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Abstract
Diagnosis and prognosis of intermittent faults, in general, is difficult as it is unknown when and for how long intermittent faults willreappear. This paper addresses the case of parametric incipient faults and simultaneously occurring intermittent faults with amagnitude that increases over time so that they may reach a failure alarm threshold and may eventually lead to a component or even asystem failure.The presented Bond Graph-based approach consists of two parts. First, a Diagnostic Bond Graph (DBG) is developed offline for anonline diagnosis of intermittent faults by means of Analytical Redundancy Relations (ARRs). Due to the magnitude of intermittentfaults increasing with time, the time evolutions of ARRs indicate a degradation trend. In a second, data-based, part, values of this trendover a moving time window stored in a buffer are extrapolated concurrently to the monitoring and to the fault detection and isolation(FDI) part in a repeated failure prognosis resulting in a sequence of Remaining Useful Life (RUL) estimates. A case study considers asmall switched electronic circuit.
Keywords: Intermittent faults, Parametric incipient faults, Diagnostic Bond Graph, Fault diagnosis, Concurrent repeated failureprognosis.

1. Introduction

Failure prognostic is an essential part of Prognostic andHealth Management (PHM) for all safety critical engineer-ing systems and processes, for supervision, automationand condition based maintenance (CBM) of industrial pro-cesses and, clearly requires detection, isolation and esti-mation of faults. Data-driven as well as physics model-based approaches to Fault Detection and Isolation (FDI)are widely used in industry and in academia, see, for in-stance, Blanke et al. (2006); Tanwani et al. (2011); Escobetet al. (2014); Gao et al. (2015).Elaborated presentations of bond graph model-basedFDI may be found in books such as Samantaray and OuldBouamama (2008); Wang et al. (2013); Borutzky (2015).FDI has mostly addressed abrupt as well as incipient faults.

In recent years, research has extended to FDI of intermit-tent faults, see, for instance, Syed W. et al. (2016).
More recently, combinations of model-based and data-driven approaches have also been used for failure prog-nosis. In comparison to fault diagnosis, combined model-based and data-driven failure prognosis is still a subjectof ongoing research. A 2016 survey on failure prognosticmay be found in Elattar, H. M. et al. (2016). Combined bondgraph model-based, data-driven approaches have beenpresented in Jha et al. (2017); Borutzky (2019, 2020).
Failure prognosis has mostly considered the case of in-cipient parametric faults because a degradation trend canbe extracted from measurements in a moving time windowand can be projected into the future in order to obtain esti-mates of the remaining useful life (RUL). In contrast, inci-
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dents of intermittent faults, their duration and their mag-nitude are unpredictable. So far, jointly performed faultdiagnosis and failure prognosis of intermittent faults hasbeen addressed in a rather small number of publications,for instance, in Ming Yu et al. (2020); Borutzky (2023).This paper considers the case of fault diagnosis andfailure prognosis of intermittent and incipient paramet-ric faults occurring simultaneously and is organised asfollows:The next section explains the fault diagnosis part of theapproach based on an offline developed diagnostic bondgraph (DBG). The fault diagnosis part cooperates with thefailure prognosis part concurrently to the monitoring of asystem.The repeated failure prognosis part cooperating withthe fault diagnosis part is addressed in Section 3.In Section 4, intermittent fault diagnosis by means ofAnalytical Redundancy Relations (ARRs) and a repeatedRUL estimation for intermittent faults is illustrated in acase study of an electronic circuit in which the power sup-ply is subject to intermittent faults and a capacitor is leak-ing.Section 4.3 shows that the approach is also applicableto sensors subject to intermittent faults.Finally, Section 4.4 considers the case of incipient faultsoccurring simultaneously to intermittent faults by assum-ing that a capacitor in the electronic circuit is leaking.The conclusion emphasises that intermittent faults arecommon in electronic interconnection systems and sug-gests the application of the presented BG model-basedfault diagnosis approach combined with the data-basedfailure prognosis approach to further electronic systemswith potential contact problems.
2. Fault diagnosis

