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Abstract

Credibility evaluation of a simulation model is an important premise of the simulation, since incredible model can produce unconvincing
or even wrong results. The overall credibility of a simulation model is evaluated by weighting a group of metrics. These metrics are
calculated by different kinds of quantitative or qualitative methods. As the weighting criteria of different kinds of models is hard
to define uniformly, existing qualitative methods depend highly on expert scoring. However, expert scoring with metric weighting
process is subjective and time-consuming. It is challenging to weight the metrics appropriately and evaluate a simulation model
efficiently. Therefore, this paper proposes an automated metric weighting method for accelerating the credibility evaluation. It applies
the historical scoring records of similar models as the reference. Then, it introduces an evolutionary algorithm to calculate the possible
weights of the metrics inversely and calculate the overall credibility value of the simulation model. Experimental results on a typical
simulation model verify that the proposed method is able to weight the metrics within seconds and calculate the credibility value with
high degree of alignment with expert scoring.

Keywords: credibility evaluation; qualitative expert scoring; weighting rules; evolutionary algorithm

1. Introduction duced as an key alternative (Ho and Ma, 2018).

Credibility evaluation is indispensable for a simulation However, existing qualitative methods depends highly
model before its application (Balci, 1986; Law, 2022). A  On expert scoring. When the number of metrics for cred-
simulation model without credibility evaluation may pro- ibility evaluation is high, the scoring process becomes
duce unconvincing results, provide a wrong view for the ~ fime-consuming. EXperts are required to designate a set
model user, and even lead to wrong decisions. The credibil- of rules to score the metrics and define weighting criteria
ity evaluation of a simulation model can be implemented for a comprehensive evaluation. For the models that share
quantitatively or qualitatively. If the reference data of the similar weighting criteria, the scoring process becomes te-
target object is provided, quantitative methods can be ap- dious. It is necessary to establ.ls_h'an autome?tlc weighting
plied to compare the simulation results to the reference ~ Process to accelerate the credibility evaluation.

data. However, if the reference data is unreachable, or the Therefore, this paper presented a method of credibility
simulation is expensive, qualitative methods are intro-  metric weighting to accelerate qualitative model evalu-
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ation. The evaluation framework adopted in this paper
is derived from NASA-STD-7009 (Min et al., 2010). The
basic idea is to utilize historical scoring results as a refer-
ence, employing polynomial expansion to approximate the
metric formulae. First, the perceptually important points
algorithm (PIP) (Tsinaslanidis and Kugiumtzis, 2014) is
introduced to extract key points of the simulation results.
Subsequently, polynomial expansion is applied to estab-
lish the formulae for fitting the evaluation metrics. Then
the credibility of the simulation model is constructed by
weighting the evaluation metrics. Following this, three
typical evolutionary algorithms (Slowik and Kwasnicka,
2020) are introduced to estimate the optimal polynomial
coefficients and weights for fitting the above process. Ex-
perimental results show that the metric values and model
credibility value calculated by the proposed method have
an average error within 8.5% compared to the expert scor-
ing results.

The rest of this paper is organized as follows. Section
II presents a literature review of qualitative assessment
methods for simulation models. Section III outlines the
problem scenarios. Section IV proposes a stochastic hyper-
heuristic-based differential evolution algorithm for solv-
ing the problem. Section V conducts experiment on the
wolf-sheep predation model. Section VI summarizes the

paper.

2. Literature review

Qualitative analysis is a crucial part of credibility evalua-
tion. It mainly refers to the process of evaluating certain
metrics based on expert scoring and experience-based
weighting. In the early stages, researchers proposed some
typical methods for assessing the effectiveness of simula-
tion models, including face validation method (Hermann,
1967), Turing test method (Schruben, 1980), and directed
judgment method (Wright, 1972) based on graphical com-
parisons.

Based on these foundations, Goerger et al. (2005) pro-
posed improvement measures by identifying performance
biases and anchoring biases present in experts, thereby
enhancing the accuracy of face validation. Gao et al. (2019)
presented a petrochemical process simulation model val-
idation framework based on symbolic directed graphs,
comprehensively validating the model at multiple levels to
improve its correctness and accuracy. Zhang et al. (2013)
introduced a model validation and verification method
using symbolic directed graphs and qualitative trend anal-
ysis. Additionally, Samlaus and Fritzson (2015) utilized
semantic constraints to establish role models for verifying
and analyzing the interactions, behaviors, and parameters
of physical models. Ahn et al. (2014) proposed a Delphi
method for assessing the credibility of M&S procedures
and validated its effectiveness through case studies, pro-
viding a structured and objective approach for M&S credi-
bility assessment.

