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Abstract
Credibility evaluation of a simulation model is an important premise of the simulation, since incredible model can produce unconvincingor even wrong results. The overall credibility of a simulation model is evaluated by weighting a group of metrics. These metrics arecalculated by different kinds of quantitative or qualitative methods. As the weighting criteria of different kinds of models is hardto define uniformly, existing qualitative methods depend highly on expert scoring. However, expert scoring with metric weightingprocess is subjective and time-consuming. It is challenging to weight the metrics appropriately and evaluate a simulation modelefficiently. Therefore, this paper proposes an automated metric weighting method for accelerating the credibility evaluation. It appliesthe historical scoring records of similar models as the reference. Then, it introduces an evolutionary algorithm to calculate the possibleweights of the metrics inversely and calculate the overall credibility value of the simulation model. Experimental results on a typicalsimulation model verify that the proposed method is able to weight the metrics within seconds and calculate the credibility value withhigh degree of alignment with expert scoring.
Keywords: credibility evaluation; qualitative expert scoring; weighting rules; evolutionary algorithm

1. Introduction

Credibility evaluation is indispensable for a simulationmodel before its application (Balci, 1986; Law, 2022). Asimulation model without credibility evaluation may pro-duce unconvincing results, provide a wrong view for themodel user, and even lead to wrong decisions. The credibil-ity evaluation of a simulation model can be implementedquantitatively or qualitatively. If the reference data of thetarget object is provided, quantitative methods can be ap-plied to compare the simulation results to the referencedata. However, if the reference data is unreachable, or thesimulation is expensive, qualitative methods are intro-

duced as an key alternative (Ho and Ma, 2018).
However, existing qualitative methods depends highlyon expert scoring. When the number of metrics for cred-ibility evaluation is high, the scoring process becomestime-consuming. Experts are required to designate a setof rules to score the metrics and define weighting criteriafor a comprehensive evaluation. For the models that sharesimilar weighting criteria, the scoring process becomes te-dious. It is necessary to establish an automatic weightingprocess to accelerate the credibility evaluation.
Therefore, this paper presented a method of credibilitymetric weighting to accelerate qualitative model evalu-
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ation. The evaluation framework adopted in this paperis derived from NASA-STD-7009 (Min et al., 2010). Thebasic idea is to utilize historical scoring results as a refer-ence, employing polynomial expansion to approximate themetric formulae. First, the perceptually important pointsalgorithm (PIP) (Tsinaslanidis and Kugiumtzis, 2014) isintroduced to extract key points of the simulation results.Subsequently, polynomial expansion is applied to estab-lish the formulae for fitting the evaluation metrics. Thenthe credibility of the simulation model is constructed byweighting the evaluation metrics. Following this, threetypical evolutionary algorithms (Slowik and Kwasnicka,2020) are introduced to estimate the optimal polynomialcoefficients and weights for fitting the above process. Ex-perimental results show that the metric values and modelcredibility value calculated by the proposed method havean average error within 8.5% compared to the expert scor-ing results.The rest of this paper is organized as follows. SectionII presents a literature review of qualitative assessmentmethods for simulation models. Section III outlines theproblem scenarios. Section IV proposes a stochastic hyper-heuristic-based differential evolution algorithm for solv-ing the problem. Section V conducts experiment on the
wolf-sheep predation model. Section VI summarizes thepaper.
2. Literature review

Qualitative analysis is a crucial part of credibility evalua-tion. It mainly refers to the process of evaluating certainmetrics based on expert scoring and experience-basedweighting. In the early stages, researchers proposed sometypical methods for assessing the effectiveness of simula-tion models, including face validation method (Hermann,1967), Turing test method (Schruben, 1980), and directedjudgment method (Wright, 1972) based on graphical com-parisons.Based on these foundations, Goerger et al. (2005) pro-posed improvement measures by identifying performancebiases and anchoring biases present in experts, therebyenhancing the accuracy of face validation. Gao et al. (2019)presented a petrochemical process simulation model val-idation framework based on symbolic directed graphs,comprehensively validating the model at multiple levels toimprove its correctness and accuracy. Zhang et al. (2013)introduced a model validation and verification methodusing symbolic directed graphs and qualitative trend anal-ysis. Additionally, Samlaus and Fritzson (2015) utilizedsemantic constraints to establish role models for verifyingand analyzing the interactions, behaviors, and parametersof physical models. Ahn et al. (2014) proposed a Delphimethod for assessing the credibility of M&S proceduresand validated its effectiveness through case studies, pro-viding a structured and objective approach for M&S credi-bility assessment.Analytic hierarchy process (AHP) and Technique for or-

