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Abstract
This paper introduces H-Verify, a platform to design and implement intrusions against real-world ICT infrastructures. Unique in itsapproach, H-Verify leverages adversary simulations previously ran on a digital twin of the target infrastructure to fully or partiallyautomate the planning and execution of intrusions but it can also act as a flexible decision support system for the manual planning ofintrusions. Furthermore, the tool also supports the simulation results, detecting false positives in the infrastructure vulnerabilities,testing applied countermeasures, and supporting users with distinct levels of experience in red teaming engagements.
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1. Introduction
An ICT intrusion executes a sequence of actions that in-cludes elementary attack and information collection ac-tions. The sequence of attacks in the intrusion results ina chain that escalate the access rights of the attackers tillreaching a predefined goal, i.e. acquiring a predefined setof access rights.H-Verify is a platform to automatically build and exe-cute the whole sequence of actions of an intrusion eitherto assess the robustness of an ICT system or to penetrate it.The platform uses the outputs of the Haruspex predictiveplatform and an exploit database to build and execute a se-quence of actions, a partial or a complete intrusion, againstthe target system. Its ability to support users across dif-ferent proficiency levels is amplified by the availabilityof accurate information returned by the adversary sim-ulations performed by the Haruspex predictive platformagainst the target system.The Haruspex predictive platform runs adversary sim-ulations against the target infrastructure. An adversarysimulation is a cybersecurity assessment technique simi-lar to the behavior of a red team that leverage its expertiseto craft and execute hypothetical attack scenarios, aiming

to evaluate an organization’s defensive posture. The pri-mary goal is to simulate the appearance and actions of anadversary to identify weaknesses before an actual secu-rity incident occurs. The adversary is well defined and thered team replicates the behaviors, objectives, and TTPs(tactics, techniques, and procedures) of real, known ad-versaries. This practice is based on comprehensive threatintelligence and seeks to replicate specific attack patternsthat have been observed in the wild or are anticipated to beused against the organization. The objective is to evaluatethe organization’s resilience against advanced persistentthreats (APTs) and to uncover realistic attack paths thatcould be exploited by an emulated adversary. The pecu-liarity of the Haruspex platform is that it automates thesimulation and that it does not affect the target ICT systembecause it works on a digital twin of the infrastructure.As described in the following, this twin is a model of thetarget system.
While the Haruspex predictive platform simulates in-trusion on a model of the target system, H-Verify works onthe real system and it can be used either in a real intrusionor to automate the operation of read team.
When automating red team operations to improve the
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target robustness, H-Verify allows to scrutinize and val-idate outcomes generated by the twin adversary simula-tions by using the exploit database to build sequences ofaction. This ensures a reliable validation of simulationresults to discover inaccurate or incomplete informationused to build the target twin, such as false positives andfalse negatives in the system vulnerabilities.When used in a real intrusion, besides building and ex-ecuting sequences of actions, the tool can also behave asa decision support system for the design of personalizedsequences. H-Verify offers the flexibility to implement ei-ther fully or partially automated sequences to optimize ef-ficiency and response time. During the execution, the usercan interact with open sessions to exfiltrate informationor upload resources, such as malware or post-exploitationtools, on compromised hosts. The exfiltrated informa-tion can be analyzed to improve the target twin and to runfurther simulations to discover further intrusion.This paper is organized as follows: Section 2 intro-duces the Haruspex predictive platform, while Section3 describes how it uses the digital twin technology andMonte Carlo methods for adversary simulations. Section4 details the software architecture and the key modules ofH-Verify. Experimental results from both virtual labora-tory and real-world infrastructure are reported in Section5. In Section 6, we discuss the primary limitations of ourtool, which are fairly common across the broader field ofoffensive security applications. Section 7 reviews the mainoffensive tools and compares them with H-Verify. Futureresearch directions are proposed in Section 8, and Section9 concludes the paper with final remarks.
2. Related Work

