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Abstract

In the coming years, institutions, such as law enforcement, rescue agencies, and companies, will increasingly use drone fleets to supportinspection, logistics, and surveillance applications, in scenarios that may also be highly sensitive for managed data, performed tasks,or the contexts in which they operate. Security-by-design and machine learning-based models may represent the main paradigmsfor the design of systems resistant to cyber attacks. However, the lack of open datasets and simulation frameworks may representthe main challenge in this direction. Therefore, this paper aims to propose an open source software stack and a schema for creatingsynthetic standard missions, attacks, and component failures, for the generation of scenarios and data useful for addressing securitythreats against drone fleets. The produced data set may be used to implement machine learning-based security intrusion detectors on acentralized ground station, as well as on-board agents that may be deployed on a drone to detect anomalous behaviors of compromiseddrones of the fleet in real time.
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1. Introduction

The rapid development of drones, i.e, aircraft that donot have a pilot and can be controlled remotely or au-tonomously, has significantly impacted several fields ofdaily life. Drones demonstrate remarkable versatility,from transforming agricultural practices to improvingsurveillance capabilities, helping with disaster response,inspection of critical infrastructures, etc. [Kim et al. (2019);Donatella Dominici and Massimi (2017); Zhang et al.(2023)]. More recently, fleets of drones have been usedin several fields, such as delivery services, surveillance,and military. Their simplicity of deployment and low costmake them valid technologies for supporting coordinatedmissions in large and hostile areas.The increasing of drones, and in particular fleet of smallUnmanned Aerial Vehicles (UAVs), has led to the develop-

ment of specialized traffic management systems, suchas U-space and regulations like the European Regulation2021/664. The regulation text highlights the importanceof control operations in improving a nation’s internal se-curity. These operations include police services, such ascross-border law enforcement, traffic surveillance, pur-suit missions, crowd event surveillance, environmentalcontrol missions, and search and rescue missions [SES(2014)].
Despite their great potential, the use of multiple dronesin real-world scenarios presents several challenges andsafety risks in the operational environments. The fleetmust coordinate in order to avoid collisions with the otherdrones or obstacles, as well as achieve the mission objec-tives in the shortest possible time. The weather conditionsand the energy constraints can represent the main limita-
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tions, which may compromise the mission if they are nottaken into consideration appropriately. Moreover, due totheir resource-constraint capabilities, as well as a lack ofspecialized security measures implementation, they maybe prone to cyber attacks, which may represent seriousthreats to the achievement of the mission and the safetyof people.
Research and development (R&D) teams have spent sig-nificant effort to improve UAV devices, with a focus onminiaturizing hardware and sensors onboard. Moreover,to manage complex missions that involve many UAVs andarticulated scenarios, an increasingly massive use of ma-chine learning and Artificial Intelligence (AI) techniques isbeing made. However, little attention was paid to securityaspects.
During critical missions, the resistance to cyber attacksby a fleet of drones would require greater ability to makereal-time on-board decisions, especially in scenarios withhigh transmission latency, or even lack of communica-tions between UAVs and ground. Therefore, Tiny MachineLearning (TinyML) techniques may be exploited to imple-ment on-board security countermeasures.
However, the use of such ML/AI techniques requires asignificant amount of data to be used and to achieve satis-factory results. Given the objective difficulties in collect-ing data from real scenarios, and given the lack of publicdatasets, data is often obtained from simulated missions.In particular, when dealing with scenarios that requiretesting of malfunctions or attacks that could lead to thefailure of existing equipment, simulators may help miti-gate the problem. Therefore, specialized open tools shouldbe provided to the scientific community, capable of gen-erating reliable dataset that can be used to test real worldscenarios.
Several academic papers in the literature discuss simu-lations of individual drones or fleets, using different stacksof protocols, software, and algorithms [Chen et al. (2023);Mairaj et al. (2019); Horri and Pietraszko (2022); Xavieret al. (2023); de Melo Miranda de Oliveira et al. (2019)].They have all described the general characteristics of thesimulators adopted, identifying the platform or program-ming language used and the available sensors from whichinformation can be extracted. However, several works pre-sented in the literature converge on the difficulty to usesuch simulators because they are often not provided withclear execution instructions and run in environments thatare no longer supported, leading to their abandonment.
The objective of this paper will be to investigate thevarious combinations of software and protocols found inthe literature and other sources, which can be exploitedto implement simulations of drone fleets in terms of mis-sions, sensors, and system data. After establishing thesoftware stack, we will propose a schema for creating syn-thetic standard missions, threats, and component failures.Particular attention will be paid to the generation of sce-narios and data useful for addressing security threats. Thepresented software stack will be specialized to produce