The fault diagnosis part is performed concurrently to themonitoring of a process on an offline developed diagnosticbond graph (DBG) by numerically evaluating AnalyticalRedundancy Relations (ARRs) derived from the DBG. Nu-merical evaluation of ARRs results in residuals that serveas fault indicators. ARRs may be nonlinear dynamic equa-tions and may even depend on discrete switch states in thecase of switched models. The dependencies of ARRs fromsystem parameters are usually captured in a structuralfault signature matrix (FSM), which enables a direct de-tection of faults. If a fault signature is unique, a potentiallyfaulty parameter can be isolated by inspection. In the caseof multiple elements with the same fault signature, nu-merical parameter estimation can be used to identify theparameters that deviate from their nominal values. Oncea faulty parameter has been isolated, the magnitude of afault can be estimated at each next time instant in a slid-ing time window. Recording the obtained values revealsan unknown faulty time behaviour without the need ofa mathematical model for the degradation trend, whichmight be difficult from physical first principles. In the

offline simulation study in Section 4, the time evolutionof the unstable power supply of a small electronic circuitsubject to intermittent faults of increasing magnitude isreconstructed. At the same time a leaking capacitor devel-ops an incipient parametric fault. The degradation trend offaults is reflected by the developing time evolution of ARRresiduals as time proceeds. Extrapolations of residuals canbe used to obtain a sequence of RUL estimates.
3. Concurrent repeated failure prognosis
The second part of the proposed approach uses the ARRresiduals obtained in the first part for a repeated failureprognosis performed concurrently to the fault diagnosis.Once online fault diagnosis has resulted in a residual dif-ferent from zero, system monitoring has to proceed untilthe residual value returns to zero before one can concludethat an intermittent fault happened. If, instead, the resid-ual retains the nonzero value for quite some time, onemay conclude that an abrupt fault happened. In case theresidual returns to zero at some later time instant, it isclear that an intermittent fault of unforeseeable lengthhas happened. Moreover, even when the residual underconsideration returns to zero, one cannot be sure that an-other event of an intermittent fault will take place at anytime instant later. Therefore, to be able to identify somedegradation trend and to predict a RUL estimate, two con-secutive intermittent faults must be detected and the latterone must be of higher fault magnitude. An estimate of aRUL may be obtained from a reconstructed fault signalby determining the intersection of an interpolation linethrough the points where the length of two consecutiveintermittent faults end with an alarm threshold. The timepoint ti is the time instant where a considered residualreturns to zero.If subsequent intermittent faults happen while timemoves on, the process can be repeated. The result then isa sequence of RUL estimates that converges to zero withongoing time. If the monotonic increase of intermittentfault magnitudes stops at some time instant, then RULprediction is no longer possible but can resume when in-termittent fault magnitudes increase again. As long asthere is no intersection of an interpolating line with analarm threshold no action is required and a system maycontinue its operation. On the contrary, time intervals be-tween two consecutive intermittent faults may becomeshorter, their number may increase and may result in apermanent fault.The approach to a repeated failure prognosis startingfrom ARR residuals obtained from a diagnostic BG is il-lustrated in Section 4 by means of an offline simulation.However, the diagnosis of intermittent faults as well asthe simultaneous delayed extrapolation of fault values andthe repeated RUL prediction can be performed online con-currently to the monitoring of the dynamic behaviour of asystem.
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Figure 1. Simple switched circuit with two voltage sensors

Table 1. Parameters of the switched circuit in Fig. 1
Parameter Value Units Meaning
E 5 V Voltage supply
Ethr 1 V Fault threshold
R1 500 Ω Resistor R : R1
R2 5 kΩ Resistor R : R2
Ron 0.1 Ω ON resistance ofswitch of Sw
C1 5000 µF Capacitor C : C1
C2 1000 µF Capacitor C : C2
C2crit 400 µF Fault threshold
tsw 10 s Switching point of Sw
t0 5 s Start of the decay of