The main innovation of H-Verify is the design of the se-quences of actions in intrusions using the output of the ad-versary simulations by the Haruspex predictive platform.This platform builds digital twins (Husák et al., 2019; Taoet al., 2019; Lehner et al., 2021; Langlotz et al., 2022) ofboth the attacker (threat twin) and the target system (tar-get twin). Each of these twin is an abstract description ofan entity that focuses on those properties that are usefulto discover intrusions. The target twin describes theseproperties for each infrastructure components while thethreat twin describes the strategy, the goal, and the at-tack surface of an attacker. This twin also describes thepossible actions of the attackers in terms of TTPs fromthe MITRE ATT&CK matrix (MITRE, a). These twins canbe automatically generated and incorporate solutions toaddress any informational gaps.Using information in these digital twins, the Harus-pex platform runs adversary simulations where each onemimics one after the other the actions the attacker strategyselects and the resulting intrusions. The output of eachaction is determined by information in the target twin.The platform applies a Monte Carlo method (Kavak et al.,2021) that runs several independent simulations in par-

allel to cover alternative outputs of the actions. The finalgoal is the discover all the possible intrusions an attackercan build and the corresponding sequences of actions.Hence, while the digital twins should offer an accurateinformation on the target infrastructure and an attacker,the adversary simulation focuses on reproducing in anaccurate and complete way the interaction between theattacker and the infrastructure.We refer to (Baiardi and Sgandurra, 2013; Baiardi et al.,2015; Baiardi, 2019; Baiardi and Tonelli, 2021; Baiardi,2023) for full details.
3. Digital Twins for Adversary Simulations

This section briefly describes how the Haruspex predic-tive platform builds the digital twins and uses them inadversary simulations.
3.1. The Predictive Platform Twins

The target twin holds data about the infrastructure andthe specific hardware and software modules running oneach node. It provides insights about how the system isconnected and how data flows within it, by modeling boththe physical and logical topology of the system, includingdetails about filtering rules, nat rules and routing.The target twin stores a configuration table containingdetails about all the modules and their instances. Eachmodule corresponds to a row in this table, storing two setsof values: one for configuration parameters and anotherfor vulnerabilities. Instances with the same module con-figuration share the same vulnerabilities. Additionally,the target twin includes a mapping table that associateseach configuration table row with the infrastructure nodesrunning the described instances.For each vulnerability of an infrastructure component,the target twin describes each attack it enables and pairseach attack with a set of attributes that includes both pre-and post-conditions and the success probability. The at-tack pre-condition is the set of access rights an attackerneeds to implement it. Instead, the post-condition is theset of access rights the attacker acquires if the attack is suc-cessful. Pre- and post-conditions determine how a threatactor can chain attacks in its intrusions.The Haruspex predictive platform collects the informa-tion to build the target twin from a system inventory or byrunning a vulnerability scanning of all the system nodes.The physical topology of the infrastructure and the logicalone are built from routing tables, and firewall rules.The other twin of interest in relation with H-Verify isthe one of an attacker or threat twin. This twin models anintelligent and adaptive attacker that has an explicit goal, aset of access rights it aims to acquire while minimizing itsefforts. The threat twin describes the goal, the attack sur-face, and the initial access rights of the attacker. Furtherinformation describes the strategy the attacker applies toselect an action. The attacker strategy (Hutchins et al.,
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Figure 1. H-Verify Architecture

2011; Maigre, 2022) chooses the next action to be executedas a function of the goal, the access rights the attackercurrently owns, and the information on the infrastruc-ture it has acquired by its previous actions. The strategyalso determines how the attacker handles the failure of anaction.
3.2. Adversary Simulations

The abstraction level of the twins enables the platform toimplement adversary simulation and model the action anattacker selects and executes in any situation accordingto its strategy. For each action, the platform records thetarget component, the node running it, and, if the action isan attack, the enabling vulnerability. To return the overalltime to implement an intrusion, the platform also recordsthe time to execute an action.The output of each simulation is stochastic as it dependson the success or the failure of the attacks. An attack mayfail either because of its complexity and/or for factors theattacker cannot control. The predictive platform deter-mines the favorable outcome of an attack according to itssuccess probability. An attack may also fail because of adetection mechanism that protects the target component(Khraisat et al., 2019). The detection of an attack does notimply the failure of the intrusion if the attacker has previ-ously gained some persistence in the target infrastructure.Each simulation returns the actions the attacker hasexecuted and if it has reached the final goal. Due to a poorstrategy, an attacker may also execute some actions thatare useless to reach the goal. For this reason the simulationalso returns the plain sequence of all and only the usefulactions to reach the goal: we refer to this sequence as anintrusion.
4. Architecture

In the following we describe the architecture of H-Verifyand how the user can interact with the platform. The soft-ware architecture of H-Verify is shown in Figure 1.H-Verify consists of three core modules:
• Compiler, used in the planning phase.