Analytic hierarchy process (AHP) and Technique for or-

der preference by similarity to ideal solution (TOPSIS) the-
ory also find wide applications in qualitative model evalua-
tion. Zhang et al. (2011) proposed a group-AHP evaluation
method that integrates the wisdom of multiple experts and
avoids subjective biases, providing new insights for the
credibility assessment of complex simulation systems. Lu
and Yuan (2018) presented a novel credibility assessment
scheme for cloud computing services based on TOPSIS,
considering both objective aspects of service quality and
user subjective preferences.

With the increasing complexity of simulation mod-
els and challenges such as missing simulation data, re-
searchers are gradually employing knowledge-based qual-
itative assessment methods. Typical approach includes the
categorizing complex simulation behaviors into five types
and combining expert experience and domain knowledge
for analyzing simulation systems Min et al. (2010).

Li et al. (2016) proposed a group assessment method
for the credibility of complex simulation systems based
on second-order additive fuzzy measures, considering the
correlation between evaluation metrics and evaluation ex-
perts, making the evaluation method more reasonable
and objective. Foures et al. (2016) introduced a qualitative
measurement method based on specification descriptions,
combining simulation objectives and formal methods to
evaluate the simulation models in different scenarios.

From the perspective of credibility assessment meth-
ods, most of the classical qualitative assessment methods
are highly subjective and time-consuming. Their effec-
tiveness is greatly influenced by external factors and re-
quires significant manpower. Therefore, establishing au-
tomated qualitative methods for the credibility evaluation
of simulation model is imperative.

3. Problem description

The historical data of the simulation model consists of two
parts: first, the historical outputs of the model; second,
the historical scoring results by experts. The historical
outputs and scoring results of the model were used as ref-
erence cases for constructing the metric fitting formu-
lae. The outputs of the reference cases are denotedas Y =
{V1,Y2,Y3,...,Y;}, whereeach Y}, j € [1,]] represents a one-
dimensional sequence Y; = {yj;, Vj», -, Vjn}- J represents
the number of reference cases, and n represents the length
of the output for the reference case. Historical metrics
values are expressed as I = {l;, 15,15, ...,I;}, where each
I,j € [1,]] represents the metrics values of the j, refer-
ence case, one-dimensional sequence [ = {ij, ij, - .-, ljm}
where m € [1, M] represents the index of the metrics. His-
torical credibility scoring results can be represented as
c={a,c,q,...,¢l Here, ¢;,j € [1,]] denotes the credi-
bility score of the j;, reference case.

The construction of a formula for fitting one metric
is illustrated as an example, and the process of fitting
other metrics is the same. The formula fitting process
for metric i;,, based on the ji, reference case is exempli-



fied. The output of the j;, reference case after PIP com-
pression (detailed in Section 4.2) to k dimensions is ex-
pressed as: : Y]’ = {y]fl, y]’-z, ey y]fk} and the metric value
is I; = {ij, ij5, - - ., ijm}. This paper uses polynomials to fit
the formula for calculating metric values. The formula for
forecast metric?jm is expressed as follows.

k
0 / ;2 r k
ljm—Z(a)a'yp\"aAZ'YjA SRR VRN +b> (1)
A=1

where a,,, represents the coefficient of the k;, power. b
denotes a constant term. When normalizing the simula-
tion output to fall within the range of [0,1], the values of
higher-order terms in Equation 1 will diminish. Therefore,
to simplify, this paper retains only the linear term and the
constant term in Equation 1. Following this, the predicted
metrics are weighted and summed to obtain a predictive
credibility score, which is calculated as follows.

M
G =D Wim im (2)
m=1

The objective function is the sum of the differences be-
tween the predicted metric values and historical metric
values, and the differences between the predicted credibil-
ity scores and historical credibility scores.

minf:ég‘ijm—@-m)+(1—6)‘cj—fj) (3)
m=1

8 represents the weighting coefficient, which is set to 0.8
in the experiment.

