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Abstract
To help train DNN models more efficiently, researchers have developed a series of new computation devices and parallel trainingstrategies. Choosing which device and strategy to use among those vast candidates is challenging for developers. Simulation is aneffective solution to this question since it does not need to deploy models with different settings practically. However, most existingworks still require users to measure models on the target hardware first, which cannot help users choose the proper hardware inadvance. This paper presents Tianshu, which adopts the ahead-of-time idea to solve this problem. Tianshu first designs an accuratemeasuring tool to measure the operation’s time-use and store the result in a database, which can be shared among the community. Foruncovered cases, Tianshu designs an automatic mechanism to train neural network models that can estimate their execution time.Therefore, Tianshu can support simulation without a target hardware. Finally, Tianshu leverages a discrete event simulator to simulatethe DNN model’s execution. Evaluation on Azure clusters with 8x V100 GPUs shows that Tianshu achieves 93% average accuracy for sixwell-known DNN models. Tianshu’s operation estimator also achieves 96% average accuracy on 9 typical operations and outperformsexisting works.
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1. Introduction

Recently, Deep Neural Networks (DNNs) have achieved re-markable success in many machine learning tasks, includ-ing neural language processing, image recognition, objectdetection, auto-pilot, etc (Achiam et al., 2023; Devlin et al.,2019; He et al., 2016; Redmon et al., 2016). This success hasmade DNN more and more popular for academic researchand industrial applications. However, DNN models usu-ally have intensive computation overhead, which is notaffordable for traditional CPU-based machines. Therefore,the acceleration of DNN training has attracted more andmore researchers’ interest, including new computationhardware like GPU and TPU (Jouppi et al., 2017), commu-nication hardware like PCI-e and NVLink (Foley and Dan-skin, 2017), and training strategies like data parallel andpipeline parallel (Osawa et al., 2023).Though these efforts have provided us with a vast num-

ber of powerful tools, nowadays, users have another ques-tion: How can we choose the proper hardware and strategyto deploy the DNN model or build the machine learningcluster? More specifically, the question can be divided intotwo sides:
• Deciding the target hardware to buy or rent. Currenthardware providers like Nvidia produce many differ-ent GPUs with various computation capabilities andprices(e.g., T4, P100, V100, and A100). Besides the com-putation devices, there are also different communica-tion hardware (e.g., PCIe, CXL, and NVLink). Thesedifferent hardware offer different trade-offs betweenperformance and financial cost.• Deciding the training strategy formodels. DNN modelsize is undergoing a continuous scaling-up (e.g., BERT,DALL-E, GPT-3 and GPT-4 (Devlin et al., 2019; Ramesh
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et al., 2021; Achiam et al., 2023)). Therefore, paralleledtraining has become indispensable for DNN training.Researchers have proposed many strategies, such asdata parallelism, model parallelism, and pipeline paral-lelism (Shoeybi et al., 2019; Osawa et al., 2023). Choos-ing proper training strategies for these colossal modelsis also essential to improve the DNN model’s perfor-mance.
These questions are hard to answer because the bestchoice may not exist. Users need to evaluate whetherspending more budget on more powerful hardware canbring a worthwhile performance gain. However, the per-formance gain depends not only on the hardware but alsoon the specific model. According to our experiment, thetraining throughput of the light-weight LSTM model onthe V100 GPU is just the same as the P100 GPU, while forthe VGG16 model, the V100 GPU can promote the through-put by 30% over the P100 GPU. In this case, selectingthe most powerful GPU not always improves performancewhile introducing extra financial costs.An intuitive solution for this question is directly mea-suring the target DNN model’s performance on the realdevice. The major drawback of this approach is that usershave to get access to the target device and deploy theirmodel. Then, users also need to try different trainingstrategies. Even though the user can rent some devicesfrom cloud service providers like Azure or Amazon, thelong training process for large models will make suchrepetitive measuring with different devices and strategiesinefficient and expensive.Some related works (Geoffrey et al., 2021; Jia et al., 2019;Narayanan et al., 2019) propose that simulation can helpusers understand their model’s performance under dif-ferent training strategies without deploying them on thecluster. However, most of them still require users to mea-sure the DNN model on one target device. Therefore, theycannot help users decide which hardware to purchase orrent. Another common problem of existing solutions isthat they all rely on the built-in profiler of machine learn-ing frameworks (like TensorFlow) or the GPU profiler fromNvidia to do the measurement. However, our experimentshows that these measuring tools can produce over 50%of measuring errors for DNN models with tiny operationslike LSTM.This paper focuses on designing an accurate simulatorfor DNN models to answer the above two questions. Ourkey idea is that the measurement can be done ahead-of-time (AOT). The idea is based on two insights. First, mostDNN models are made up of common basic units, called