• Decision Support System (DSS), used in the planningphase.• Orchestrator, used in the execution phase.
The planning phase consists of any operation of H-Verifythat does not directly involve the target system but preparethe sequence of actions against the target. Possible opera-tions in this phase are design, compilation, modificationof sequence of actions, and model management.The execution phase includes all the actions that H-Verify executes and that affect directly the target system.This phase executes the planned and configured actions,including attacks, with an actual impact on the target sys-tem.
4.1. Compiler

The Compiler maps the adversary simulations that thepredictive platform has run using the digital twins intoreal sequences of actions against the target system. To thispurpose, it requires two inputs:
• The digital twin of the target system and the adversarysimulations by the predictive platform.• An exploit database that provides the exploits to takeadvantage of some of the vulnerabilities the adversarysimulations have exploited.

For every simulation step performed by the predictive plat-form, H-Verify:
1. checks the exploit database to identify those that canimplement the attacks in the simulation.2. identifies the information on the attack to configurethe corresponding exploit.
Different actions can use different properties from the dig-ital twin. Most common ones can be:
• IP address of the target.• Port and protocol, which are also used to further refinethe exploit selection. Some vulnerabilities (e.g., shell-shock) can affect different class of services (ftp, webservers, etc.). H-Verify can use the digital twin data tospecialize the attack on the vulnerable service.• Payload choice and configuration. Topology data is usedto configure a reverse or bind shell, according to the realsystem filtering rules.

Other information as target architecture, vulnerable URL,credentials and more, are retrieved from the digital twinand used to configure the attacks.If multiple exploits are available for a single vulnera-bility, the tool compiles all of them to offer to the usermultiple choices. All these steps are properly linked toconfigure a completely automated sequence of actions.The result of the Compiler is the list of all the sequencesthat it can produce starting from the adversary simulations
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using the digital twin and the exploit database. These se-quences are stored in a database for future execution orfurther user customization.
4.2. Decision Support System

Whereas the Compiler focuses on automating the execu-tion of action sequences of the adversary simulations, theDSS works as a user-driven intelligence. Users interactwith this module to design or customize their own se-quences, by querying the alternative steps the tool can im-plement against the real system, and have the sequencesprepared for the execution.An advanced query system allows the user to searchand identify information of interest. Since the digital twinstores all the information of interest on the infrastructuresuch as vulnerabilities, topology, subnets, services, theuser can query the DSS to identify the desired attack sur-face. To achieve this, different filters are available for theuser:
• Topology-based: the user can view the networkingcommunication of the system and use it to ask the DSSvarious information, for instance which devices are ex-posed on the internet or those that can be reached start-ing from a specific infrastructure node.• Structural-based: the user can view information re-garding software and hardware of the infrastructure.Many queries can be implemented by combining thisinformation, for example which hypervisor are suscep-tible to attacks or the web server running on windowsarchitecture.• Vulnerability-based: the user can view vulnerabilityinformation about the system and use it to identify dis-tinct threats, for instance which devices are susceptibleto remote attacks or those that can be attacked by aworm (e.g., WannaCry)

For every user query, the DSS returns the actions that itcan build using the current exploit database. The user canselect the actions of interest and the module automaticallyprepares them for future executions, as in the case of theCompiler module.The DSS can work in two different modes:
• Step-by-step: the user decision process is supportedstep by step. The user can initially define the first action,and then the DSS intelligence suggests the next ones.• Multiple steps: the user can specify a target, and theDSS will suggest the list of alternative starting pointsfrom which it can build a sequence to compromise thetarget. As seen for the Compiler module, the wholesequence can be automatically prepared. If the userspecifies a starting node in the infrastructure, the DSScan suggest all the possible targets that can be reachedfrom the node.

The DSS module can create new sequences of actions orcustomize existing ones, even those created by the Com-

piler modules. A local database stores the output sequencesfor future execution or further customization.
4.3. Orchestrator

The Orchestrator executes sequences of steps that includeboth attacks and actions. These sequences may be pro-duced by the Compiler or customized by the user throughthe support of the DSS.The input for the Orchestrator consists of an orderedsequence of steps, where each step represents a logicalaction and contains one or more modules that implementthis action. For instance, a step might represent the ex-ploitation of a particular system vulnerability, for whichmultiple attacks (exploits) are available.Logically, steps can be classified into three categories:
• Vulnerability exploitations: if executed successfully,they either open a session or execute a command onthe target machine.• Post-exploitation actions: execute modules for networkdiscovery, persistence, exfiltration, resource upload,pivoting, port forwarding, etc.• Session command: executes a command on the consoleof a session opened by a previous step.