General framework is such that the output of each ref-
erence case can construct a set of metric calculation for-
mulae. For example, if there are J reference cases, then
J sets of metric calculation formulae can be constructed.
When there is a new case, it can be substituted into J
sets of fitting formulae for metrics. In this case, J sets of
metric values will be obtained, defined as pseudo-metric
values. The pseudo-metric values can be expressed as
P ={Py,P,,Ps,...,P;}, where each P}, j € [1,]] represents
a one-dimensional sequence P; = {pj;, Pj, ---,Pjm}- Pjm
denotes the value of the m;, pseudo-metric for the new
case under reference case j.

The pseudo-metric value of the new case to the fi-
nal metric value still needs a weighting operation. The
weight of each pseudo-metric requires the normalised eu-
clidean distance between the output of the new case and
the reference case. The output of the new case after nor-
malization is expressed as Z = {z1, 22, Z3, ..., zn} and the
normalized output of the reference case j is denoted as
H;j = {hji, hj, ..., hjp}. Then the normalised Euclidean dis-
tance is defined as follows:

dj= /(- hpl + o~ ot (zn - ()

Huetal. | 3

The weight ; of the pseudo-metric value can be defined
as follows:

The distance between the new case and all reference
cases is represented as: Dyjgance = 1d1,d2,d3, ..., d;j},j €
(1,]). The set of weights for the pseudo-metrics is de-
noted as ¥ = {y1,¥2,¥3,... yhihj € (1,]). The val-
ues of the metrics for new case can be expressed as T =
{i1,15,13,...,im}, m € (1, M). The reference case p furthest
from the new case is considered to lack reference value and
will be discarded. The value of the my;, predicted metric for
the new case is calculated as follows:

e
im= ) bj-Pjm (6)
1

Once the predicted metric values for the new case were
obtained, the model credibility score can be obtained from
the following equation.

J=Li7B
= Z Wjm - ¥j - Pjm (7)

J=1

The methodology for obtaining the weight wj,, and Poly-
nomial fitting coefficients a, will be covered in Section
4. In summary, the process involves constructing a for-
mula to adjust the calculation of the assessment metrics
based on the reference cases. Subsequently, the output of
the new case is inputted into this formula to derive the
pseudo-metric value. Finally, the weights, derived from
the output distances, are utilized to calculate the predicted
metric, as depicted in Figure 1.

4. Methodology
4.1. Framework of the proposed methodology

The construction of the metrics fitting formulae is the
most critical aspect. After dimensionality reduction of the
reference cases’ outputs through PIP, a stochastic hyper-
heuristic-based differential evolution algorithm was de-
signed to dynamically select the underlying operators.
Based on this foundation, we analyze the evolutionary
patterns of the simulation model to obtain the functional
representations of metrics outlined in NASA standards.
Subsequently, the model’s credibility is established based
on these assessment metrics. Finally, experimental is con-
ducted within wolf-sheep predation model.

4.2. PIP

When dealing with high-dimensional data, using the origi-
nal data would be computationally burdensome and might
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Figure 1. Explanation of the process for calculating metrics using the new output as a test case. The formula f(Z) for calculating the metric established
through reference cases, followed by distance weighting, allows for the prediction of the metric value for new cases.
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Figure 2. The vertical distance VD in PIP.

overlook important data points. Therefore, compressing
the data patterns is necessary. This paper adopts the PIP
(Perceptually Important Point) algorithm for dimension-
ality reduction. The algorithm proceeds as follows:

1. Storethe first and last points of the sampled time series
in the downsampled data point set.

2. Calculate the distance from each remaining unsampled
point to its adjacent two keypoints.

3. Sample the point with the maximum distance and store
it in the downsampled data point set.

4. Repeat steps 2 and 3 until the number of sampled key-
points reaches the specified k dimensions.

To compute the distance shown in Figure 2 between
adjacent keypoints, the vertical distance can be calculated

as follows:

tc—t
VD(t3,y3) = |yc — y3| = Y1+(y2—y1)"ﬁ -y3 (8)

For multi-dimensional output data of the simulation
model, an additional joint distance needs to be intro-
duced. Suppose the output of simulation model con-
sists of D-dimensional data, then the joint distance
from P5(t3, y31,¥32, - . -, Y3p) to its adjacent feature points