der preference by similarity to ideal solution (TOPSIS) the-ory also find wide applications in qualitative model evalua-tion. Zhang et al. (2011) proposed a group-AHP evaluationmethod that integrates the wisdom of multiple experts andavoids subjective biases, providing new insights for thecredibility assessment of complex simulation systems. Luand Yuan (2018) presented a novel credibility assessmentscheme for cloud computing services based on TOPSIS,considering both objective aspects of service quality anduser subjective preferences.With the increasing complexity of simulation mod-els and challenges such as missing simulation data, re-searchers are gradually employing knowledge-based qual-itative assessment methods. Typical approach includes thecategorizing complex simulation behaviors into five typesand combining expert experience and domain knowledgefor analyzing simulation systems Min et al. (2010).Li et al. (2016) proposed a group assessment methodfor the credibility of complex simulation systems basedon second-order additive fuzzy measures, considering thecorrelation between evaluation metrics and evaluation ex-perts, making the evaluation method more reasonableand objective. Foures et al. (2016) introduced a qualitativemeasurement method based on specification descriptions,combining simulation objectives and formal methods toevaluate the simulation models in different scenarios.From the perspective of credibility assessment meth-ods, most of the classical qualitative assessment methodsare highly subjective and time-consuming. Their effec-tiveness is greatly influenced by external factors and re-quires significant manpower. Therefore, establishing au-tomated qualitative methods for the credibility evaluationof simulation model is imperative.
3. Problem description

The historical data of the simulation model consists of twoparts: first, the historical outputs of the model; second,the historical scoring results by experts. The historicaloutputs and scoring results of the model were used as ref-erence cases for constructing the metric fitting formu-lae. The outputs of the reference cases are denoted as Y ={Y1,Y2,Y3, . . . ,Yj}, where each Yj, j ∈ [1, J] represents a one-dimensional sequence Yj = {yj1, yj2, . . . , yjn}. J representsthe number of reference cases, and n represents the lengthof the output for the reference case. Historical metricsvalues are expressed as I = {I1, I2, I3, . . . , Ij}, where each
Ij, j ∈ [1, J] represents the metrics values of the jth refer-ence case, one-dimensional sequence Ij = {ij1, ij2, . . . , ijm}wherem ∈ [1,M] represents the index of the metrics. His-torical credibility scoring results can be represented as
c = {c1, c2, c3, . . . , cj}. Here, cj, j ∈ [1, J] denotes the credi-bility score of the jth reference case.The construction of a formula for fitting one metricis illustrated as an example, and the process of fittingother metrics is the same. The formula fitting processfor metric ijm based on the jth reference case is exempli-
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fied. The output of the jth reference case after PIP com-pression (detailed in Section 4.2) to k dimensions is ex-pressed as: : Y ′j = {y′j1, y′j2, . . . , y′jk} and the metric value
is Ij = {ij1, ij2, . . . , ijm}. This paper uses polynomials to fitthe formula for calculating metric values. The formula forforecast metric îjm is expressed as follows.

îjm = k∑
λ=1

(
aλ1 · y′jλ + aλ2 · y′jλ

2 + . . . + aλk · y′jλk + b) (1)
where aλk represents the coefficient of the kth power. bdenotes a constant term. When normalizing the simula-tion output to fall within the range of [0,1], the values ofhigher-order terms in Equation 1 will diminish. Therefore,to simplify, this paper retains only the linear term and theconstant term in Equation 1. Following this, the predictedmetrics are weighted and summed to obtain a predictivecredibility score, which is calculated as follows.