When alternative modules exist for the same step, the Or-chestrator will execute them one by one in the order theywere configured until one is successful. At this point, theOrchestrator assumes the step is successful, and it passesto the next step, without executing the remaining modulesof the same step. If a module fails, the Orchestrator willattempt to repeat it a given number of times - configurableby the user - before considering it failed and moving on tothe next one for the step. If all modules of a step fail, thesequence fails.Before executing a sequence, the user can configure thefollowing parameters, where all the times are in seconds:
• MaxActionWaiting: the maximum time for the execu-tion of a module. When this time expires, the moduleexecution is interrupted.• MaxActionAttempts: the maximum attempts (in caseof failures) for a single module before moving to thenext one (if present).• MaxBacktrackings: the maximum attempts for back-trackings before the failure of the sequence. A back-tracking occurs when a previously opened session isunexpectedly closed, and it is necessary to start againfrom the step that opened it.• SleepBetweenActions: time between the execution ofa module and the next one, whether it is a repetitionof the same module or the first attempt to execute thenext one.• SleepBeforeNewSession: time before verifying that anew session has been successfully opened and it is sta-ble after an exploit execution.

These parameters can implement alternative adversary
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strategies that produce distinct noise levels. This can behelpful to test the intrusion detection systems of an infras-tructure against advanced threats.Before starting a sequence, the user can choose the op-erational mode of the Orchestrator:
• Automatic, where it autonomously performs all the ac-tions of the selected sequence.• Guided, where it waits for user instructions before exe-cuting any action.

It is possible to switch between these modes at anytime, even during execution. The Orchestrator can au-tonomously verify whether open sessions are stable, aswell as detect any connection interruptions to re-establishthem by repeating any required step through a backtrack-ing mechanism.The user can interact with open sessions at any time,to execute console commands, exfiltration operations,and/or to upload resources to the compromised host. Fur-thermore, the user can consult the DSS to add and config-ure new attack steps in the guided manner described inSubsection 4.2.Every event generated during execution is logged withits time of occurrence. For each executed module, the con-figuration, output text, success or failure, and whetherand which type of session was opened (and on which host)are recorded. All user interactions with the sessions (com-mand text and obtained output) and with the Orchestratoritself (e.g., pauses and resumes of the execution, changeof operational mode, etc.) are also recorded. Events havea hierarchical structure: for example, the execution of anexploit will be generated from another event, namely theexecution of the step it belongs to. These logs are accessibleboth during execution, as they are generated in real-time,and afterward, when the sequence ends, in the form of anattack report enriched with other significant statistics.Moreover, the information in the recorded logs is usedduring (and after) execution to enrich the digital twin ofthe attacked infrastructure. This supports the enhance-ment of the DSS and the execution of more accurate simu-lations, improving the suggestions to the user during theengagement or in future attacks.The Executor, shown in Figure 1, is a third-party soft-ware that actually implements exploits.At the end of a sequence execution, the user may cleanup the state of the attacked machine and decide whetherto repeat the full sequence or to execute new ones.
5. Results

In this section, we present some results of two distinct testinfrastructures:
1. A virtual laboratory: a small yet deep network to testthe capabilities of H-Verify, mainly the automatic creationand execution of attack sequences.

Figure 2. Virtual Laboratory

2. A real-world infrastructure: to test scalability onmedium-sized systems, assess the actual potential of theDSS, and discover any weakness of H-Verify.
These experiments have used the Metasploit framework(Rapid7, a) as the Executor module and exploit database.Communications between the Orchestrator and Metasploitwere implemented through the latter’s RPC server.
5.1. Virtual Laboratory