Py(t1,Y11,Y12,- .-, Yip) and Pa(tz,V21,¥22,-..,Y2p) is de-
fined as follows:
k(P5) — k(P
djoint(PB) = |k(P3) — k(Py) — %(tg —t)

k(P = (9)

The distance of multi-dimensional data is defined as the
maximum value between the distance of each dimension
and the joint distance.

dmyi(P3) = max{di(P3),d>(P3),...,dp(P3), djoint(P3)}

(10)
where dp(P3) = VD(13,Y54),d € (1,D). This definition of
multi-dimensional distance aims to capture the most sig-
nificant peak (valley) values as much as possible, ensuring
that the compressed data closely resembles the original
data.



4.3. Stochastic hyper-heuristic-based differential evo-
lution algorithm

Stochastic hyper-heuristic-based differential evolution al-
gorithm is an intelligent optimization algorithm combin-
ing stochastic hyper-heuristic and differential evolution
(DE) algorithm. In the low-level problem space, problem
solutions are encoded as floating-point numbers, ranging
from o to 1. In the high-level strategy space, strategies
for the DE algorithm are encoded using a combination of
integers and floating-point numbers, encompassing both
operator and parameter selection.

4.3.1. Encode

The problem’s solution comprises the coefficients of the
linear terms and the constant term in Equation 1, along
with the weight values in Equation 2. In the lower-level
problem domain, the length of the individual encoding is
N = 2nM + M, where n represents the length of the output
data, and M represents the number of metrics. The range
of the code is [0, 1].

4.3.2.  Stochastic hyper-heuristic strategy

A strategy based on stochastic hyper-heuristic is employed
for selecting operators.The operator decision encoding in
the high-level strategy domain adopts a hybrid encoding
of integers and floating-point numbers. Each individual
in the population corresponds to an operator decision en-
coding and a problem solution encoding. The operator
decision encoding is a sequence S of length 9.

- S[0]: the new individual chooses the historical optimal
solution ibest or the global optimal solution gbest or the
random individual historical rbest optimal solution in a
new iteration.

- S[1]: select different differential evolution operators

- S[2]: differential evolution operator parameter selec-
tion

- S[3]: decision making whether to perform the differ-
ence operation again or not

- S[4]: differential evolution operator parameter selec-
tion

+ S[5]:Scale factor of operator 1
S[6]:Scale factor of operator 2

- S[7]:Probability of crossover
S[8]:Variation probability

S[o] is a random integer from 0 to (popsize + 3), S[1]
and is a random integer from 0 to (popsize + 1), S[2] and
is a random integer from 0 to popsize, S[5] to S[7] is a
random floating-point number from 0.2 to 0.7, and S[8]
is a random floating-point number from 0.1 to 0.5. The
variable popsize represents the population size.

Individual i is represented during the G, iteration as
Xic = X6, X6 ¢ - X} For each individual X; g,
the corresponding mutant vector can be represented as
Vig = {v},G, Vi v?,G, e vé\”c}. The two mutation strate-
gies employed in this paper are listed as follows:

Huetal. | 5

1. Vig=Xjg+Fix (Xrbestl,G - Xrbestz,G)
2. Vig =Xi6+F2 x Xgbest,c ~ Xrpest3,c)

F;: The scaling factor of Operator 1, controlled by S[5].
F»: The scaling factor of Operator 2, controlled by S[6].
Xrbest1,Gr Xrbest2,Gr Xrbest3, - Historical best solutions of ran-
domly selected individuals during the G, iteration, where
individual selection is controlled by S[1], S[2], S[4] respec-
tively. X peqt ¢: Global best solution in the Gy, iteration.

If any element in vector V; ; exceeds the encoded up-
per and lower bounds, it is reset to a random number
within the bounds. After mutating, a crossover operation
is performed on each individual to obtain the trial vec-
tor U ¢ = {uy; 6, Usi 6, Ui G - - - » Uni g3, @nd the crossover
operation can be defined as follows:

¢
i,G

_ { X{ g, if(rande[0,1) > CR)and(e 7 erana) (1)

¢ X
Vi g, otherwise

where CR: a fixed differential crossover probability within
the range [0.2, 0.7], controlled by S[7]. e,;,4: @ random
integer within the range [1, N].