operations. Second, parameters that determine an oper-ation’s execution time can be acquired from the model’sdataflow graph without the target hardware. These in-sights imply that we can measure operations offline andstore the result (including operations parameters and exe-cution time) in a database for future usage and even sharethe database among the community. Therefore, users cansimulate their DNN model’s performance using existing

measuring data from other users.To achieve our goal, we still need to overcome two mainchallenges. The first is how to accurately measure theexecution time of tiny operations, which is the basis ofsimulation. The second is that the database cannot coverall possible operation parameters. How can we estimatethe operator’s execution time with unseen parameters?In this paper, we propose a novel DNN simulation frame-work named Tianshu (Tianshu means the star of the ce-lestial pivot, which is the Chinese name for the alpha starof the constellation of Ursa Major. It is used to guide thenorth direction in ancient China). Tianshu consists ofthree major components. The first module is an accurate
measuring tool. This tool measures a target operation bymeasuring the execution time of dataflow graphs with Nand M copies of operations and then calculating the timefor a single operation. The second module is an estima-
tor for the operation’s execution time. It leverages featureengineering to infer the operation’s theoretical time com-plexity and automatically trains a neural network modelto predict its execution time. The last module is a discrete
event simulator to simulate the training process of theDNN model.We implement Tianshu with the popular frameworkTensorFlow and evaluate it using six well-known DNNmodels on two servers with 8x V100 GPUs on the Azurecloud. The measuring tool of Tianshu achieves 95% aver-age accuracy with a maximum error of 8%, while tradi-tional measuring tools have a maximum error of 86%(Ten-sorFlow profiler) and 49%(Nvprof). The estimation modelof Tianshu achieves 96% average prediction accuracy on9 typical operations, and the feature engineering of theestimation model effectively reduces the prediction errorby 74%. Finally, we evaluate the simulation of end-to-endDNN training on 1, 2, 4, and 8 GPUs. Tianshu achieves 93%average accuracy for all six models and over 95% accuracyfor CNN models.To summarize, this paper makes the following contri-butions:
• We build a novel DNN model performance simulatorTianshu based on our key idea: ahead-of-time mea-surement. The experiment proves that Tianshu canachieve high simulation accuracy for different kinds ofDNN models.• We design a new operation measuring tool for Tensor-Flow, which reduces the measuring error for minor op-erations by 90% compared to existing tools.• We design an estimation model with an original featureengineering mechanism to predict the execution timeof operations with unseen parameters accurately.
2. Research Background

We start by introducing the background of this researchtopic and then develop our key idea.
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Figure 1. Dataflow graph example for part of the gradient calculation forone layer of AlexNet (Krizhevsky et al., 2012). MatMul calculates the gra-dients using output of two previous operations. The AllReduce operationsynchronizes gradients on all devices, and ApplyGradient applies the gra-dients to model weights.

