInClass)

/* Filtering patterns occuring more often in
one class */

5 distinctPatterns← Distinct(patternsPerClass) ;
6 for distinctPattern in distinctPatterns do
7 for class in classes do
8 support←

patternsPerClass.class.distinctPattern;
9 for cmpClass in classes do

10 if cmpClass ̸= class then
11 classSupport←

patternsPerClass.class.distinctPattern;
12 if minDiff > (support – classSupport)

then
13 patterns.add(distinctPattern);

output :patterns

Discriminative Pattern Mining is usually done for faultlocalization (Di Fatta et al., 2006; Cheng et al.; Hendersonand Podgurski). Because of this it usually only discrimi-nates between passing and failing, and provides metricsthat are specific to these two classes. As we attempt to mineenergy consumption we are not necessarily restricted to
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Table 1. Curated list of examined algorithms, sample taken from benchmark described in Schuler and Anderst-Kotsis (2019).

Time Complexity Space ComplexityAlgorithm Best Case Average Case Worst Case Worst CaseQuicksort Iterative Ω(n log(n)) Θ(n log(n)) O(n2) O(log(n))Mergesort Iterative Ω(n log(n)) Θ(n log(n)) O(n log(n)) O(n)Heapsort Ω(n log(n)) Θ(n log(n)) O(n log(n)) O(1)Shellsort Ω(n log(n)) Θ(n(log(n))2) O(n(log(n))2) O(1)Selectionsort Ω(n2) Θ(n2) O(n2) O(1)Insertionsort Ω(n) Θ(n2) O(n2) O(1)Shakersort Ω(n) Θ(n2) O(n2) O(1)Bubblesort Ω(n) Θ(n2) O(n2) O(1)

two classes inefficient and efficient but could also comparealong more efficiency classes. We also compare differencesbetween the datatypes int, double and Comparable, whichshow a visible difference in all algorithms in Figure 2, andhave been proven to be statistically significant between
int and Comparable as well as double and Comparable bySchuler and Anderst-Kotsis (2019).To enable discriminative pattern mining on an indeter-minate amount of classes we introduce the DiscriminativeFrequent Subgraph Mining algorithm 3 algorithm. Thealgorithm works by conducting frequent subgraph miningon each of the given classes returning patterns with a given
minimum support threshold, i.e. how often the pattern mustat least occur in over all ASTs. This step provides all pat-terns relevant in a given class that may be responsible forits non-functional behaviour, e.g. why it is energy efficientor energy inefficient. To reduce false positives in a secondstep the patterns are filtered via minimum difference whichensures that false positives, i.e. patterns occurring often inmore than one class, are reduced. The remaining patternsare likely candidates, that in the context of energy pat-tern mining, explain why a class is inefficient or efficientcompared to others.This filtering approach however comes with a caveat,namely that outliers are filtered out in the first step via
minimum support threshold. These outliers are importantas they may negate the assumption that a found pattern isresponsible for energy behaviour. This makes it necessarythat following the mining approach the ASTs in the datasetare checked for containment of the identified pattern todetermine and explain possible outliers.
4. Evaluation
We based our study on the sorting algorithm benchmarkdescribed in Schuler and Anderst-Kotsis (2019). How-ever, we did not include the originally examined algorithmQuicksort Dual Pivot. The main reason for this was, theoriginal study referred to an implementation which is partof the Java standard library and therefore the algorithm isdesigned in compliance with general OO-principles. Thishowever, makes it hard to factorize the relevant syntaxtrees to allow for a meaningful comparison in this study.Additionally, for each sorting algorithm examined in theoriginal benchmark, we only consider its iterative coun-terpart, excluding the recursive version. As a result the

final curated list of algorithms used in this study containsthe 8 algorithms presented in Table 1.From the original study we obtained the source codeof each selected algorithm together with its energy andrun-time characteristics. For each of the algorithms wecomputed the abstract syntax trees down the the expres-sion level using ANTLR (cf. Section 3). If possible methodcalls were inlined. The resulting syntax trees are storedin a Neo4j database with attributed energy and run-timecharacteristics, respectively.
5. Results
To identify patterns in algorithms that have a negativeimpact on the energy consumption, the encoded ASTsof the given algorithms need to be clustered into groups.Figure 2 shows the evaluated sorting algorithms with theirrespective energy consumption in mJoule. Table 1 alsoshows the time complexity for these algorithms. Fromthis the following clustering approaches become apparent:
Inefficient vs. efficientSelection- Insertion- Shaker- and Bubblesort showa similar efficiency that is worse than all other algo-rithms denoting the inefficient group. As the otheralgorithms show similar behaviour they can be de-noted as their own group to compare to the efficientgroup.
DatatypesThe datatype Comparable shows an energy ineffi-ciency compared to int and double, which show a simi-lar energy consumption to each other. This differencehas been shown to be statistically significant (Schulerand Anderst-Kotsis, 2019), it is worth investigatingif responsible patterns can be identified.