As the main test scenario, we set up a virtual infrastructurethat is easily replicable but offers all the key scenarios weare interested in. The most interesting features are:
• Network depth, to test whether H-Verify can au-tonomously determine which actions, such as routingor port forwarding, are required to penetrate defensein depth systems, protected by multiple firewalls. Thisalso allowed us to evaluate the backtracking mecha-nism H-Verify offers and the pivoting capabilities ofthe Metasploit sessions.• Highly vulnerable machines to test whether the H-Verify Compiler can automatically build complete se-quences of actions starting from the output of the ad-versary simulations on the digital twin of the virtualinfrastructure.
Figure 2 shows the virtual laboratory. Some details:
• The Executor module, Metasploit in this experiment,runs on the red-colored Kali machine. In both sim-ulations and real attacks, it represents the attacker’sstarting point.• The attacker’s machine can only communicate withTarget_1.• Target_1, Target_2, and Target_3, i.e., the blue-coloredhosts, are Metasploitable2 machines (Rapid7, b), highlyvulnerable by design.• Target_1 and Target_2 have a dual interface, each con-nected to a distinct subnet. They act as firewalls andforbid communication between machines.

In this scenario, to compromise Target_3, we should:
1. successfully attack Target_1,2. perform a forwarding action to Subnet_B,3. compromise Target_2,4. perform another forwarding action to Subnet_C,5. successfully attack Target_3.
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Figure 3. Real Infrastructure Topology

During these steps, we have to maintain stable communi-cations between the opened sessions.The creation of the digital twin required just a few Nes-sus scans of the network. Then we ran 200.000 attacksimulations that led to 21.786 alternative intrusions whichexploited 275 distinct vulnerabilities.H-Verify has compiled 42 sequences of actions that use30 distinct exploits.To better understand the gap between the output ofsimulations and the distinct sequences that H-Verify cancompile, it is important to highlight that simulations caninclude even non-automatable actions such as man-in-the-middle or cryptographic attacks. These actions can-not be filled in automatically by H-Verify, but require userinteraction, which can occur at a later stage. In the com-piling phase the focus is on the complete automation ofthe sequence.Obviously, by increasing the number of simulations ondigital twin we produce a larger number of intrusions andtherefore more automatable H-Verify sequences of actions.Still, in a few minutes, the user can produce tens of ready-to-use sequences of actions where the only required know-how is the ability to run some Nessus scans.
5.2. Real Infrastructure

The second test scenario has considered a real-world in-frastructure, consisting of 316 hosts, 8 subnets, and 2CISCO ASA firewalls. Figure 3 shows this network.Another interesting feature of this system is its het-erogeneity, both in terms of operating systems (Linux,Windows, MacOS) and of hosts (servers, firewalls, hyper-visors, IDS, etc.), as well as in the applications and servicesit runs.The main goal of this test was to evaluate the potentialof the DSS in:
• Supporting the user in configuring single-step but alsomulti-step actions in complex situations with wide ma-neuver possibilities.• Properly leveraging information on network topology,accurately determining intrusions that exploit logical

connections resulting from the routing and filteringrules in the real system.• Scaling to medium and large infrastructures.
The creation of the digital twin has required some Nessusscans of the whole system and the import of the firewallconfigurations. Then, we ran 180.000 simulations thatdiscovered 4.405 alternative intrusions that exploited 194distinct vulnerabilities. H-Verify has compiled 65 attacksequences using 33 distinct exploits.Since this is a real system, regularly updated andpatched, only a few exploits in the Metasploit databasewere available to use. This has reduced the number ofcomplete sequences of actions that H-Verify has been ableto compile in an automated way from the digital twin sim-ulations. In Section 6 we analyze this issue in more details.However, the DSS has been able to offer an excellentsupport, meeting expectations, and managing to bridgemuch of the gap due to lack of exploits. In fact, DSS haspointed out 37 distinct targets for fully automated multi-step sequences of actions. Furthermore, the DSS was ableto detect 291 (of 316 hosts) as possible starting points forautomated sequences of actions.These tests have confirmed the advantages that H-Verify offers when targeting heterogenuous systems withdistinct sizes. The information in the digital twin and inthe output of the simulations, combined with the automa-tion of the Compiler, drastically reduces the abilities re-quired to undertake offensive actions. In some contexts, H-Verify can also be an excellent training tool. The DSS maybe a great ally for human operators managing complexsystems, as it strongly reduces the time and complexity ofoperations.
6. Limitations
Some issues affecting the effectiveness and applicability ofH-Verify are not unique to our tool but are rather prevalentacross the broader spectrum of offensive security applica-tions.The main problem is the size of the exploit database thatH-Verify can access as it strongly influences the number offully compiled sequences of actions. The number and qual-ity of exploits and procedures are critical to implementingmeaningful and realistic red teaming campaigns. How-ever, there exists a widening gap between the discoveryof vulnerabilities and the publication of exploits. As illus-trated in Figure 4, over the past three years (2021-2023),more than 20.000 Common Vulnerabilities and Exposures(CVEs) have been published annually (SecurityScorecard),while the total number of exploits published from Jan-uary 2021 to mid-2023 on primary sources like Metasploit,GitHub (GitHub), and ExploitDB (OffSec) is approximately6.000 as shown in Figure 5 and Figure 6 (Jacobs). Thistenfold discrepancy may be attributed to the degree of au-tomation and ethical considerations. While the discoveryof vulnerabilities can be extensively automated and is en-couraged within the community for enhancing risk aware-
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Figure 4. CVEs published by year
Source is from this website: https://www.cvedetails.com/browse-by-date.php