2.1. Background and Related Work

Deep Neural Network(DNN) Models. At the high level,all machine learning systems follow a similar workflow:The user first provides a DNN model with different layers(e.g., convolution layer) to be trained, often using the sys-tem’s Python API (e.g., PyTorch, TensorFlow). The systemthen transforms the model into a dataflow graph (Zaccone,2016; Abadi et al., 2016) , where each node represents anoperation (e.g., Conv2D operation for 2-dimension convolu-tion, or AllReduce operation for synchronizing gradientsamong different GPUs), and each edge represents a depen-dency between two operations. According to this dataflow
graph with Figure 1 as an example, the operations are sentto devices such as GPU and network for execution.

A computation operation like Conv2D is eventually im-plemented by low-level libraries like cuDNN to one or morespecific functions (GPU kernels) for best performance. Theinformation of operations can be directly extracted fromthe dataflow graph. However, the GPU kernel’s informa-tion can only be recorded by specific runtime profilingtools, and it is tough to analyze which operation a GPUkernel belongs to. Therefore, most existing works are con-ducted at the operation level.
Existing works. ML system simulation has received lim-ited attention in the community until very recently. Habi-
tat (Geoffrey et al., 2021) only considers single operation’sperformance. It tries to train a DNN model for each opera-tion to predict its execution time on a specific GPU withthe measuring result on another type of GPU. The problemis that it requires a large amount of training data on alltarget devices because it needs to train N2 models for Nhardware types. Daydream (Zhu et al., 2020) focuses onmodeling various DNN optimizations with a set of graph-transformation primitives and estimating their effect. E.g.,the user can manually adjust the execution time of a spe-cific operation and see the change of the entire model’straining time. Besides, FlexFlow and PipeDream (Jia et al.,2019; Narayanan et al., 2019) incorporate a simulator as anauxiliary tool to compare different strategies. They firstmeasure the execution time for all operations in the modeland then leverage a simple event-driven simulator to pre-dict the model’s training time.

The key problem with existing works is that they relyon online measuring, which means they always conductthe measuring before the simulation. This online mea-suring is very expensive and does not scale. Users have topurchase or rent the hardware and build the platform first,which means considerable financial and time costs. Espe-cially for users who are looking to purchase cost-efficientGPUs for their purposes, they would ideally want to knowthe performance of their target DNN models before spend-ing money to buy GPUs. Then, whenever users want tomodify the model and the input size or even restart thesimulation with a different parameter, they need to repeatthe measuring.Another problem is the measuring tool itself. Currently,there are two main measuring approaches, both of whichhave drawbacks. The first one is the built-in profiler of themachine learning framework, e.g., the TensorFlow pro-filer. The problem with the TensorFlow profiler is thatit relies on intrusive probes to record execution informa-tion of operations. Consequently, it introduces overheadto the execution time and generates significant measure-ment errors for tiny operations. The second approach isthe hardware profiler like Nvidia’s Nsight or Nvprof, whichdirectly gathers information from GPUs. The drawbackof these profilers is that they only record the executiontime of GPU computation functions (GPU kernels) whileomitting the time used for task scheduling and data trans-mission. According to our experiment of measuring theLSTM model on a V100 GPU, the total execution time of alloperations measured by the TensorFlow profiler is 86%larger than the real execution time, and the Nvprof’s resultis 30% smaller than the real time.
2.2. Our Idea: Ahead-of-TimeMeasuring