The discussion hereafter is based on the ASTs of thealgorithm implementations as they were instrumentedand profiled for energy consumption. The source code,ASTs and results of the mining approach are available in(Krauss and Schuler, 2021).
5.1. Preliminary Analysis

The methods presented in this work attempt to mine pat-terns exclusively on a structural basis, not taking into con-sideration dynamic information such as which AST nodes



Krauss and Schuler | 

were actually called or how often, or the call graph betweenfunctions and classes.As the analysis compares sorting algorithms, servingthe same goal it can be assumed that a structural compari-son makes sense, for comparing inefficient and efficientalgorithms. For the datatypes however, pattern miningis irrelevant if an individual algorithm is implementeddifferently for the different datatypes. E.g. in the three al-gorithms Quicksort-int, Quicksort-double and Quicksort-Comparable only the used datatype should be different. Asan initial step we compared the three datatype versionsof each sorting algorithm with each other to verify this,using algorithm 2.The resulting analysis shows absolutely no differencesbetween double and int, and only one core difference to
Comparable for every algorithm. This difference is alwaysthe invocation to Comparable.compareTo, with differentpattern sizes, as algorithms contain method invocations,the pattern is found with a size 2 via Expr← MethodInvoc.In the cases of QuickSortIterative we find 7 patterns of size3 and in MergeSortIterative we find 9 patterns of size 3, allof them growing around compareTo or the absence of it.This finding also indicates that an analysis of the datatypes and inefficient vs. efficient algorithms should beconducted around a pattern size of 3. It has also been pre-viously suggested that smaller patterns are more usefulfor evaluation (Cheng et al.), and a size 3 is the minimalsize promising patterns seem to be identifiable.
5.2. Comparison of Data Types

The preliminary investigation has already shown that thecall to the function compareTo is the pattern likely explain-ing why the comparable data type is more energy inef-ficient than int and double. Conducting discriminativepattern mining in the datatype categories does indeed notyield any further patterns. Figure 3 shows how most pat-terns are grouped. They are either not discriminative, oc-curing in all three data type implementations, or alwaysoccur in the int and double algorithms together but not the
Comparable. The third option, only occuring in Comparableis omitted from the figure.This indicates that the compareTo method call is respon-sible for the energy consumption overhead over int anddouble. However we can not conclusively claim that this isthe only reason Compare is less energy efficient, as this isalso the only data type that is a class and not a primitivedata type, which int and double are.
5.3. Inefficient vs. Efficient Algorithms

To find patterns that may be responsible for the differ-ent energy behaviours of sorting algorithms we comparedthe two groups inefficient (Selection- Insertion- Shaker-Bubblesort) and efficient (QuickSortIterative, Mergesor-tIterative, Heapsort, Shellsort) via discriminative patternmining. The minimum support threshold for each group wasset to 0.75, i.e. a pattern must occur in 75% or more trees of

Figure 3. Most patterns occur in all data type implementations (left), whilesome occur only in double and int as Comparable has a method invocationat the position of the lower Expr node (right).

Figure 4. A nested for loop conducting a linear increment in both the innerand outer loop is responsible for the inefficient run-time performance aswell as the energy performance of sorting algorithms.

a group to be relevant. To compare the differences betweenthe groups minimum difference was set to 0.75, i.e. Theremust be at least an 75% difference between occurrencesof efficient to inefficient and vice versa. The combinationof those two settings means that essentially we mine onlypatterns that occur either mostly in the efficient or mostlyin the inefficient groups.
As the preliminary analysis yielded a pattern size of 3to be an interesting search space this size was chosen. In-deed a search of < 3 yields no patterns at all. The size of3 yields a pattern around the Method Declaration in the

efficient search space, as all algorithms share a variable ini-tialization occuring before the loops conducting the sort.This pattern already identifies the variables utilized by theefficient algorithms in the loops itself but not its use. Thuswe extended the pattern size to 4, which starts showing 12patterns exclusive to the inefficient space where the loopsfavor increments of the loop variable, and 3 assignmentsexclusive to how the loop variables are handled in the ef-
ficient algorithms, we continued increasing the patternsize after this, but larger pattern sizes only show patternsgrown around these core patterns but not yielding addi-tional information.
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The reason the inefficient algorithms are energy ineffi-cient seems to be that all of them contain two nested forloops. The inner nested for loop conducts a PostIncrementwhich is exclusive to the inefficient algorithms. The pat-tern has one outlier in its class, the InsertionSort whichconducts a PreIncrement (j–– instead of j++) in the innerloop. This is essentially the same functionality, but fromthe perspective of pattern mining not equal in one node,and thus an outlier. The outer loop of all these algorithmsconducts a PostIncrement, identified in two patterns, oneshared with ShellSort, and one shared with MergeSort.Figure 4 shows a pattern of size 5 containing both loopsand respective increments exclusive to the negative searchspace. Listing 1 shows how ShellSort instead improves itsefficiency by using an expression for the inner loop stepsinstead of a linear decrement or increment.