ĉj = M∑
m=1
wjm · îjm (2)

The objective function is the sum of the differences be-tween the predicted metric values and historical metricvalues, and the differences between the predicted credibil-ity scores and historical credibility scores.
min f = δ M∑

m=1
∣∣∣ijm – îjm∣∣∣ + (1 – δ) ∣∣∣cj – ĉj∣∣∣ (3)

δ represents the weighting coefficient, which is set to 0.8in the experiment.General framework is such that the output of each ref-erence case can construct a set of metric calculation for-mulae. For example, if there are J reference cases, then
J sets of metric calculation formulae can be constructed.When there is a new case, it can be substituted into Jsets of fitting formulae for metrics. In this case, J sets ofmetric values will be obtained, defined as pseudo-metricvalues. The pseudo-metric values can be expressed as
P = {P1,P2,P3, . . . ,Pj}, where each Pj, j ∈ [1, J] representsa one-dimensional sequence Pj = {pj1,pj2, . . . ,pjm}. pjmdenotes the value of themth pseudo-metric for the newcase under reference case j.The pseudo-metric value of the new case to the fi-nal metric value still needs a weighting operation. Theweight of each pseudo-metric requires the normalised eu-clidean distance between the output of the new case andthe reference case. The output of the new case after nor-malization is expressed as Z = {z1, z2, z3, . . . , zn} and thenormalized output of the reference case j is denoted as
Hj = {hj1,hj2, . . . ,hjn}. Then the normalised Euclidean dis-tance is defined as follows:
dj = √(z1 – hj1)2 + (z2 – hj2)2 + . . . + (zn – hjn)2 (4)

The weightψj of the pseudo-metric value can be definedas follows:
ψj = 11 + dj (5)

The distance between the new case and all referencecases is represented as: Ddistance = {d1,d2,d3, . . . ,dj}, j ∈(1, J). The set of weights for the pseudo-metrics is de-noted as Ψ = {ψ1,ψ2,ψ3, . . . ,ψj}, j ∈ (1, J). The val-
ues of the metrics for new case can be expressed as Î ={̂i1, î2, î3, . . . , îm},m ∈ (1,M). The reference case β furthestfrom the new case is considered to lack reference value andwill be discarded. The value of themth predicted metric forthe new case is calculated as follows:

îm = j=J,j ̸=β∑
j=1

ψj · pjm (6)

Once the predicted metric values for the new case wereobtained, the model credibility score can be obtained fromthe following equation.
ĉ = j=J,j̸=β∑

j=1
wjm · ψj · pjm (7)

The methodology for obtaining the weightwjm and Poly-nomial fitting coefficients aλk will be covered in Section4. In summary, the process involves constructing a for-mula to adjust the calculation of the assessment metricsbased on the reference cases. Subsequently, the output ofthe new case is inputted into this formula to derive thepseudo-metric value. Finally, the weights, derived fromthe output distances, are utilized to calculate the predictedmetric, as depicted in Figure 1.
4. Methodology

4.1. Framework of the proposedmethodology

The construction of the metrics fitting formulae is themost critical aspect. After dimensionality reduction of thereference cases’ outputs through PIP, a stochastic hyper-heuristic-based differential evolution algorithm was de-signed to dynamically select the underlying operators.Based on this foundation, we analyze the evolutionarypatterns of the simulation model to obtain the functionalrepresentations of metrics outlined in NASA standards.Subsequently, the model’s credibility is established basedon these assessment metrics. Finally, experimental is con-ducted withinwolf-sheep predation model.
4.2. PIP

When dealing with high-dimensional data, using the origi-nal data would be computationally burdensome and might
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Figure 1. Explanation of the process for calculating metrics using the new output as a test case. The formula f(Z) for calculating the metric establishedthrough reference cases, followed by distance weighting, allows for the prediction of the metric value for new cases.

Figure 2. The vertical distance VD in PIP.

overlook important data points. Therefore, compressingthe data patterns is necessary. This paper adopts the PIP(Perceptually Important Point) algorithm for dimension-ality reduction. The algorithm proceeds as follows:
1. Store the first and last points of the sampled time seriesin the downsampled data point set.2. Calculate the distance from each remaining unsampledpoint to its adjacent two keypoints.3. Sample the point with the maximum distance and storeit in the downsampled data point set.4. Repeat steps 2 and 3 until the number of sampled key-points reaches the specified k dimensions.

