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Abstract

This paper introduces H-Verify, a platform to design and implement intrusions against real-world ICT infrastructures. Unique in its
approach, H-Verify leverages adversary simulations previously ran on a digital twin of the target infrastructure to fully or partially
automate the planning and execution of intrusions but it can also act as a flexible decision support system for the manual planning of
intrusions. Furthermore, the tool also supports the simulation results, detecting false positives in the infrastructure vulnerabilities,
testing applied countermeasures, and supporting users with distinct levels of experience in red teaming engagements.
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1. Introduction

An ICT intrusion executes a sequence of actions that in-
cludes elementary attack and information collection ac-
tions. The sequence of attacks in the intrusion results in
a chain that escalate the access rights of the attackers till
reaching a predefined goal, i.e. acquiring a predefined set
of access rights.

H-Verify is a platform to automatically build and exe-
cute the whole sequence of actions of an intrusion either
to assess the robustness of an ICT system or to penetrate it.
The platform uses the outputs of the Haruspex predictive
platform and an exploit database to build and execute a se-
quence of actions, a partial or a complete intrusion, against
the target system. Its ability to support users across dif-
ferent proficiency levels is amplified by the availability
of accurate information returned by the adversary sim-
ulations performed by the Haruspex predictive platform
against the target system.

The Haruspex predictive platform runs adversary sim-
ulations against the target infrastructure. An adversary
simulation is a cybersecurity assessment technique simi-
lar to the behavior of a red team that leverage its expertise
to craft and execute hypothetical attack scenarios, aiming

to evaluate an organization’s defensive posture. The pri-
mary goal is to simulate the appearance and actions of an
adversary to identify weaknesses before an actual secu-
rity incident occurs. The adversary is well defined and the
red team replicates the behaviors, objectives, and TTPs
(tactics, techniques, and procedures) of real, known ad-
versaries. This practice is based on comprehensive threat
intelligence and seeks to replicate specific attack patterns
that have been observed in the wild or are anticipated to be
used against the organization. The objective is to evaluate
the organization’s resilience against advanced persistent
threats (APTs) and to uncover realistic attack paths that
could be exploited by an emulated adversary. The pecu-
liarity of the Haruspex platform is that it automates the
simulation and that it does not affect the target ICT system
because it works on a digital twin of the infrastructure.
As described in the following, this twin is a model of the
target system.

While the Haruspex predictive platform simulates in-
trusion on a model of the target system, H-Verify works on
the real system and it can be used either in a real intrusion
or to automate the operation of read team.

When automating red team operations to improve the
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target robustness, H-Verify allows to scrutinize and val-
idate outcomes generated by the twin adversary simula-
tions by using the exploit database to build sequences of
action. This ensures a reliable validation of simulation
results to discover inaccurate or incomplete information
used to build the target twin, such as false positives and
false negatives in the system vulnerabilities.

When used in a real intrusion, besides building and ex-
ecuting sequences of actions, the tool can also behave as
a decision support system for the design of personalized
sequences. H-Verify offers the flexibility to implement ei-
ther fully or partially automated sequences to optimize ef-
ficiency and response time. During the execution, the user
can interact with open sessions to exfiltrate information
or upload resources, such as malware or post-exploitation
tools, on compromised hosts. The exfiltrated informa-
tion can be analyzed to improve the target twin and to run
further simulations to discover further intrusion.

This paper is organized as follows: Section 2 intro-
duces the Haruspex predictive platform, while Section
3 describes how it uses the digital twin technology and
Monte Carlo methods for adversary simulations. Section
£ details the software architecture and the key modules of
H-Verify. Experimental results from both virtual labora-
tory and real-world infrastructure are reported in Section
5. In Section 6, we discuss the primary limitations of our
tool, which are fairly common across the broader field of
offensive security applications. Section 7 reviews the main
offensive tools and compares them with H-Verify. Future
research directions are proposed in Section 8,and Section
9 concludes the paper with final remarks.