datasets, which may be used to implement ML-based secu-rity intrusion detectors on a centralized ground station andused to detect attacks against the fleet, as well as TinyML-based on-board agents that may be used by an appropri-ately specialized UAV to detect anomalous behaviors ofcompromised fleet UAVs [Ficco et al. (2024b); Fusco et al.(2024); Rimoli et al. (2024)].The paper is structured as follows. Sect. 2 will provide abackground of what a fleet of drones is, and an overview ofthe software and protocols used in the literature to simu-late drones, as well as the main results obtained from theiruse. This section will also describe the state-of-the-artthreats related to the use of drones and possible attackson on-board systems. Sect. 3 presents a generic simula-tion environment and its constituent elements. Sect. 4will provide an overview of the identified software stack,its characteristics, and the decisions that led to its selec-tion. This section also covers the system architecture andadjustments implemented to facilitate communication be-tween multiple drones on a single platform. In addition,it explains the methodology for generating synthetic sce-narios based on a mission definition. Sect. 6 presents theconclusions drawn from the study.
2. Background and State of the Art

2.1. Drones fleets

A fleet or swarm of UAVs consists of multiple drones thatoperate together, coordinate, and communicate with eachother as a single cohesive unit to achieve a common goal.The characteristics of each drone in a swarm may be dis-tinct, allowing us to refer to it as a nonhomogeneousswarm of drones or a heterogeneous swarm of drones ifthey share the same characteristics.The characteristics of a drone are classified accordingto different attributes, including hardware specificationsor flight dynamics. A common categorization is based onthe type of wings used: fixed-wing or rotary-wing, or acombination of both, as in the case of vertical take-off andlanding drones (VTOL). Wings are airfoils that help the air-craft lift off by moving through the air. Fixed-wing aircraftare designed to lift off by the forward motion of the air-craft and the aerodynamic shape of the wings. These canbe subdivided into glider and powered fixed-wing. Glidersoperate through the use of air currents, whereas poweredfixed-wing drones depend on engine thrust for propul-sion. In contrast, rotary-wing drones use rotating wings orblades to achieve lift. Both fixed- and rotary-wing dronespresent unique benefits and drawbacks and are applied invarious contexts. For example, rotary-wing drones excelin agility compared to fixed-wing models. They possessthe ability to maneuver effortlessly in any direction andcan hover in one spot, which is particularly advantageousfor tasks like aerial photography. However, they generallyhave limited flight time and, due to their design features,are not suitable for operation under adverse weather con-ditions or at elevated altitudes. The most common afford-
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able drones on the market today are rotary-wing, such asquadcopters and bicopters, which belong to the multirotorcategory [Chhaya et al. (2019)].
As illustrated in Tab. 1, the operation of a drone fleetcan be carried out with full or semi autonomy. These op-erational modes are further categorized into single- ormulti-layered decision-making structures. The primarydistinction between full and semi autonomy, is based onthe need of external control to complete the mission. Sec-ondary classification, into single- or multi-layered struc-tures, examines whether decision making is distributedbetween individual drones or centralized in one unit perlayer [Mohsan et al. (2022); Tahir et al. (2019)].

Table 1. List of potential missions for a swarm of drones.
Fleet of Drones

Fully Automated Single Layer Fully Automated Multi LayeredSemi Automated Single Layer Semi Automated Multi Layered

Several studies have explored different command andcontrol strategies for managing multiple drones [Saffreet al. (2021); Vásárhelyi et al. (2018)]. Among these, directcontrol is the easiest to implement and can be employedto direct the swarm’s trajectory via formation flying. Inthis approach, a human operator controls one unit drone,while the rest of the swarm employs basic autonomousfunctions, such as relative positioning, to disperse andcreate a formation around the leader. This control strategyalso includes preprogrammed missions, which are com-posed of specific flight routes predetermined by the opera-tor at a ground control station and then uploaded to dronesprior to takeoff. Alternatively, indirect control involves theswarm autonomously completing its goal without directhuman supervision. This method requires advanced au-tonomous capabilities, including decentralized resourcemanagement and collective decision-making [ Morenoet al.]. Typically, these features are enabled by distributedcontrol and artificial intelligence algorithms, which arefacilitated by communication and collaboration betweendrones based on shared data.
In this scenario, several challenges arise due to the lim-ited memory and computational power of drones, com-plicating tasks such as sensor/data fusion, autonomousnavigation, machine learning, and remote operation tech-nology. In situations where indirect control is preferredwithin a fully automated, single-layer drone swarm, eachunit should have the ability to communicate via ad hocnetworks and protocols that uphold the CIA triad (Confi-dentiality, Integrity, Availability). This involves mergingdata from various sensors throughout the UAV swarm toachieve a thorough perception of the surroundings. Sub-sequently, each drone should relay its plans to others toavoid overlaps or possible conflicts. An AI algorithm, capa-ble of decision-making based on its learned experiencesand environmental interactions, must manage all theseoperations, continuously enhancing its efficacy.