To compute the distance shown in Figure 2 betweenadjacent keypoints, the vertical distance can be calculated

as follows:
VD(t3, y3) = |yc – y3| = ∣∣∣∣y1 + (y2 – y1) · tc – t1

t2 – t1 – y3
∣∣∣∣ (8)

For multi-dimensional output data of the simulationmodel, an additional joint distance needs to be intro-duced. Suppose the output of simulation model con-sists of D-dimensional data, then the joint distancefrom P3(t3, y31, y32, . . . , y3D) to its adjacent feature points
P1(t1, y11, y12, . . . , y1D) and P2(t2, y21, y22, . . . , y2D) is de-fined as follows:
djoint(P3) = ∣∣∣∣k(P3) – k(P1) – k(P2) – k(P1)

t2 – t1 (t3 – t1)∣∣∣∣
k(Pi) =

√√√√√ D∑
j=1
y2
ij

(9)

The distance of multi-dimensional data is defined as themaximum value between the distance of each dimensionand the joint distance.
dmul(P3) = max{d1(P3),d2(P3), . . . ,dD(P3),djoint(P3)}(10)where dD(P3) = VD(t3, y3d),d ∈ (1,D). This definition ofmulti-dimensional distance aims to capture the most sig-nificant peak (valley) values as much as possible, ensuringthat the compressed data closely resembles the originaldata.
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4.3. Stochastic hyper-heuristic-based differential evo-
lution algorithm

Stochastic hyper-heuristic-based differential evolution al-gorithm is an intelligent optimization algorithm combin-ing stochastic hyper-heuristic and differential evolution(DE) algorithm. In the low-level problem space, problemsolutions are encoded as floating-point numbers, rangingfrom 0 to 1. In the high-level strategy space, strategiesfor the DE algorithm are encoded using a combination ofintegers and floating-point numbers, encompassing bothoperator and parameter selection.
4.3.1. EncodeThe problem’s solution comprises the coefficients of thelinear terms and the constant term in Equation 1, alongwith the weight values in Equation 2. In the lower-levelproblem domain, the length of the individual encoding is
N = 2nM +M, where n represents the length of the outputdata, andM represents the number of metrics. The rangeof the code is [0, 1].
4.3.2. Stochastic hyper-heuristic strategyA strategy based on stochastic hyper-heuristic is employedfor selecting operators.The operator decision encoding inthe high-level strategy domain adopts a hybrid encodingof integers and floating-point numbers. Each individualin the population corresponds to an operator decision en-coding and a problem solution encoding. The operatordecision encoding is a sequence S of length 9.
• S[0]: the new individual chooses the historical optimalsolution ibest or the global optimal solution gbest or therandom individual historical rbest optimal solution in anew iteration.• S[1]: select different differential evolution operators• S[2]: differential evolution operator parameter selec-tion• S[3]: decision making whether to perform the differ-ence operation again or not• S[4]: differential evolution operator parameter selec-tion• S[5]:Scale factor of operator 1• S[6]:Scale factor of operator 2• S[7]:Probability of crossover• S[8]:Variation probability

S[0] is a random integer from 0 to (popsize + 3), S[1]and is a random integer from 0 to (popsize + 1), S[2] andis a random integer from 0 to popsize, S[5] to S[7] is arandom floating-point number from 0.2 to 0.7, and S[8]is a random floating-point number from 0.1 to 0.5. Thevariable popsize represents the population size.Individual i is represented during the Gth iteration as
Xi,G = {x1

i,G, x2
i,G, x3

i,G, . . . , xNi,G}. For each individual Xi,G,
the corresponding mutant vector can be represented as
Vi,G = {v1

i,G, v2
i,G, v3

i,G, . . . , vNi,G}. The two mutation strate-
gies employed in this paper are listed as follows:

1. Vi,G = Xi,G + F1 × (Xrbest1,G – Xrbest2,G)2. Vi,G = Xi,G + F2 × (Xgbest,G – Xrbest3,G)
F1: The scaling factor of Operator 1, controlled by S[5].

F2: The scaling factor of Operator 2, controlled by S[6].
Xrbest1,G,Xrbest2,G,Xrbest3,G: Historical best solutions of ran-domly selected individuals during the Gth iteration, whereindividual selection is controlled by S[1], S[2], S[4] respec-tively. Xgbest,G: Global best solution in the Gth iteration.

If any element in vector Vi,G exceeds the encoded up-per and lower bounds, it is reset to a random numberwithin the bounds. After mutating, a crossover operationis performed on each individual to obtain the trial vec-tor Ui,G = {u1i,G,u2i,G,u3i,G, . . . ,uNi,G}, and the crossoveroperation can be defined as follows:
uei,G =

{
xei,G, if(rande[0, 1) > CR)and(e ̸= erand)
vei,G, otherwise (11)

where CR: a fixed differential crossover probability withinthe range [0.2, 0.7], controlled by S[7]. erand: a randominteger within the range [1, N].
To enhance solution diversity, a single-point mutationis applied to the trial vector, with the mutation probabilitycontrolled by S[8].

uei,G =
{ randnum, if(randp[0, 1) < CR′)
uei,G, otherwise (12)

If a random number randp is less than the single-pointmutation probability CR’, the eth element of the vector isreset to a random number within the coding range, other-wise the value of the element remains unchanged. Aftermutation, crossover and single point mutation, the objec-tive function values of the experimental vector and theoriginal individual are calculated. If the objective functionvalue of the trial vector is less than that of the original in-dividual, the high-level strategy operator selection codingS is retained; otherwise, the operator selection coding S isreinitialised.