2. Related Work

The main innovation of H-Verify is the design of the se-
quences of actions in intrusions using the output of the ad-
versary simulations by the Haruspex predictive platform.
This platform builds digital twins (Husak et al., 2019; Tao
et al., 2019; Lehner et al., 2021; Langlotz et al., 2022) of
both the attacker (threat twin) and the target system (tar-
get twin). Each of these twin is an abstract description of
an entity that focuses on those properties that are useful
to discover intrusions. The target twin describes these
properties for each infrastructure components while the
threat twin describes the strategy, the goal, and the at-
tack surface of an attacker. This twin also describes the
possible actions of the attackers in terms of TTPs from
the MITRE ATT&CK matrix (MITRE, a). These twins can
be automatically generated and incorporate solutions to
address any informational gaps.

Using information in these digital twins, the Harus-
pex platform runs adversary simulations where each one
mimics one after the other the actions the attacker strategy
selects and the resulting intrusions. The output of each
action is determined by information in the target twin.
The platform applies a Monte Carlo method (Kavak et al.,
2021) that runs several independent simulations in par-

allel to cover alternative outputs of the actions. The final
goal is the discover all the possible intrusions an attacker
can build and the corresponding sequences of actions.

Hence, while the digital twins should offer an accurate
information on the target infrastructure and an attacker,
the adversary simulation focuses on reproducing in an
accurate and complete way the interaction between the
attacker and the infrastructure.

We refer to (Baiardi and Sgandurra, 2013; Baiardi et al.,
2015; Baiardi, 2019; Baiardi and Tonelli, 2021; Baiardi,
2023) for full details.

3. Digital Twins for Adversary Simulations

This section briefly describes how the Haruspex predic-
tive platform builds the digital twins and uses them in
adversary simulations.

3.1. The Predictive Platform Twins

The target twin holds data about the infrastructure and
the specific hardware and software modules running on
each node. It provides insights about how the system is
connected and how data flows within it, by modeling both
the physical and logical topology of the system, including
details about filtering rules, nat rules and routing.

The target twin stores a configuration table containing
details about all the modules and their instances. Each
module corresponds to a row in this table, storing two sets
of values: one for configuration parameters and another
for vulnerabilities. Instances with the same module con-
figuration share the same vulnerabilities. Additionally,
the target twin includes a mapping table that associates
each configuration table row with the infrastructure nodes
running the described instances.

For each vulnerability of an infrastructure component,
the target twin describes each attack it enables and pairs
each attack with a set of attributes that includes both pre-
and post-conditions and the success probability. The at-
tack pre-condition is the set of access rights an attacker
needs to implement it. Instead, the post-condition is the
set of access rights the attacker acquires if the attack is suc-
cessful. Pre- and post-conditions determine how a threat
actor can chain attacks in its intrusions.

The Haruspex predictive platform collects the informa-
tion to build the target twin from a system inventory or by
running a vulnerability scanning of all the system nodes.
The physical topology of the infrastructure and the logical
one are built from routing tables, and firewall rules.

The other twin of interest in relation with H-Verify is
the one of an attacker or threat twin. This twin models an
intelligent and adaptive attacker that has an explicit goal, a
set of access rights it aims to acquire while minimizing its
efforts. The threat twin describes the goal, the attack sur-
face, and the initial access rights of the attacker. Further
information describes the strategy the attacker applies to
select an action. The attacker strategy (Hutchins et al.,
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2011; Maigre, 2022) chooses the next action to be executed
as a function of the goal, the access rights the attacker
currently owns, and the information on the infrastruc-
ture it has acquired by its previous actions. The strategy
also determines how the attacker handles the failure of an
action.

3.2. Adversary Simulations

The abstraction level of the twins enables the platform to
implement adversary simulation and model the action an
attacker selects and executes in any situation according
to its strategy. For each action, the platform records the
target component, the node running it, and, if the action is
an attack, the enabling vulnerability. To return the overall
time to implement an intrusion, the platform also records
the time to execute an action.

The output of each simulation is stochastic as it depends
on the success or the failure of the attacks. An attack may
fail either because of its complexity and/or for factors the
attacker cannot control. The predictive platform deter-
mines the favorable outcome of an attack according to its
success probability. An attack may also fail because of a
detection mechanism that protects the target component
(Khraisat et al., 2019). The detection of an attack does not
imply the failure of the intrusion if the attacker has previ-
ously gained some persistence in the target infrastructure.

Each simulation returns the actions the attacker has
executed and if it has reached the final goal. Due to a poor
strategy, an attacker may also execute some actions that
are useless to reach the goal. For this reason the simulation
also returns the plain sequence of all and only the useful
actions to reach the goal: we refer to this sequence as an
intrusion.