Figure 5. Overlap Among Sources of Published Exploits from January 2021to mid-2023
Source is from this website: https://www.cyentia.com/
exploring-exploit-intelligence-service/

ness, the development of new exploits remains largely amanual, time-consuming, and therefore expensive task.Furthermore, the potential profit from the malicious use orthe sale of the exploits themselves strongly hinders theirpublic release. The ethical issue regarding their publica-tion also acts as a deterrent. Indeed, Figure 7 confirmsthat vulnerability exploitation significantly increases aftera proper exploit is published (Gimarelli).
In our tests, the Executor module was the open-sourceversion 6.3.55 of Metasploit, which integrates 5.511 proce-dures, including 2.397 exploits. However, the sheer avail-ability of exploits is not the sole challenge; their integra-tion, testability, and reliability also play pivotal roles in thepractical use of offensive security tools. While extensivepublic collections like ExploitDB exist, with over 45.000entries, not all are validated or tested, and many requiremanual integration, demanding significant expertise andtime. Among commercial solutions, Core Impact (For-tra, b) arguably possesses the most extensive frameworkof tested, validated, and integrated exploits, numberingaround 3.350.
The reliance on well-known open-source projects likeMetasploit is advantageous in terms of development andrequired knowledge but, as a drawback, current Antivirus(AV) and Intrusion Detection Systems (IDS) can easilyidentify and block these tools. This greatly reduces their

Figure 6. Published Exploit Code by Source from January 2021 to mid-2023
Source is from this website: https://www.cyentia.com/
exploring-exploit-intelligence-service/

Figure 7. Exploitation Activity Between Vulnerabilities With and WithoutExploit Publication
Source is from this website: https://www.cyentia.com/
enhancing-threat-driven-remediation/

effectiveness in well-organized real-world environments.
In light of these limitations, the operator’s experiencecan still be an added value in the practical use of H-Verify.Expertise may be required to complete partial compilationsof simulated plans or to implement advanced encoding andevasion strategies, leveraging the open-source tools un-derpinning our solution in well-defended environments.

7. Comparison with other offensive security tools

This section compares H-Verify against the current mainsolutions in the offensive security space. The landscapeincludes tools such as Metasploit, Metasploit Pro, andCore Impact, which are prominent in penetration test-ing, and Caldera (MITRE, b), Sliver (BishopFox) CobaltStrike (Fortra, a), Metta (Uber), and APT Simulator (Nex-tronSystems), which are notable in adversary simula-tion/emulation. Additionally, Infection Monkey (Aka-