5. Experimental discussion

We set up with 6 groups of reference cases and 2 groupsof test cases and score them in advance by experts. Thereference cases are used to construct the metrics fittingformulae, and then the outputs of the new cases are pro-cessed according to Section 3 and Section 4 to obtain thepredicted metrics value and credibility value. The calcu-lated metric values and credibility values of the new casesare compared with the expert scoring values, and if theyare within the error allowance, it means that the proposedqualitative assessment method is effective.
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Table 1. main parameter setting table

case1 case2 case3 case4 case5 case6 case7 case8
wolf_reproduce 4 12 4 4 12 12 6 6sheep_reproduce 4 4 4 8 4 8 5 3grass_regrowth_time 40 40 100 40 100 40 80 25

Table 2. Assessment metrics values and credibility values for cases
case1 case2 case3 case4 case5 case6 case7 case8

i1 0.765 0.537 0.238 0.312 0.663 0.438 0.306 0.654
i2 0.426 0.738 0.536 0.436 0.384 0.523 0.258 0.637
i3 0.327 0.683 0.573 0.268 0.568 0.794 0.354 0.695
i4 0.776 0.367 0.362 0.376 0.612 0.427 0.247 0.633
i5 0.267 0.462 0.487 0.215 0.247 0.537 0.238 0.524
i6 0.421 0.767 0.458 0.431 0.375 0.683 0.284 0.675
i7 0.697 0.548 0.638 0.374 0.534 0.712 0.347 0.739
i8 0.415 0.735 0.382 0.437 0.763 0.549 0.296 0.697
c 0.713 0.764 0.536 0.347 0.685 0.674 0.323 0.801

5.1. Experimental settings

To validate the establishment of the proposed credibil-ity assessment metric system, the experimental sectionadopts the classic wolf-sheep predation model as thesimulation experiment model. The simulation of thewolf-sheep predation model is conducted using NetL-
ogo version 6.3. The main model parameters involved inthewolf-sheep predation model arewolf-gain-from-food,
wolf-reproduce, sheep-gain-from-food, grass-regrowth-
time, sheep-reproduce. Fixing initial-number-wolves,
initial-number-sheep, wolf-gain-from-food, and sheep-
gain-from-food, the variables of the experiment are settowolf-reproduce, sheep-reproduce, grass-regrowth-time.These three parameters were chosen as variable parame-ters because they have a significant impact on the outputof thewolf-sheep predation model. The output of the simu-lation model varies even with identical parameter settings.Therefore, for each case, we conducted five repetitions ofthe experiment, generating 500 dimensions of output datain each repetition. The experiment comprises a total of 8case. Cases 1 to 6 serve as reference cases for establishingthe metric system, while Cases 7 to 8 are designated astest cases to evaluate the effectiveness of the metric sys-tem. The parameter settings for each case are provided asshown in Table 1:According to the metric system proposed in Section3, expert ratings were obtained to derive the referencemetrics I and credibility c for the 8 cases, as shown inTable 2.The experiment is divided into two groups, namely:comparison of optimization algorithms, and credibilityassessment experiment for test cases.
5.2. Results

5.2.1. Algorithm comparison experimentA comparison experiment of different optimization algo-rithms including DE, GA_GT and MBO is conducted. The

Table 3. The calculated metric and credibility values for case 7
case1 case2 case3 case4 case5 case6 sum

î1 0.0570 0.0387 0.0325 0.0841 0.0492 0.0322 0.2550
î2 0.0312 0.0542 0.0754 0.0992 0.0275 0.0396 0.2729
î3 0.0246 0.0500 0.0841 0.0723 0.0419 0.0552 0.2780
î4 0.0549 0.0280 0.0508 0.0823 0.0449 0.0317 0.2645
î5 0.0203 0.0332 0.0731 0.0671 0.0189 0.0384 0.2178
î6 0.0314 0.0555 0.0680 0.0923 0.0277 0.0507 0.2702
î7 0.0512 0.0387 0.0914 0.0926 0.0395 0.0521 0.3268
î8 0.0304 0.0545 0.0571 0.1007 0.0571 0.0406 0.2859d 8.4540 8.5160 7.6250 7.7920 8.3440 8.3450

The data in the table have been approximated to four decimal places.