After investigating many different DNN models, we foundtwo important observations and proposed our idea.
Observation 1: Common operations for different models.Though a DNN model may contain thousands of opera-tions, most of them are usually made up of a small set ofcommon operations. For example, different convolutionnetwork models will share similar convolution, fully con-nected, and pooling operations, though they have distinctinput shapes or parameters in different models. Thesecommon operations make up the majority of the model’scomputation workload and iteration time.
Observation 2: Available operation information. Even ifthe user does not have a GPU, the mainstream machinelearning framework like TensorFlow can still generate thedataflow graph of the DNN model. This dataflow graphcontains valuable information, including each operation’sinput data shape and parameters. This information de-fines an operation’s task, and two operations with thesame input data shape and parameters naturally have thesame execution time.
Key idea: Based on the two observations, we propose ouridea of conducting measurements ahead-of-time. We can
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measure different operations in various settings just onceand save the results in a database. Then, all future simu-lations can reuse data in the database without repetitivemeasuring. Another essential benefit of ahead-of-timemeasuring is that users can share data among the commu-nity. Leveraging other users’ measuring data allows usersto do simulations without accessing expensive GPUs andproprietary hardware platforms. Such new-generationsimulators can enable researchers to predict the perfor-mance of different hardware and training strategies, makeinformed decisions in optimizing their systems, and plantheir private clusters in advance.
Challenges: To realize our goal, we need to overcome twochallenges. First, how could we accurately measure thosesmall operations? Existing measuring methods still havehuge errors when handling them. Without accurate mea-suring, there will be no precise simulation. Second, thedatabase cannot cover all possible values of parameters.Therefore, we have to build a model to estimate the oper-ation’s execution time with uncovered parameters in thedatabase.
3. Design of Tianshu

After discussing our key idea and challenges, this sectionpresents Tianshu’s solution to them. We start by intro-ducing Tianshu’s measuring method in Sec 3.1, and thendiscuss how to model and estimate operation’s executiontime in Sec 3.2. Finally, we present the discrete event sim-ulation for the DNN model in Sec 3.3.
3.1. Accurate Measurement of Operations

The primary difficulty of measuring lies in small opera-tions. Directly measuring the operation will introduce neg-ligible error because of TensorFlow’s mechanism: Tensor-Flow’s execution is invoked by a Session with an assignedlist of target operations in the dataflow graph. The Ses-sion will execute all required operations and return resultsof the target operations. The launch of the Session has amillisecond-level overhead, which harms the accuracy ofdirect measurement, especially for small operations thatonly have a microsecond-level execution time. Further-more, users cannot add probes to record the execution ofoperations without directly modifying the source code ofTensorFlow, which will strongly bind the measuring toolto a specific version of TensorFlow.Tianshu’s solution leverages a common statistic ap-proach to eliminate such measuring errors. It first au-tomatically analyzes the target operation’s structure andbuilds two measurement dataflow graphs with N and Mcopies of the target operation, and adding some constanttensors with random values to serve as the input data(E.g., for Add, there are two input tensors). Figure 2 showsthe structure of measurement dataflow graphs. A notablething is that we add a dependency between the i-th and
(i+1)-th operations to ensure that all operations are exe-

figures/example_measure_graph.pdf

Figure 2. Example of how Tianshu construct measurement dataflow graphs.Green circles are constant input tensors and red circles are copies of targetoperations. Blue arrows are dataflow, while orange arrows with dashedlines are execution dependencies.

cuted sequentially without parallelism. Then, the execu-tion time of the whole dataflow graph should contain theconstant overhead of launching the session and the timeuse of N or M target operations. After we measured theexecution time of two graphs, we can infer the time use ofone target operation by:

Top = TM – TN
M – N (1)

This measuring method has two advantages: First, itdoes not need to modify the framework’s code and sup-ports all framework versions. Second, it eliminates sys-tematic errors and does not introduce any other errorsto the measuring or omit execution time. This accuratemeasuring tool will act as the foundation of Tianshu.
3.2. Modeling and Estimation of Operations

Since Tianshu’s database cannot cover all possible inputsand parameters, we need to build a model using existingmeasurement data to estimate the operation’s executiontime with inputs that are not recorded. However, manuallybuilding estimation models for each operation is impracti-cal due to the number of operations. E.g., TensorFlow 1.15contains over 1300 kinds of operations.
Tianshu considers this estimation task as a non-linear regression problem: Given a series of input pa-rameters of an operation (including the input tensors’shapes and other parameters), predict the executiontime. Tianshu adopts a neural network model Multilayer-Perceptrons(MLP), which has been used for a long time tohandle such problems (Rynkiewicz, 2012; Pal and Mitra,1992). However, the MLP model has its limitations. Fig-
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figures/example_NNfit.pdf