4. Architecture

In the following we describe the architecture of H-Verify

and how the user can interact with the platform. The soft-

ware architecture of H-Verify is shown in Figure 1.
H-Verify consists of three core modules:

- Compiler, used in the planning phase.
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- Decision Support System (DSS), used in the planning
phase.
- Orchestrator, used in the execution phase.

The planning phase consists of any operation of H-Verify
that does not directly involve the target system but prepare
the sequence of actions against the target. Possible opera-
tions in this phase are design, compilation, modification
of sequence of actions, and model management.

The execution phase includes all the actions that H-
Verify executes and that affect directly the target system.
This phase executes the planned and configured actions,
including attacks, with an actual impact on the target sys-
tem.

4.1. Compiler

The Compiler maps the adversary simulations that the
predictive platform has run using the digital twins into
real sequences of actions against the target system. To this
purpose, it requires two inputs:

- The digital twin of the target system and the adversary
simulations by the predictive platform.

- An exploit database that provides the exploits to take
advantage of some of the vulnerabilities the adversary
simulations have exploited.

For every simulation step performed by the predictive plat-
form, H-Verify:

1. checks the exploit database to identify those that can
implement the attacks in the simulation.

2. identifies the information on the attack to configure
the corresponding exploit.

Different actions can use different properties from the dig-
ital twin. Most common ones can be:

- IP address of the target.

- Port and protocol, which are also used to further refine
the exploit selection. Some vulnerabilities (e.g., shell-
shock) can affect different class of services (ftp, web
servers, etc.). H-Verify can use the digital twin data to
specialize the attack on the vulnerable service.

- Payload choice and configuration. Topology data is used
to configure a reverse or bind shell, according to the real
system filtering rules.

Other information as target architecture, vulnerable URL,
credentials and more, are retrieved from the digital twin
and used to configure the attacks.

If multiple exploits are available for a single vulnera-
bility, the tool compiles all of them to offer to the user
multiple choices. All these steps are properly linked to
configure a completely automated sequence of actions.

The result of the Compiler is the list of all the sequences
that it can produce starting from the adversary simulations
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using the digital twin and the exploit database. These se-
quences are stored in a database for future execution or
further user customization.

4.2. Decision Support System

Whereas the Compiler focuses on automating the execu-
tion of action sequences of the adversary simulations, the
DSS works as a user-driven intelligence. Users interact
with this module to design or customize their own se-
quences, by querying the alternative steps the tool can im-
plement against the real system, and have the sequences
prepared for the execution.

An advanced query system allows the user to search
and identify information of interest. Since the digital twin
stores all the information of interest on the infrastructure
such as vulnerabilities, topology, subnets, services, the
user can query the DSS to identify the desired attack sur-
face. To achieve this, different filters are available for the
user:

- Topology-based: the user can view the networking
communication of the system and use it to ask the DSS
various information, for instance which devices are ex-
posed on the internet or those that can be reached start-
ing from a specific infrastructure node.

- Structural-based: the user can view information re-
garding software and hardware of the infrastructure.
Many queries can be implemented by combining this
information, for example which hypervisor are suscep-
tible to attacks or the web server running on windows
architecture.

- Vulnerability-based: the user can view vulnerability
information about the system and use it to identify dis-
tinct threats, for instance which devices are susceptible
to remote attacks or those that can be attacked by a
worm (e.g., WannaCry)

For every user query, the DSS returns the actions that it
can build using the current exploit database. The user can
select the actions of interest and the module automatically
prepares them for future executions, as in the case of the
Compiler module.

The DSS can work in two different modes:

- Step-by-step: the user decision process is supported
step by step. The user can initially define the first action,
and then the DSS intelligence suggests the next ones.

- Multiple steps: the user can specify a target, and the
DSS will suggest the list of alternative starting points
from which it can build a sequence to compromise the
target. As seen for the Compiler module, the whole
sequence can be automatically prepared. If the user
specifies a starting node in the infrastructure, the DSS
can suggest all the possible targets that can be reached
from the node.

The DSS module can create new sequences of actions or
customize existing ones, even those created by the Com-

piler modules. Alocal database stores the output sequences
for future execution or further customization.

4.3. Orchestrator

The Orchestrator executes sequences of steps that include
both attacks and actions. These sequences may be pro-
duced by the Compiler or customized by the user through
the support of the DSS.