2.2. Related work and Security Threats

In the context of drone simulation, there are two primarymethods to emulate a real drone: Software-in-the-Loop(SITL) and Hardware-in-the-Loop (HITL). The key dis-tinction between them is the physical presence of a flightcontroller. In SITL, both the flight controller and thefirmware are simulated, while in HITL, the flight con-troller operates on actual hardware. HITL approaches areless frequently used due to their complexity, variable costs,and scalability problems when considering large dronefleets [Zhang et al. (2020)].
The literature mainly discusses two main categoriesof SITL autopilots: open-source platforms such as PX4and Ardupilot, and proprietary systems developed in MAT-LAB/Simulink [Horri and Pietraszko (2022); Xavier et al.(2023)] or other languages such as Python [Diller et al.(2022)]. The latter generally need to interface with aground control station (GCS) to retrieve important data,such as sensor information, or with the flight controllerthrough a companion computer. This article focuses on thefirst category of software because, like other open-sourceproducts, they are more commonly used in productionapplications. In simulation contexts, the academic sectoroften prefers Gazebo, in conjunction with PX4 or Ardupi-lot, as the primary dynamic flight simulator. This pref-erence comes from the simplicity of handling the dronemodel, physics, the surrounding environment and meteo-rological conditions [Tazir et al. (2023); Nair et al. (2022);Moon et al. (2020)]. In contrast, other simulators suchas AirSim [Shah et al. (2017)], CoppeliaSim, JSBSim, andFlightGear are outdated or lack native support from open-source autopilots, complicating their use.
Another aspect considered in this study are the poten-tial threats and vulnerabilities that an individual drone ordrone swarm can face. All possible threats that could affecta single drone could also impact a swarm. Such threatsinclude sensor-related attacks such as jamming, spoofing,and interception or fabrication of data [Sergeevna et al.(2022); Rong-xiao et al. (2020)]. Furthermore, the ref-erences examine security compromises that could affectthe companion computer or the artificial intelligence algo-rithms. Additional research has focused on various formsof attacks aimed at reducing flight time, such as thosetargeting battery or charging systems [Tlili et al. (2022)].Given this study’s emphasis on developing a dataset ofthreats for simulated drones, we reviewed articles thatemploy artificial intelligence algorithms to determine ifsimilar studies already exist. Firstly, sensors have been dis-covered to be used in image acquisition to identify unusualactivities in other drones [Svanström et al. (2021); Baiget al. (2022)], and datasets of common computer networkattacks, which may include attacks not typically encoun-tered by drones in their operational environment [Ouiaz-zane et al. (2023)].
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Figure 1. A general overview of a simulated drone environment.

3. Drone simulation overview

Before presenting the architecture and tools used to buildthe synthetic data scenarios generation system, it is im-portant to note that the main architecture is divided intothree key subsystems: the control system, the autopilotand the simulation system. Fig. 1 shows an overview ofa proposed schema used to manage the simulations. Thesoftware solutions used are reflective of actual scenariosin which drone manufacturers test their products beforethey are marketed.
3.1. Autopilot System

The first system described is the autopilot, deployedwithin a flight controller, such as those developed byBitcraze, Pixhawk, Sky-drones, etc. [bit; pix; sky]. Theautopilot reads sensor data and adjusts the motor func-tion to move the drone in the desired direction. The mainopen-source alternatives are Ardupilot and PX4, two C++-written autopilot systems that support various types ofvehicle, including aircraft, ground vehicles, and water ve-hicles. These software packages utilize protocols such asCAN/PWM for motor communication and I2C/UART/SPIfor sensor communication. The MAVLink protocol is thedominant external communication protocol, a lightweightmessaging protocol based on a hybrid publish-subscribeand point-to-point design, developed by Dronecode Foun-dation, a vendor-neutral community dedicated to dronetechnologies [mav (b); dro]. MAVLink messages areXML-based, with the latest version of the protocol hav-ing just 14 bytes of overhead and supporting up to 255systems concurrently. Telemetry data are multicast to alltopic subscribers, while system configuration and mis-sion protocols requiring guaranteed delivery are commu-nicated point-to-point with retransmission. A distinc-tive feature of PX4 is its ability to develop supplementarymodules using a proprietary protocol, uORB [PX4], for

interthread/interprocess communication, a rapid asyn-chronous publisher/subscriber messaging API.
3.2. Control System