C̃2(t)
λ 0.0308065 s–1 Rate of the decay

4. Intermittent and incipient parameter faults oc-
curring simultaneously

The approach to a detection of simultaneous intermittentand incipient parametric faults and a repeated predictionof RUL estimates is illustrated by means of the simple elec-tronic circuit in Fig. 1.In this study, the real circuit is replaced by a BG modeland offline simulation is performed that uses the parame-ter in Table 1.It is assumed that the element parameters do not be-come faulty over time but keep their nominal value exceptthe power supply E(t) and the capacitance C2.To obtain pseudo measurements, the time evolution ofthe voltages numerically computed by means of the opensource simulation program Scilab Scilab Team, ESI Group(2020) are overlayed with noise. These ‘measurements’are filtered before they are input into the DBG for the com-putation of ARRs.
tu1n = tu1+ 0.02* tu1 .* rand(tu1,"normal"); (1)

In (1), the tilde denoting measurements from the faultysystem, is replaced by the preceding letter t; the suffixedletter ’n’ indicates that the net signal is overlayed withnoise.Figure 2 depicts the noisy measurements ũ1, ũ2 of thecapacitor voltages. They are smoothed by the Scilab func-tion lsq_splin().Fig. 3 shows the time evolutions of the smoothed capac-

Figure 2. Time evolutions of the noisy capacitor voltages ũ1, ũ2

itor voltages ũ1, ũ2. Fig. 4 displays the time evolution ofthe smoothed voltage ũ1 together with its time derivative˙̃u1.
4.1. Intermittent fault diagnosis

Fig. 5 depicts the DBG of the circuit, in which the volt-ages with a tilde denote measurements from the faultysystem. It is assumed that the voltage sensors themselvespresented by the detectors De : ũ1 and De : ũ2 are faultless.
From the DBG in Fig. 5 the following two mode-dependent ARRs can be deduced.

01 : ARR1 : r1 = i1 – isw – C1 ˙̃u1
= E – ũ1

R1
– b2

Ron + b · R2 (ũ1 – ũ2) – C1 ˙̃u1
= E – ũ1

R1 – b
R2 (ũ1 – ũ2) – C1 ˙̃u1 (2)

02 : ARR2 : r2 = isw – C2 ˙̃u2 = b
R2 (ũ1 – ũ2) – C2 ˙̃u2, (3)

where b(t) ∈ {0, 1}.As can be seen from the structural fault signature ma-trix (FSM) (Table 2), none of the element parameters isisolatable, except C : C2. Residual r1 depends on elementsR : R1, C : C1 and on R : R2 in case the switch is closed. As aresult, by inspection of the FSM it cannot be decided whichparameter is faulty and causes an abnormal behaviour ofthe circuit. By means of parameter estimation over a timewindow it can be shown that the element parameters, infact, do not deviate from their nominal values.
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Figure 3. Time evolutions of the smoothed capacitor voltages ũ1, ũ2

Figure 4. Time evolutions of the smoothed capacitor voltage ũ1 and its timederivative ˙̃u1

Numerical computation of (2) yields for the residualres1 = R1 · r1 a time evolution that clearly enables to detectthe intermittent faults (Fig. 6). Residual res1 can also beused to estimate the magnitude of the intermittent faultsand to reconstruct the unknown faulty voltage supply Ẽ.If the constant voltage E in (2) is replaced by the faultyunknown one Ẽ, then ARR1 reads:
0 = Ẽ – ũ1

R1 – b
R2 (ũ1 – ũ2) – C1 ˙̃u1 (4)

Solving for Ẽ and observing (2) gives
rẼ = E – R1r1 = E – res1 = Ẽ (5)
∆E = res1 (6)
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Figure 5. Diagnostic bond graph of the circuit in Fig. 1

Table 2. Structural FSM for the switched network in Fig. 1
Element Parameter r1 r2 Db Ib
Voltage source E 1 0 1 0
De : ũ1 ũ1 1 1 1 0
De : ũ2 ũ2 1 1 1 0
Switch b b b b 0
R : R1 R1 1 0 1 0
R : R2 R2 b b b b
C : C1 C1 1 0 1 0
C : C2 C2 0 1 1 1