The input for the Orchestrator consists of an ordered
sequence of steps, where each step represents a logical
action and contains one or more modules that implement
this action. For instance, a step might represent the ex-
ploitation of a particular system vulnerability, for which
multiple attacks (exploits) are available.

Logically, steps can be classified into three categories:

- Vulnerability exploitations: if executed successfully,
they either open a session or execute a command on
the target machine.

- Post-exploitation actions: execute modules for network
discovery, persistence, exfiltration, resource upload,
pivoting, port forwarding, etc.

- Session command: executes a command on the console
of a session opened by a previous step.

When alternative modules exist for the same step, the Or-
chestrator will execute them one by one in the order they
were configured until one is successful. At this point, the
Orchestrator assumes the step is successful, and it passes
to the next step, without executing the remaining modules
of the same step. If a module fails, the Orchestrator will
attempt to repeat it a given number of times - configurable
by the user - before considering it failed and moving on to
the next one for the step. If all modules of a step fail, the
sequence fails.

Before executing a sequence, the user can configure the
following parameters, where all the times are in seconds:

- MaxActionWaiting: the maximum time for the execu-
tion of a module. When this time expires, the module
execution is interrupted.

- MaxActionAttempts: the maximum attempts (in case
of failures) for a single module before moving to the
next one (if present).

- MaxBacktrackings: the maximum attempts for back-
trackings before the failure of the sequence. A back-
tracking occurs when a previously opened session is
unexpectedly closed, and it is necessary to start again
from the step that opened it.

- SleepBetweenActions: time between the execution of
a module and the next one, whether it is a repetition
of the same module or the first attempt to execute the
next one.

- SleepBeforeNewSession: time before verifying that a
new session has been successfully opened and it is sta-
ble after an exploit execution.

These parameters can implement alternative adversary



strategies that produce distinct noise levels. This can be
helpful to test the intrusion detection systems of an infras-
tructure against advanced threats.

Before starting a sequence, the user can choose the op-
erational mode of the Orchestrator:

- Automatic, where it autonomously performs all the ac-
tions of the selected sequence.

- Guided, where it waits for user instructions before exe-
cuting any action.

It is possible to switch between these modes at any
time, even during execution. The Orchestrator can au-
tonomously verify whether open sessions are stable, as
well as detect any connection interruptions to re-establish
them by repeating any required step through a backtrack-
ing mechanism.

The user can interact with open sessions at any time,
to execute console commands, exfiltration operations,
and/or to upload resources to the compromised host. Fur-
thermore, the user can consult the DSS to add and config-
ure new attack steps in the guided manner described in
Subsection 4.2.

Every event generated during execution is logged with
its time of occurrence. For each executed module, the con-
figuration, output text, success or failure, and whether
and which type of session was opened (and on which host)
are recorded. All user interactions with the sessions (com-
mand text and obtained output) and with the Orchestrator
itself (e.g., pauses and resumes of the execution, change
of operational mode, etc.) are also recorded. Events have
a hierarchical structure: for example, the execution of an
exploit will be generated from another event, namely the
execution of the step it belongs to. These logs are accessible
both during execution, as they are generated in real-time,
and afterward, when the sequence ends, in the form of an
attack report enriched with other significant statistics.

Moreover, the information in the recorded logs is used
during (and after) execution to enrich the digital twin of
the attacked infrastructure. This supports the enhance-
ment of the DSS and the execution of more accurate simu-
lations, improving the suggestions to the user during the
engagement or in future attacks.

The Executor, shown in Figure 1, is a third-party soft-
ware that actually implements exploits.

At the end of a sequence execution, the user may clean
up the state of the attacked machine and decide whether
to repeat the full sequence or to execute new ones.

5. Results

In this section, we present some results of two distinct test
infrastructures:

1. Avirtual laboratory: a small yet deep network to test
the capabilities of H-Verify, mainly the automatic creation
and execution of attack sequences.
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Figure 2. Virtual Laboratory

2. A real-world infrastructure: to test scalability on
medium-sized systems, assess the actual potential of the
DSS, and discover any weakness of H-Verify.

These experiments have used the Metasploit framework
(Rapid7, a) as the Executor module and exploit database.
Communications between the Orchestrator and Metasploit
were implemented through the latter’s RPC server.