To enhance solution diversity, a single-point mutation
is applied to the trial vector, with the mutation probability
controlled by S[8].

e _ | randnum,if(randp(o,1) < CR’) (12)
Ui = uf , otherwise

If a random number randp is less than the single-point
mutation probability CR’, the e;, element of the vector is
reset to a random number within the coding range, other-
wise the value of the element remains unchanged. After
mutation, crossover and single point mutation, the objec-
tive function values of the experimental vector and the
original individual are calculated. If the objective function
value of the trial vector is less than that of the original in-
dividual, the high-level strategy operator selection coding
S is retained; otherwise, the operator selection coding S is
reinitialised.

5. Experimental discussion

We set up with 6 groups of reference cases and 2 groups
of test cases and score them in advance by experts. The
reference cases are used to construct the metrics fitting
formulae, and then the outputs of the new cases are pro-
cessed according to Section 3 and Section 4 to obtain the
predicted metrics value and credibility value. The calcu-
lated metric values and credibility values of the new cases
are compared with the expert scoring values, and if they
are within the error allowance, it means that the proposed
qualitative assessment method is effective.
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Table 1. main parameter setting table

Table 3. The calculated metric and credibility values for case 7

casel case2 case3 casel cases case6 case7 case8 casel case2 case3 case4  case5 case6 sum
wolf_reproduce 4 12 4 4 12 12 6 6 T 00570 00387 0.0325 0.0841 0.0492 0.0322 0.2550
sheep_reproduce A 4 4 8 4 8 5 3 1, 00312 00542 00754 0.0992 0.0275 0.0396 0.2729
grass_regrowth_time 40 40 100 40 100 4O 80 25 T, 00246 00500 0.0841 00723 0.0419 0.0552 0.2780
7, 00549 00280 00508 00823 00449 0.0317 0.2645
15 00203 00332 00731 00671 00189 0.0384 0.2178
Table 2. Assessment metrics values and credibility values for cases ?6 0.0314 0.0555 0.0680 0.0923 0.0277 0.0507 0.2702
casel case2 case3 casel case5 case6 case7 case8 iz 00512 00387 0.0914 0.0926 0.0395 0.0521 0.3268
- ig 0.0304 0.0545 0.0571 0.1007 0.0571 0.0406 0.2859
ip, 0765 0537 0.238 0312 0.663 0438 0306 0.654 d 84540 85160 7.6250 77920 83440 83450
i, 0426 0738 0536 0436 0384 0523 0258 0.637
i3 0327 0683 0573 0268 0568 0794 0354 0.695 The data in the table have been approximated to four decimal places.
i, 0776 0367 0362 0376 0.612 0427 0247 0.633
i5 0267 0462 0.48 0215 0247 0537 0238 0524
iz o. 423 0767 o. 45'; 0431 0375 0683 0284 0.675 Table 4. The calculated metric and credibility values for case 8
iz 0697 0548 0.638 0374 0534 0712 0347 0.739 casel case2 case3 cases cases case6 sum
g 0415 0735 0382 0437 0763 0549 0296 0.697 % 01598 01211 01389 02403 01411 0.0865 0.6475
¢ 0713 0764 0536 0347 0685 0674 0323 0801 1 00997 01550 02146 02662 00975 01016 0.6685
T, 00753 01448 02205 02330 01187 01417 0.7009
?4 0.1684 0.0722  0.1779 0.2386 0.1212 0.0836 0.6233
5.1. Experimental settings 15 00547 01058 01930 02189 00486 01064 05085
?6 0.0974 0.1680 0.1962 0.2665 0.0846 0.1226 0.6688
To validate the establishment of the proposed credibil- 1, 01483 01234 02254 02507 01166 01296 07433
ity assessment metric system, the experimental section lg 00925 01510 01877 02716 01509 01003 0.6825
d 70540 5.8760 10.4030 10.8500 7.9340 6.9390