Autopilots can be controlled by an operator using a hand-held radio, using a Ground Control Station, or throughexternal software. As mentioned above, all autopilots com-municate externally using the MAVLink protocol, whichcan be interfaced with using most major programminglanguages. To facilitate programming, Dronecode Foun-dation, in collaboration with MAVLink, has also developedMAVSDK – a collection of libraries that enable program-ming mainly in C++, but also in other languages, like JAVA,Swift, Python, and more using the gRPC protocol. Initiallycreated by Google for the efficient invocation of RemoteProcedure Calls, the gRPC protocol is managed by an in-stance of MAVSDK_server that handles communicationwith a single device [grp; mav (c)]. An alternative to man-ual drone control or programming is the use of a GCS, aprogram that can display real-time UAVs data [ qgr; ard]. AGCS can also control a drone in flight by uploading missionplans or commands and setting parameters. It is oftenused to monitor live video streams from UAV cameras.
3.3. Simulation System

The final component of the simulation architecture is thesimulation environment, which can consist of varioussoftware, including Gazebo, jMAVSim, JSBSim, AirSim,and others [gaz; git (a,b); mic]. This environment com-prises a communication plugin between the simulator andthe flight controller, the drone model (including physicalcharacteristics, such as weight, motor power, and flightpatterns), the main sensors, and possibly additional sen-sors (such as cameras and radar, etc.), as well as a physicsengine managing gravity, magnetic fields, and collisionswith other objects in the scene. In addition, it may com-prise a companion computer, which is typically equippedwith a real-time operating system, such as ROS2 or Linux.This enables the computer to process the data and issuecommands to the flight controller.
4. Proposed architecture

The proposed framework, Fig. 2, leverages the latest opensource technologies developed by the drone community.One of the objectives of this article was to investigate thefeasibility of using any autopilot (PX4 or Ardupilot) withinthe Gazebo simulator. Gazebo, an open-source softwaredeveloped since 2002, has in recent years, with the sup-port of Open Robotics, modernized its code, moving awayfrom its monolithic architecture to a collection of looselycoupled libraries. By modifying the configuration files ofthe worlds in which UAVs are simulated, it was possibleto preload both drone models made publicly available byautopilot manufacturers, as well as all dependencies in
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Figure 2. Gazebo/(Ardupilot/PX4)/QGroundControl software stack.

terms of additional plugins and settings related to gen-eral environmental conditions, including magnetic field,wind, gravity force, and the number of satellites availablefor position management. This, unlike other research, al-lows us to generate data for various types of autopilot andenhances the realism of the data.
This research also evaluates additional simulators. Inparticular, the suitability of simulators for the manage-ment of multiple types of drones engaged in simultaneousmissions was evaluated. Tab. 2 enumerates the simulatorsdeemed appropriate for this purpose. Considerations in-cluded the potential to enhance drone functionalities withextra sensors via the ROS system, compatibility with flightcontrollers, and the software’s lifecycle status. Gazebo wasselected, even though it matches the same capabilities ofJSBSim. The primary distinction lies in Gazebo’s abilityto incorporate a variety of model types, as opposed to JSB-Sim’s limitation to quadcopters only. Furthermore, Gazeboprovides more precise simulations and supports a rangeof features with its existing modules.

Table 2. Simulator comparison.
Simulator Flight Controller ROS Discontinued

Gazebo PX4/Ardupilot Y N
JSBSim PX4/Ardupilot Y N

Gazebo Classic PX4/Ardupilot Y N (Soon 2025)
AirSim PX4/Ardupilot N Y

JMAVSim PX4 N N

To manage and generate various types of mission, it wasdecided to use the Dronecode Foundation QGroundCon-trol software, which, through the MAVLink protocol, al-lows managing waypoints, altitude, and drone flight speed[qgr]. Each drone was then connected to an MAVLinkserver managed by a self-produced Java application thatinjected system faults. The generation of faults was han-dled through the "inject" method of the Failure class ofthe MAVSDK plugin [mav (a)]. The latter takes a failure

unit and a failure type as input and returns a result. Thepotential options are shown in the Tab. 3 and Tab. 4, eachbriefly described and can be freely combined to achievevarious results.
Table 3. A list of units that can be employed to inject failure.