Figure 3. Example of how neural networks with ReLu activation approx-imates a non-linear function. A neuron generates a linear function in aright open interval [t1, ∞) (or a left open interval with negative weights).The neuron in the next layer takes two such inputs with different intervalterminals and generates a piece-wise linear function.

ure 3 shows how MLP fits non-linear functions by a piece-wise linear fitting approach. For complex non-linear tar-get functions, MLP models need to split the definitiondomain into lots of segments, which requires numerousneurons, model parameters, and exponential growth oftraining data.Tianshu’s idea for this challenge is that the theoreticaltime complexity could facilitate MLP models in learningthe non-linear target function. In Sec 3.2.1, we first inves-tigate the relationship between features and the executiontime. Then, Tianshu exploits this relationship throughfeature engineering, which generates a new feature called
principal Component (PC) that represents the theoreticaltime complexity in Sec 3.2.2. Finally, Tianshu leveragesan automatic training mechanism to search for the propermodel structure and train the MLP model in Sec 3.2.3.
3.2.1. Investigation of Parameters and Theoretical Time

ComplexityAs a specific algorithm, every operation has its theoreticaltime complexity, which is a function of input parameters.For example, the matrix multiply operation’s time com-plexity is n ∗ m ∗ k, while the 2-dimension convolutionoperation Conv2D’s time complexity is:

TConv2D = n ∗ h ∗ w ∗ c ∗ filterx ∗ filtery
strideh ∗ stridew

(2)
The n, h, w, c are the shape of input data, filterx,y is thesize of the convolution kernel, and strideh,w are the steplength of the sliding window. With the precise guidanceof theoretical time complexity, MLP models can learn topredict the operation’s execution time more effectively.Due to the large number of different kinds of opera-tions, it is impractical to analyze their theoretical timecomplexity manually. In order to explore an automatic ap-

figures/op_matmul_m_profiling_result.pdf

Figure 4. Impact of matrix a’s row dimension m to the execution time of
MatMul. The n and m (row/column dimension of matrix a/b) are fixed at2048.

proach to finding the theoretical time complexity, we firstinvestigate the relationship between parameters and theexecution time of hundreds of kinds of operations in sixwell-known models (see Table 1 in Sec 4.1), and classifythese relationships into four distinct types:
• Linear: The execution time changes linearly with theparameter. For example, Figure 4 depicts the change ofexecution time with the row dimension k of the matrixmultiply operation.• Inversely-proportional: The execution time is inversely-proportional to the parameter. Figure 5 presents how

strides_h alters the execution time.• Null: The parameter has no impact on the executiontime, like the value parameter of Const operation (as-signs the value of a constant tensor).• Mode selection: The parameter’s different value willtotally changes the implementation of the operation,like the data_type. Different data types (integer or realnumber) will lead to different GPU functions.
This finding greatly reduces the number of possiblefunction structures of theoretical time complexity. Basedon this finding, we design an automatic feature engineer-ing mechanism for Tianshu to construct the principal com-ponent using information of parameters.

3.2.2. Feature Engineering
Though the investigation in Sec 3.2.1 has greatly reducedthe number of possible time complexity function’s forma-tion, there are still 4N possible functions for an operationwith N parameters. Tianshu conducts the feature engi-neering by first pruning the number of possible functionstructures according to some empirical rules. Then, it au-tomatically tries all possible functions and selects the bestfunction to build the principal component. Fig 6 shows
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figures/op_conv2d_strides_h_profiling_result.pdf

Figure 5. Impact of parameter strides_h to the execution time of Conv2D.The input shape is [64, 512, 512, 3] and the filter size is. [3, 3, 32].

figures/example_pc.pdf

Figure 6. Overview of Tianshu’s operation estimation model. It first gener-ate the principal component (PC) as an extra input feature, and then feedit into the estimation model.

how the principal component acts as an extra input to helptrain the prediction model.
Step 1: Pruning. In the first step, Tianshu reduces thenumber of possible time complexity functions using thefollowing rules, which are summarized from the investi-gation:
• If a parameter only has no more than 5 possible values,we regard it as a mode selection parameter.• If a parameter is a character string, it can only be a nullor mode selection parameter.• If a parameter is a dimension of the input tensors’ shape,it can only be a linear or null parameter.