Listing 1. Nested for-loop in ShellSort does not produce O(n2). The innerloop iterates only over every h’th element.
for (int i = h; i < N; i++) {

for (int j = i; j >= h &&
(a[j].compareTo(a[j - h]) < 0 ); j -= h )
Util.swap(a, j, j - h);

}

6. Threats to Validity
Although our study shows promising results, there areseveral threats to its validity.First, we only consider sorting algorithms. Therefore,the generalizability of our results is limited. However, webelieve, that the presented approach can easily be appliedto different algorithm domains. Second, the results of ourstudy are based on a dataset which was initially recorded onone device. It is likely that when the energy consumptionis recorded on a different device, the energy behaviour willbe different. However, in this study we are only interestedin the relative energy difference between the examinedalgorithms. We are confident, that our results still hold ifapplied to data that was recorded on a different device.Another threat to validity stems from how the min-ing was conducted. We conducted the mining only on thestructural information of the source code represented asan AST. This omits information that could be gatheredfrom the hot path, and thus provide additional informa-tion which parts of the code contribute most to the energyconsumption as they are executed more often than others.Not utilizing this, however does mean that there are noadditional threats from the instrumentation that would beintroduced by analyzing the hot paths that could possiblyinfluence the energy measures. Also the patterns we findoccur related to the step variables of the loops, which are inthe hot path of sorting algorithms. This threat is primarilyto the generalizability of the approach.The granularity of the approach itself may present athreat to the experiment design. We intentionally chosea high level of granularity, branches, statements and
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Figure 5. Comparison of average wattage between different data types forall examined algorithms (Schuler and Anderst-Kotsis, 2019).

method calls, as we assume that the energy consumptionwill be less likely attributable to more fine granular struc-tures. A future comparison between different granularitylevels is needed to verify if this assumption holds true.
7. Conclusion and Outlook
Schuler and Anderst-Kotsis (2019) have clearly shown thatenergy energy profiling can identify the energy consump-tion impact of different algorithm implementations anddata types utilized. This work expands upon this conceptand combines it with software pattern mining to also iden-tify patterns in the source code that may be responsible forthis behaviour. The results show that we can successfullyidentify such pattern, both in the energy consumptionresulting from using different data types, introduced bythe additional compareTo call on the Comparable datatype,and in the implementation of an algorithms from the use ofnested for loops iterating in single steps without skippingany value over the entire data set.The insights gained, especially concerning the ineffi-
cient algorithms and the identified nested for loop pat-tern are of particular interest to give an explanation on thepower behavior of the examined algorithms. Figure 5 de-picts the average power for the sorting algorithms (Pintoand Castor, 2017). What’s interesting is that all efficientalgorithms show an expected divergence in average powerbetween examined data types, meaning the smaller thedata type being used, the lower the average power (Pintoand Castor, 2017). This does not apply to the inefficientgroup in Figure 5. Therefore, we believe that the identi-fied nested for loops could serve as a possible explanationfor this behavior. In essence, the effect of the nested forloop on the average power is likely to superpose the effectexamined considering power differences in data types.This shows that using energy profiling via pattern min-ing, specifically to identify patterns that have a negativeimpact on energy consumption, can help to identify suchpatterns, and identify what datatypes to consider or con-
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structs to avoid when designing an algorithm. In the fu-ture, identifying such patterns in code may help develop-ers write code with energy efficiency in mind, which is acurrent issue in software development (Hasan et al., 2016).Our approach can be applied on any scale of software,and applied to programming languages other than Java,as only an AST representation of the source code is needed,Energy measurements need to be provided according tothe MANA approach, on a per-method basis.
7.1. Future Work

In the future we want to conduct an investigation of en-ergy patterns in a larger setting. Energy consumption canbe attributed towards method calls, as seen by the callto compareTo in the Comparable data type. This in itselfbears further investigation if the type as a class instead of aprimitive also influences the energy behaviour, which canbe achieved by modifying the algorithms accordingly andconducting an additional energy performance evaluation.The presented results were achieved with a relativelyhigh level look at the source code, considering only controlstructures (for, if, ...) and statements but not the exact na-ture of a statement. While and For loops arguably should beconsidered the same type of node during pattern mining.In a similar vein the outlier in the inefficient algorithmswhich utilizes a variable decrement instead of an incre-ment might also be considered the same. This indicatesthat multiple granularity levels of code may be interestingfor observing patterns, and could be done by introducing ataxonomy where more fine granular concepts are general-ized, e.g. generalizing while and for into loop, and in turngeneralizing loop and if into branching statements. Fur-ther investigation of acceptable pattern sizes to identifypatterns responsible for energy-behaviour is necessary,and how finely granular patterns can be to still attributethem to energy behaviour.This work relies solely on the AST of given source code,ergo a static approach of mining. Static approaches areadvantageous over dynamic ones as they do not requirecode execution and thus have less set-up effort and a de-creased run-time. However since the energy consumptionis measured, which requires execution of the code as a dy-namic approach these advantages do not come into playfor the presented approach. Future work will also consideradditional information in the AST structures that can beextracted from call traces, to not only consider the sourcecode, but also execution details. Care must be taken toensure that conducting these traces will not negativelyinfluence the energy measurement.
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