Table 4. The calculated metric and credibility values for case 8
case1 case2 case3 case4 case5 case6 sum

î1 0.1598 0.1211 0.1389 0.2403 0.1411 0.0865 0.6475
î2 0.0997 0.1550 0.2146 0.2662 0.0975 0.1016 0.6685
î3 0.0753 0.1448 0.2205 0.2330 0.1187 0.1417 0.7009
î4 0.1684 0.0722 0.1779 0.2386 0.1212 0.0836 0.6233
î5 0.0547 0.1058 0.1930 0.2189 0.0486 0.1064 0.5085
î6 0.0974 0.1680 0.1962 0.2665 0.0846 0.1226 0.6688
î7 0.1483 0.1234 0.2254 0.2507 0.1166 0.1296 0.7433
î8 0.0925 0.1510 0.1877 0.2716 0.1509 0.1003 0.6825d 7.0540 5.8760 10.4030 10.8500 7.9340 6.9390

The data in the table have been approximated to four decimal places.

convergence graphs of fitness values under different op-timization algorithms for various cases are illustrated inFigure 3.Through comparison, it can be observed that in thisexperiment, the stochastic hyper-heuristic DE algorithmoutperforms other algorithms in terms of fitness conver-gence speed across different cases.
5.2.2. Test experimentUse the established metric calculation formulae based onreference cases to assess the credibility of cases 7 to 8as test cases. Each case consists of 8 metric values. Theweight of each pseudo-metric value is calculated accordingto the equation 4, and then each weighted metric valueunder the same metric is added together to obtain the finalmetric value.After the output of the test case is processed by PIPdownscaling, the metrics values and credibility values foreach test case are calculated according to Equation 1, 7.Theresults are summarised in Table 3 and Table 4.Table 3 shows the calculated metric and distance valuesfor test case 7. The reference case with the furthest dis-tance is marked in red and was discarded. This operationis repeated for case 8.The metric values and credibility values calculated forthe test cases were compared with the expert scoring val-ues, as shown in Figure 4. The horizontal axis consists of9 columns, with the last column representing the cred-ibility value of the test case and the remaining columnsrepresenting metric values.The bar comparison chart shows that the calculated
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Figure 3. The convergence curve of fitness values during the evolution process of reference cases.

Figure 4. The bar chart comparing the metric values and credibility scores calculated for case 7 and case 8 with those of expert ratings.

metrics and credibility values closely match the expertscoring values in terms of overall trends. The average er-ror for case 7 is 8.48% and for case 8 is 2%. Although thereis still a discrepancy with the expert scores, the methodproposed in this paper is a valuable qualitative model eval-uation method. The weight coefficients aλ1 and ωjm inEquation 1 and Equation 2 are derived by the stochastichyper-heuristic-based differential evolution algorithmpresented in Section 4. The weight coefficientωjm in Equa-tion 2 reflects the degree of influence of the metrics on thecredibility of the model, and the weight coefficient in Equa-tion 1 aλ1 reflects the degree of influence of the compresseddata on the metrics. These weights help determine whichmodel outputs and evaluation metrics are more worthy ofattention. This part of the research will be carried out inour subsequent work.

6. Conclusions

To achieve automated qualitative assessment for sim-ulation model, this paper establishes a evolutionaryalgorithm-based evaluation fitting method using histori-cal scoring cases as the reference. It utilizes the stochastichyper-heuristic-based differential evolution algorithmto generate the optimal fitting formulae of the metricsand their weights, and then obtains the overall credibilityvalue of a simulation model. New cases can be evaluatedautomatically using the fitting formulae and the weights.The experiments show that the average error of the testcases is within 8.5%, demonstrating the effectiveness ofthe method. The proposed method for qualitative evalu-ation of models effectively overcomes the subjectivity oftraditional expert scoring and accelerates the evaluationprocess. In future work, we will focus on studying the im-pact of the weights in the metric fitting formula on modelevaluation. Additionally, we will investigate the relation-
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ship between these weights and the model’s key outputsand important evaluation metrics.
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