5.1. Virtual Laboratory

As the main test scenario, we set up a virtual infrastructure
that is easily replicable but offers all the key scenarios we
are interested in. The most interesting features are:

- Network depth, to test whether H-Verify can au-
tonomously determine which actions, such as routing
or port forwarding, are required to penetrate defense
in depth systems, protected by multiple firewalls. This
also allowed us to evaluate the backtracking mecha-
nism H-Verify offers and the pivoting capabilities of
the Metasploit sessions.

- Highly vulnerable machines to test whether the H-
Verify Compiler can automatically build complete se-
quences of actions starting from the output of the ad-
versary simulations on the digital twin of the virtual
infrastructure.

Figure 2 shows the virtual laboratory. Some details:

- The Executor module, Metasploit in this experiment,
runs on the red-colored Kali machine. In both sim-
ulations and real attacks, it represents the attacker’s
starting point.

+ The attacker’s machine can only communicate with
Target_1.

- Target_1, Target_2, and Target_3, i.e., the blue-colored
hosts, are Metasploitable2 machines (Rapid7, b), highly
vulnerable by design.

- Target_1and Target_2 have a dual interface, each con-
nected to a distinct subnet. They act as firewalls and
forbid communication between machines.

In this scenario, to compromise Target_3, we should:

successfully attack Target_1,

perform a forwarding action to Subnet_B,
compromise Target_2,

perform another forwarding action to Subnet_C,
successfully attack Target_3.

VTR W DN R
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During these steps, we have to maintain stable communi-
cations between the opened sessions.

The creation of the digital twin required just a few Nes-
sus scans of the network. Then we ran 200.000 attack
simulations that led to 21.786 alternative intrusions which
exploited 275 distinct vulnerabilities.

H-Verify has compiled 42 sequences of actions that use
30 distinct exploits.

To better understand the gap between the output of
simulations and the distinct sequences that H-Verify can
compile, it is important to highlight that simulations can
include even non-automatable actions such as man-in-
the-middle or cryptographic attacks. These actions can-
not be filled in automatically by H-Verify, but require user
interaction, which can occur at a later stage. In the com-
piling phase the focus is on the complete automation of
the sequence.

Obviously, by increasing the number of simulations on
digital twin we produce a larger number of intrusions and
therefore more automatable H-Verify sequences of actions.
Still, in a few minutes, the user can produce tens of ready-
to-use sequences of actions where the only required know-
how is the ability to run some Nessus scans.

5.2. Real Infrastructure

The second test scenario has considered a real-world in-
frastructure, consisting of 316 hosts, 8 subnets, and 2
CISCO ASA firewalls. Figure 3 shows this network.

Another interesting feature of this system is its het-
erogeneity, both in terms of operating systems (Linux,
Windows, MacOS) and of hosts (servers, firewalls, hyper-
visors, IDS, etc.), as well as in the applications and services
it runs.

The main goal of this test was to evaluate the potential
of the DSS in:

- Supporting the user in configuring single-step but also
multi-step actions in complex situations with wide ma-
neuver possibilities.

- Properly leveraging information on network topology,
accurately determining intrusions that exploit logical

connections resulting from the routing and filtering
rules in the real system.
- Scaling to medium and large infrastructures.

The creation of the digital twin has required some Nessus
scans of the whole system and the import of the firewall
configurations. Then, we ran 180.000 simulations that
discovered 4.405 alternative intrusions that exploited 194
distinct vulnerabilities. H-Verify has compiled 65 attack
sequences using 33 distinct exploits.

Since this is a real system, regularly updated and
patched, only a few exploits in the Metasploit database
were available to use. This has reduced the number of
complete sequences of actions that H-Verify has been able
to compile in an automated way from the digital twin sim-
ulations. In Section 6 we analyze this issue in more details.

However, the DSS has been able to offer an excellent
support, meeting expectations, and managing to bridge
much of the gap due to lack of exploits. In fact, DSS has
pointed out 37 distinct targets for fully automated multi-
step sequences of actions. Furthermore, the DSS was able
to detect 291 (of 316 hosts) as possible starting points for
automated sequences of actions.