4.2. Repeated RUL estimation for intermittent faults

From Fig. 6 one can see that the intermittent faults returnto zero at time instances t = 10, 30, 40, 48 s. Connectingthe values of the reconstructed time evolution of the faultyvoltage supply rE(t) at two consecutive time points yieldslines that intersect with an alarm threshold defined to be1 V as depicted in Fig. 7.The time points of the intersections with the alarmthreshold yield the decrease of the RUL over time shown inFig. 9. The offline simulation running up to t = 50 s takesinto account that online measurement cannot look intothe future. Measurements only available up to the currenttime instant can be used for computing ARR residuals andfor reconstruction of a time behaviour subject to intermit-tent faults. Although the latest intermittent fault return tozero at t = 48 s, we cannot be sure at that time point thatanother intermittent fault will follow.As an alarm threshold is chosen well with a distanceto the failure threshold, the faulty supply voltage can stillcross the alarm threshold due to an intermittent fault with-out causing harm to the system. Let t4 be the last time in-stant where rẼ(t4) still has a distance to the alarm thresh-old and where rẼ returns to the constant value E and let
tf be the time point where rẼ(tf ) touches or crosses thethreshold for the first time. The last RUL value differentfrom zero then reads RUL(t4) = tf – t4 and RUL(tf ) = 0.Fig. 8 shows the case where the true faulty voltage crossesthe alarm threshold due to the last intermittent fault. Thelast RUL value different from zero is RUL(t4 = 48 s) = 2 s
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Figure 6. Reconstructed input voltage rtE and faulty input voltage tE

Figure 7. Repeated RUL estimation

and tf = 50 s.
4.3. Sensor subject to intermittent faults

Residuals derived from a DBG can also be used to detecta sensor with intermittent faults and to reconstruct thefaultless signal. Let’s assume that the circuit in Fig. 1doesn’t have any parametric faults. If the measurementsof the capacitor voltages are correct then the residuals ofARRs (2), (3) are zero or close to zero. In contrast, if sensorDe : ũ′1 provides a faulty reading ũ′1(t) subject to intermit-tent faults due to connection problems then the residualsof both ARRs are different from zero. In the DBG in Fig. 10,the faulty reading ũ′1 is highlighted in red.
Fig. 11 shows the true transient behaviour u1(t) and thefaulty voltage u′1(t) which temporarily drops to zero due tocontact problems. As noise is filtered anyway before mea-

Figure 8. Determination of a last RUL value different from zero

Figure 9. Decrease of the RUL over time

surements are used in the ARRs, noise has been neglectedin Fig. 12.
Assume for simplicity that the second sensor De : ũ2provides faultless readings. ARR (3) then yields

0 = b
R2 (ũ1 – ũ2) – C2 ˙̃u2 (7)

r2 = b
R2 (ũ′1 – ũ2) – C2 ˙̃u2 (8)

Substraction of both equations gives for the reconstructionof the faultless signal ũ1(t)
R2 · r2 = b (ũ′1 – ũ1) (9)

or
rũ1 = ũ′1 – R2 · r2 = ũ′1 – res2 (10)
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Figure 10. Diagnostic BG of Fig. 1 with a faulty input u′1(t)

Figure 11. True transient behaviour of u1(t) and faulty reading u′1(t)

for t ≥ tsw.
As can be seen from Fig. 12, the waveform of residual

res2(t) complements the one of the faulty signal ũ′1(t) in thetime intervals where the latter one drops to zero. The resultof the overlay of both waveforms is just the reconstruction
rũ1(t) of the time history of the true capacitor voltage ũ1.