adopts the classic wolf-sheep predation model as the
simulation experiment model. The simulation of the
wolf-sheep predation model is conducted using NetL-
ogo version 6.3. The main model parameters involved in
the wolf-sheep predation model are wolf-gain-from-food,
wolf-reproduce, sheep-gain-from-food, grass-regrowth-
time, sheep-reproduce. Fixing initial-number-wolves,
initial-number-sheep, wolf-gain-from-food, and sheep-
gain-from-food, the variables of the experiment are set
to wolf-reproduce, sheep-reproduce, grass-regrowth-time.
These three parameters were chosen as variable parame-
ters because they have a significant impact on the output
of the wolf-sheep predation model. The output of the simu-
lation model varies even with identical parameter settings.
Therefore, for each case, we conducted five repetitions of
the experiment, generating 500 dimensions of output data
in each repetition. The experiment comprises a total of 8
case. Cases 1to 6 serve as reference cases for establishing
the metric system, while Cases 7 to 8 are designated as
test cases to evaluate the effectiveness of the metric sys-
tem. The parameter settings for each case are provided as
shown in Table 1:

According to the metric system proposed in Section
3, expert ratings were obtained to derive the reference
metrics I and credibility c for the 8 cases, as shown in
Table 2.

The experiment is divided into two groups, namely:
comparison of optimization algorithms, and credibility
assessment experiment for test cases.

5.2. Results

5.2.1. Algorithm comparison experiment

A comparison experiment of different optimization algo-
rithms including DE, GA_GT and MBO is conducted. The

The data in the table have been approximated to four decimal places.

convergence graphs of fitness values under different op-
timization algorithms for various cases are illustrated in
Figure 3.

Through comparison, it can be observed that in this
experiment, the stochastic hyper-heuristic DE algorithm
outperforms other algorithms in terms of fitness conver-
gence speed across different cases.

5.2.2. Testexperiment

Use the established metric calculation formulae based on
reference cases to assess the credibility of cases 7 to 8
as test cases. Each case consists of 8 metric values. The
weight of each pseudo-metric value is calculated according
to the equation 4, and then each weighted metric value
under the same metric is added together to obtain the final
metric value.

After the output of the test case is processed by PIP
downscaling, the metrics values and credibility values for
each test case are calculated according to Equation 1, 7.The
results are summarised in Table 3 and Table 4.

Table 3 shows the calculated metric and distance values
for test case 7. The reference case with the furthest dis-
tance is marked in red and was discarded. This operation
is repeated for case 8.

The metric values and credibility values calculated for
the test cases were compared with the expert scoring val-
ues, as shown in Figure 4. The horizontal axis consists of
9 columns, with the last column representing the cred-
ibility value of the test case and the remaining columns
representing metric values.

The bar comparison chart shows that the calculated
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Figure 3. The convergence curve of fitness values during the evolution process of reference cases.
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Figure 4. The bar chart comparing the metric values and credibility scores calculated for case 7 and case 8 with those of expert ratings.

metrics and credibility values closely match the expert
scoring values in terms of overall trends. The average er-
ror for case 7 is 8.48% and for case 8 is 2%. Although there
is still a discrepancy with the expert scores, the method
proposed in this paper is a valuable qualitative model eval-
uation method. The weight coefficients a,; and wj,, in

Equation 1 and Equation 2 are derived by the stochastic

hyper-heuristic-based differential evolution algorithm

presented in Section 4. The weight coefficient wjy, in Equa-
tion 2 reflects the degree of influence of the metrics on the

credibility of the model, and the weight coefficient in Equa-
tion 1aj,, reflects the degree of influence of the compressed
data on the metrics. These weights help determine which
model outputs and evaluation metrics are more worthy of

attention. This part of the research will be carried out in
our subsequent work.

6. Conclusions

To achieve automated qualitative assessment for sim-
ulation model, this paper establishes a evolutionary
algorithm-based evaluation fitting method using histori-
cal scoring cases as the reference. It utilizes the stochastic
hyper-heuristic-based differential evolution algorithm
to generate the optimal fitting formulae of the metrics
and their weights, and then obtains the overall credibility
value of a simulation model. New cases can be evaluated
automatically using the fitting formulae and the weights.
The experiments show that the average error of the test
cases is within 8.5%), demonstrating the effectiveness of
the method. The proposed method for qualitative evalu-
ation of models effectively overcomes the subjectivity of
traditional expert scoring and accelerates the evaluation
process. In future work, we will focus on studying the im-
pact of the weights in the metric fitting formula on model
evaluation. Additionally, we will investigate the relation-
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ship between these weights and the model’s key outputs
and important evaluation metrics.
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