These tests have confirmed the advantages that H-
Verify offers when targeting heterogenuous systems with
distinct sizes. The information in the digital twin and in
the output of the simulations, combined with the automa-
tion of the Compiler, drastically reduces the abilities re-
quired to undertake offensive actions. In some contexts, H-
Verify can also be an excellent training tool. The DSS may
be a great ally for human operators managing complex
systems, as it strongly reduces the time and complexity of
operations.

6. Limitations

Some issues affecting the effectiveness and applicability of
H-Verify are not unique to our tool but are rather prevalent
across the broader spectrum of offensive security applica-
tions.

The main problem is the size of the exploit database that
H-Verify can access as it strongly influences the number of
fully compiled sequences of actions. The number and qual-
ity of exploits and procedures are critical to implementing
meaningful and realistic red teaming campaigns. How-
ever, there exists a widening gap between the discovery
of vulnerabilities and the publication of exploits. As illus-
trated in Figure 4, over the past three years (2021-2023),
more than 20.000 Common Vulnerabilities and Exposures
(CVEs) have been published annually (SecurityScorecard),
while the total number of exploits published from Jan-
uary 2021 to mid-2023 on primary sources like Metasploit,
GitHub (GitHub), and ExploitDB (OffSec) is approximately
6.000 as shown in Figure 5and Figure 6 (Jacobs). This
tenfold discrepancy may be attributed to the degree of au-
tomation and ethical considerations. While the discovery
of vulnerabilities can be extensively automated and is en-
couraged within the community for enhancing risk aware-
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ness, the development of new exploits remains largely a
manual, time-consuming, and therefore expensive task.
Furthermore, the potential profit from the malicious use or
the sale of the exploits themselves strongly hinders their
public release. The ethical issue regarding their publica-
tion also acts as a deterrent. Indeed, Figure 7 confirms
that vulnerability exploitation significantly increases after
a proper exploit is published (Gimarelli).

In our tests, the Executor module was the open-source
version 6.3.55 of Metasploit, which integrates 5.511 proce-
dures, including 2.397 exploits. However, the sheer avail-
ability of exploits is not the sole challenge; their integra-
tion, testability, and reliability also play pivotal roles in the
practical use of offensive security tools. While extensive
public collections like ExploitDB exist, with over 45.000
entries, not all are validated or tested, and many require
manual integration, demanding significant expertise and
time. Among commercial solutions, Core Impact (For-
tra, b) arguably possesses the most extensive framework
of tested, validated, and integrated exploits, numbering
around 3.350.

The reliance on well-known open-source projects like
Metasploit is advantageous in terms of development and
required knowledge but, as a drawback, current Antivirus
(AV) and Intrusion Detection Systems (IDS) can easily
identify and block these tools. This greatly reduces their
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effectiveness in well-organized real-world environments.

In light of these limitations, the operator’s experience
can still be an added value in the practical use of H-Verify.
Expertise may be required to complete partial compilations
of simulated plans or to implement advanced encoding and
evasion strategies, leveraging the open-source tools un-
derpinning our solution in well-defended environments.

7. Comparison with other offensive security tools

This section compares H-Verify against the current main
solutions in the offensive security space. The landscape
includes tools such as Metasploit, Metasploit Pro, and
Core Impact, which are prominent in penetration test-
ing, and Caldera (MITRE, b), Sliver (BishopFox) Cobalt
Strike (Fortra, a), Metta (Uber), and APT Simulator (Nex-
tronSystems), which are notable in adversary simula-
tion/emulation. Additionally, Infection Monkey (Aka-
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maiTechnologies) is recognized in the context of breach
and simulation. We also mention tools with less function-
alities, such as Pupy RAT (n1inj4sec) and Powershell Em-
pire (EmpireProject), in the domain of post-exploitation,
alongside several red team test collections, including
Atomic Red Team (RedCanary), Stratus Red Team (Data-
dog), Dumpster Fire (TryCatchHCF), and Red Team Au-
tomation (EndGame). While these tools sometimes evade
precise categorization and possess overlapping features,
we accept the self-categorization each tool provides.

To our knowledge, H-Verify currently stands unique in
fully leveraging the potential of digital twin technology
and adversary simulations. This capability allows H-Verify
to automatically build optimal sequences of actions and
provide a robust and advanced DSS during the planning
phase, improving and extending the partial adoption of
the digital twin technology in tools such as Metasploit Pro
and Core Impact. These tools only create partial digital
twins of the target infrastructure, using information gath-
ered during attacks, thus yielding incomplete vulnerabil -
ity awareness with respect to the overall system analysis
that H-Verify offers.