The reconstruction rũ1(t) can also be obtained fromARR 2. However, the computation of r1(t) requires thenumerical differentiation of the faulty readings ũ′1 withalmost instantaneous drops to zero at unpredictable timeinstances.
r1 = E – ũ′1

R1 – b
R2 (ũ′1 – ũ2) – C1 ˙̃u′1 (11)

4.4. Leaking capacitor

In the following, it is assumed that in addition to the in-termittent faults on the constant voltage supply E the ca-pacitance C2 is simultaneously leaking following an expo-nential decay.
C̃2(t) =

{
C2 t ≤ t015 C2

(1 + 4e–λ(t–t0)) t ≥ t0 (12)

Figure 12. Reconstruction of u1(t) from faulty reading u′1(t) and residual
res2(t)

In the case of the simple example circuit in Fig. 1, the wave-form of the faulty voltage Ẽ(t) can be reconstructed fromARR1. Independently, ARR2 yields the degradation trend
C̃2(t). Replacing the nominal capacitance C2 in (3) by theunknown faulty time dependent capacitance C̃2(t) givesfor the time evolution of C̃2(t).

0 = b
R2 (ũ1 – ũ2) – C̃2(t) ˙̃u2 (13)

By subtracting (13) from (3) one obtains for the recoveredfaulty capacitance rC̃2(t)
rC̃2(t) = C2 + r2˙̃u2 (14)

or
rC̃2(t) = b

R2
ũ1 – ũ2˙̃u2 (15)

Fig. 13 shows the waveforms of of smoothed capacitorvoltages ũ1(t), ũ2(t) in the case C2 is leaking in addition tothe faulty voltage supply ẼClearly, recovery of the exponential decrease of capac-itance C2 from the voltage measurements can only startwhen the switch is closed for t ≥ tsw = 10 s (b = 1) andvalues ũ2(t) and ˙̃u2 are available. Till that switching point,it is assumed that C2 is faultless and keeps its nominalvalue. As Fig. 14 indicates, the true exponential decline
tC2(t) actually starts earlier at t = t0 = 5 s (Eq. 12).The outliers on rC2(t) can be removed or reduced by amoving median filter. The result rC2m(t) is close to thetrue exponential decline tC2(t) (Fig. 14).Finally, in case an alarm threshold is set to be C2crit =0.4 mF, the time to reach this threshold would be tf = 50 s.Fig. 15 shows the RUL prediction for capacitance rC2(t).
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Figure 13. Time evolutions of smoothed capacitor voltages ũ1,ũ2 in the case
C2 is leaking in addition to a faulty voltage supply Ẽ

Figure 14. Recovered leaking capacitance rC2(t)

The degradation trend of the voltage supply due to inter-mittent faults of increasing magnitude reaches its lowestadmissible values of 1 V also at tf = 50 s (Fig. 8). Hence, thecircuit’s end of life (EoL) is 50 s. Clearly, for systems withfaulty components the one with the fastest degradationtrend determines the system’s EoL.
5. Conclusion

The paper presents a BG model-based approach to diag-nosis and failure prognosis of simultaneously occurringintermittent faults with a magnitude increasing over timeand incipient parametric faults.Faults are detected and estimated by evaluating ARRsderived from an offline developed DBG. Inputs into theDBG are known input signals and system measurements.Failure prognosis is done by repeated extrapolation of mea-

Figure 15. RUL prediction

surements.Switching components can interrupt a prognosis con-currently performed to the monitoring of a system since insome system modes some measurements are not available.Clearly, the degradation trend of capacitance C2 can onlybe extracted from measurements when the switch mod-elling the pass transistor is closed and the measurementof u2(t) is available.In this case study, parameter uncertainties have beendisregarded. However, they can be well taken into accountin an uncertain BG, in a BG in linear fractional transforma-tion form (BG-LFT), or in an incremental BG. Kam (2001);Borutzky (2010).Intermittent faults are common in electronic intercon-nection systems. The approach can be applied to furtherelectronic systems in which contact problems due to cor-rosion, moisture, or vibration can lead to unwanted un-controlled, unpredictable connections or disconnectionsfor short time intervals affecting the dynamic behaviourof a system and perhaps its safety.
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