https://www.cvedetails.com/browse-by-date.php
https://www.cyentia.com/exploring-exploit-intelligence-service/
https://www.cyentia.com/exploring-exploit-intelligence-service/
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https://www.cyentia.com/exploring-exploit-intelligence-service/
https://www.cyentia.com/enhancing-threat-driven-remediation/
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maiTechnologies) is recognized in the context of breachand simulation. We also mention tools with less function-alities, such as Pupy RAT (n1nj4sec) and Powershell Em-pire (EmpireProject), in the domain of post-exploitation,alongside several red team test collections, includingAtomic Red Team (RedCanary), Stratus Red Team (Data-dog), Dumpster Fire (TryCatchHCF), and Red Team Au-tomation (EndGame). While these tools sometimes evadeprecise categorization and possess overlapping features,we accept the self-categorization each tool provides.
To our knowledge, H-Verify currently stands unique infully leveraging the potential of digital twin technologyand adversary simulations. This capability allows H-Verifyto automatically build optimal sequences of actions andprovide a robust and advanced DSS during the planningphase, improving and extending the partial adoption ofthe digital twin technology in tools such as Metasploit Proand Core Impact. These tools only create partial digitaltwins of the target infrastructure, using information gath-ered during attacks, thus yielding incomplete vulnerabil-ity awareness with respect to the overall system analysisthat H-Verify offers.
Furthermore, the ability of running adversary simu-lations where attackers adopt alternative strategies andhave distinct priorities enables the implementation of mul-tiple attack strategies and malware-spreading scenarios,a feature paralleled only by Infection Monkey in terms ofmalware-spreading simulation. The ability of H-Verify toautonomously execute sequences of actions and to inter-leave forwarding and routing operations between sessionsas necessary, results in a level of automation that onlyCaldera, Metta, and APT Simulator partially match. To alower extent, this is matched by Metasploit Pro and CoreImpact.
These features arguably make H-Verify the best tool tosupport even red teams without a deep expertise—a dis-tinction potentially matched only by Core Impact. Duringthe test phase, the Executor module of H-Verify was theopen-source version of Metasploit, inheriting its collec-tion of procedures (including exploits) alongside evasion,encoding, and Command and Control (C2) capabilities.Here, Core Impact generally outperforms in the realms ofexploit quantity and quality, while Sliver and Cobalt Strikeexcel as C2 frameworks, with Metasploit Pro offering ad-ditional functionalities in encoding and evasion.
Altogether, while maintaining the categorization inher-ent to each tool, H-Verify results in significant advance-ments in offensive security practices. Its unique integra-tion of full digital twin technology, comprehensive deci-sion support system, and automated execution of sequenceof actions including attacks sets a new standard in the field,positioning it as a potentially transformative tool for prac-titioners of varying expertise levels.

8. Future Work

To enhance H-Verify’s capabilities, extend its applicabil-ity, and improve its effectiveness in real-world scenarios,several avenues exist:
1. Enhancing encoding and obfuscation capabilities: In-tegrating encoding and obfuscation tools into the H-Verifyecosystem, along with new technologies based on rein-forcement learning, to augment the likelihood of success-ful red team engagements in well-organized, real-worldsystems.2. Integration of External Exploits: Recognizing thatsome attacks require exploits not in the current database,we aim to simplify import from other external sourcessuch as GitHub and ExploitDB. This will support users inplanning by providing access to a broader range of attackvectors and solutions, thereby enhancing the versatilityand applicability of the tool to diverse security challenges.3. Attack Infrastructure Deployment: Following the suc-cessful compromise of a system, we plan to explore the de-ployment of a controlled botnet, enabling the installationof interconnected modules for persistence and the coor-dination of synchronized remote commands. This wouldpotentially enhance the C2 capabilities of the tool throughthe integration with frameworks like Sliver. Such featuresextend the potentials of H-Verify beyond initial penetra-tion, offering a comprehensive toolkit for long term per-sistence in compromised systems.4. Incorporation of APT Profiles: To bolster the product’sadversary emulation capabilities, we plan to add real Ad-vanced Persistent Threat (APT) profiles to the implemen-tation of compiled attacks. This enables users to simulateand defend against highly sophisticated and targeted at-tack scenarios, enhancing the realism and relevance ofsecurity assessments using H-Verify.
9. Conclusion

This paper has presented H-Verify, a new offensive se-curity tool, set against the backdrop of established in-struments such as Metasploit, Core Impact, Cobalt Strike,Caldera, and Sliver. The adoption of digital twin and ad-versary simulations technologies is the most innovativefeature of H-Verify. This extends its role beyond tradi-tional offensive applications to embrace roles in purpleteam engagements and infrastructural risk evaluation.As a "Verify" tool, H-Verify is designed to show thefeasibility of using the output of simulations on digitaltwins to discover real intrusions, thereby providing a novelapproach to assessing the robustness of infrastructure,whether in-house or that of suppliers. This results in amore informed validation of the infrastructural integrityand the effectiveness of the selected countermeasures. Thetool potential extends to critical security aspects, making itan invaluable resource for organizations seeking to fortifytheir defenses against increasingly sophisticated cyberthreats.
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Using H-Verify a purple team can test the infrastructuresecurity offering a hands-on approach to personnel train-ing and the evaluation of the effectiveness of defensivetools. This dual functionality is an important contributionto the development of comprehensive security strategies,ensuring that both offensive and defensive measures areexamined and optimized.
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