FailureUnit

System Gyro, Accelerometer, Barometer, GPS, Optical flow,Visual inertial odometry, Distance sensor, Airspeed
Sensors Airspeed, Battery, Motor,Servo,Avoidance, RC signal, MAVLink signal

Table 4. A list of failure types that can be injected.
Failure Type

Value DescriptionOk Reset all failureOff Sets off the unitStuck Report always the last valueGarbage Report random valueWrong Report possible but inconsistent dataSlow Report correct data, but slowlyDelayed Report correct data, but with a packet time delayIntermittent Report correct data, but intermittently

5. Experiments and results

In this work, an experimental datasethas been produced by using the proposedGazebo/(Ardupilot/PX4)/QGroundControl softwarestack, to support security-oriented research activities ondrones fleets. It consists of a set of missions experiencinginjected malfunctions in one of the fleet drones.
The QGroundControl software, Fig. 3, expedited thecreation of missions by offering a platform to manage way-points or scan pattern missions, such as survey, corridor,
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Figure 3. QGroundControl view of a simulated mission with three drones flying over the University of Salerno.

or structure. This software allows users to select a flightarea and automatically create a navigational path, whichcan be adjusted later as necessary. In addition, the Regionof Interest (ROI) feature enables the drone to stop at desig-nated points for camera sensors to capture environmentaldata. Each mission was set to run on a simulation timethat exceeded real time, which, as observed, did not com-promise the data quality and facilitated more simulationsin less time.The log data was recorded and stored on GitHub 1,including the configuration files necessary to replicatethe experiments. The saved logs included those of theflight controllers, MAVLink communications managed byQGroundControl, and summary logs at a 1Hz frequencyin CSV format for each vehicle in the mission. These logs,while less detailed than telemetry logs, are simpler to han-dle and faster for data extraction.Each scenario in the Git repository was generated usinga set of repeatable processes. These scenarios vary in termsof the units targeted, the nature of the failure/attack, andthe routes taken by the drones. The operations performedare as follows:
• Define S = {d0, d1, ..., dn} as the collection of drones forthe simulation;• Initiate the Gazebo simulator, which loads a modified
1 https://github.com/iotresearchunisa/drone-fleet-simulation

world file to manage multiple flight controllers, andstart each of the |S| flight controllers separately;• Utilize QGroundControl to set the flight routes for alldrones and upload the respective missions to each;• Select drone dx ∈ S as the target for the compromiseand establish a connection via MAVSDK;• Begin the simulation, integrating all loaded missions,and wait for the appropriate time to introduce the sim-ulated attack.
Additionally, scenarios have been constructed basedon identified security threats in the communication be-tween the Ground Control Station (GCS) and the UAV us-ing the MAVLink protocol [Ficco et al. (2024a); Xu et al.(2021); Hadi and Cao (2022); Kwon et al. (2018)]. Offi-cially, MAVLink lacks any form of message encryptionand only supports a message signing feature that verifiesthe authenticity of the messages. Researchers have in-troduced a cryptographic layer using ChaCha20 on theArdupilot flight controller [Cha], which showed improvedperformance and efficiency over other encryption meth-ods, such as AES-CBC, AES-CTR, and RC4 [Allouch et al.(2019)]. The message signing process modifies the trans-mitted packets by activating the incompatibility flag bitand adding an extra 13 bytes of data. This additional dataincludes a linkID (8 bits), a timestamp (48 bits), and asignature (48 bits), the signature being the initial 48 bitsof a SHA-256 hash of the entire packet, incorporating the

https://github.com/iotresearchunisa/drone-fleet-simulation
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secret key, header, payload, CRC, link-ID, and timestamp.MAVLink signing is not fully implemented on PX4 andworks only with the Ardupilot flight controller and theground control station Mission Planner.As result, are also selected scenarios in which Ardupi-lot/PX4 flight controllers use the MAVLink protocol withthe message signing functionality disabled and are com-promised through message replay attacks [Hadi and Cao(2022)], ICMP DoS, and generic DoS [Kwon et al. (2018);Xu et al. (2021)]. By performing packet sniffing withinthe drone network, an attacker is able to capture MAVLinkpackets in clear and may alter the payload according tothe protocol or replay particular messages until the UAVceases communication. This second type of scenario in-volved a swarm of fully automated single-layer drones inwhich the attacker, leveraging the previously describedvulnerability, successfully modified the drones’ behavior,specifically making them land.
6. Conclusions and future works
The results of this study underscore the significant role ofsimulation in enhancing the security measures of UAVs.The utilization of the described stack software enables thecreation of realistic scenarios of fleet operations and cyberthreats, thereby facilitating the generation of a compre-hensive dataset that can be exploited as a foundation forthe development of robust security and AI models.The future step include designing an open source dis-tributed ML-based Security Information and Event Man-agement (SIEM) system, which is able to identify and mit-igate the effects of unauthorized intrusions against fleetsof drones.
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