Furthermore, the ability of running adversary simu-
lations where attackers adopt alternative strategies and
have distinct priorities enables the implementation of mul-
tiple attack strategies and malware-spreading scenarios,
a feature paralleled only by Infection Monkey in terms of
malware-spreading simulation. The ability of H-Verify to
autonomously execute sequences of actions and to inter-
leave forwarding and routing operations between sessions
as necessary, results in a level of automation that only
Caldera, Metta, and APT Simulator partially match. To a
lower extent, this is matched by Metasploit Pro and Core
Impact.

These features arguably make H-Verify the best tool to
support even red teams without a deep expertise—a dis-
tinction potentially matched only by Core Impact. During
the test phase, the Executor module of H-Verify was the
open-source version of Metasploit, inheriting its collec-
tion of procedures (including exploits) alongside evasion,
encoding, and Command and Control (C2) capabilities.
Here, Core Impact generally outperforms in the realms of
exploit quantity and quality, while Sliver and Cobalt Strike
excel as C2 frameworks, with Metasploit Pro offering ad-
ditional functionalities in encoding and evasion.

Altogether, while maintaining the categorization inher-
ent to each tool, H-Verify results in significant advance-
ments in offensive security practices. Its unique integra-
tion of full digital twin technology, comprehensive deci-
sion support system, and automated execution of sequence
of actions including attacks sets a new standard in the field,
positioning it as a potentially transformative tool for prac-
titioners of varying expertise levels.

8. Future Work

To enhance H-Verify’s capabilities, extend its applicabil -
ity, and improve its effectiveness in real-world scenarios,
several avenues exist:

1. Enhancing encoding and obfuscation capabilities: In-
tegrating encoding and obfuscation tools into the H-Verify
ecosystem, along with new technologies based on rein-
forcement learning, to augment the likelihood of success-
ful red team engagements in well-organized, real-world
systems.

2. Integration of External Exploits: Recognizing that
some attacks require exploits not in the current database,
we aim to simplify import from other external sources
such as GitHub and ExploitDB. This will support users in
planning by providing access to a broader range of attack
vectors and solutions, thereby enhancing the versatility
and applicability of the tool to diverse security challenges.
3. Attack Infrastructure Deployment: Following the suc-
cessful compromise of a system, we plan to explore the de-
ployment of a controlled botnet, enabling the installation
of interconnected modules for persistence and the coor-
dination of synchronized remote commands. This would
potentially enhance the C2 capabilities of the tool through
the integration with frameworks like Sliver. Such features
extend the potentials of H-Verify beyond initial penetra-
tion, offering a comprehensive toolkit for long term per-
sistence in compromised systems.

4. Incorporation of APT Profiles: To bolster the product’s
adversary emulation capabilities, we plan to add real Ad-
vanced Persistent Threat (APT) profiles to the implemen-
tation of compiled attacks. This enables users to simulate
and defend against highly sophisticated and targeted at-
tack scenarios, enhancing the realism and relevance of
security assessments using H-Verify.

9. Conclusion

This paper has presented H-Verify, a new offensive se-
curity tool, set against the backdrop of established in-
struments such as Metasploit, Core Impact, Cobalt Strike,
Caldera, and Sliver. The adoption of digital twin and ad-
versary simulations technologies is the most innovative
feature of H-Verify. This extends its role beyond tradi-
tional offensive applications to embrace roles in purple
team engagements and infrastructural risk evaluation.

As a "Verify" tool, H-Verify is designed to show the
feasibility of using the output of simulations on digital
twins to discover real intrusions, thereby providing a novel
approach to assessing the robustness of infrastructure,
whether in-house or that of suppliers. This results in a
more informed validation of the infrastructural integrity
and the effectiveness of the selected countermeasures. The
tool potential extends to critical security aspects, making it
an invaluable resource for organizations seeking to fortify
their defenses against increasingly sophisticated cyber
threats.



Using H-Verify a purple team can test the infrastructure
security offering a hands-on approach to personnel train-
ing and the evaluation of the effectiveness of defensive
tools. This dual functionality is an important contribution
to the development of comprehensive security strategies,
ensuring that both offensive and defensive measures are
examined and optimized.
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