The pruning step greatly reduces the number of possi-ble time complexity functions. For example, the matrixmultiply operation has 5 parameters: 4 are the shape oftwo input matrices, and the other is the data type. With-

out pruning, Tianshu needs to examine 45 = 1024 possibletime complexity functions. After pruning, the data type isdetermined as a mode selection parameter, and the inputtensor shape parameter can only be linear or null param-eter. Consequently, there are only 24 = 16 possible timecomplexity functions for the second step to examine.
Step 2: Automatic searching of principal component. Inthis step, Tianshu examines all possible time complexityfunctions individually. Each time, Tianshu picks one func-tion and calculates the principal component with it. Then,Tianshu adds the function value as an extra input parame-ter to a default MLP model with 6 fully connected layers,and each layer contains 6 neurons (like Figure 6 shows).Tianshu trains the model with default hyper-parametersettings and records the final prediction accuracy. Thecandidate function that yields the best accuracy is selectedas the principal component of the model.
3.2.3. Building andTraining of EstimationModelAfter the principal component is determined for the tar-get operation, Tianshu builds and trains the predictionmodel in two steps. It first searches for the best modelarchitecture and then conducts the fine-tune training.
Step 1: Architecture searching. Tianshu leverages theAutoML techniques to search the model architecture in agiven range automatically. We set the range of the numberof layers to [3,20], and the number of neurons per layer to[3,40]. Tianshu will train all these models using the samedefault hyper-parameters. Then, the top-5 models withthe highest prediction accuracy on the test set will be keptin the fine-tune training step.
Step 2: Fine-tune training. In this stage, Tianshu trainsall models with different hyper-parameters, including thelearning rate, batch size and different initialization values.Eventually, Tianshu selects the best model as the finalestimation model.For each value of the mode selection parameters, Tian-shu trains an independent estimation model. These mod-els use the same principal component since they serve thesame operation algorithm. However, they require indepen-dent architecture searching and deep training proceduresto capture different implementations of different modes(like different GPU functions for different data types).Tianshu’s estimation model training technique hasthree main advantages: 1) The entire process are auto-matically performed offline without human’s interaction.2) Users can share trained models like the database amongthe community, and other users can directly use themwithout training. 3) The fine-tune training phase canbe repeated to keep improving the model whenever thedatabase collects more data.
3.3. Discrete Event Simulation of DNNModels

After all computation operations’ execution time is mea-sured or estimated, Tianshu leverages a discrete eventsimulator to simulate the DNN model’s execution. Tian-
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figures/design_event_simulator.pdf

Figure 7. Discrete event simulator of Tianshu. Green circles are virtualcomputation operations generated for the purple AllReduce operation tosimulate its interaction with computation tasks.

figures/example_des.pdf

Figure 8. An example of the discrete event simulator’s workflow in dis-patching operations. Blue circles mean finished operations. Green circlesmean ready-to-launch operations. Red circles means waiting operations

shu regards each operation as an independent event thatlasts for a certain time. Then, it models every computationdevice (like GPU) as an independent event executive, exe-cuting all events in a First-In-First-Out manner. For thecommunication, Tianshu abstracts the entire network as asingle independent device and estimates the communica-tion operation’s execution time based on the transmissiondata size and the pre-defined network bandwidth.
Figure 7 shows how the simulator works.The input ofthe simulator is the dataflow graph of the model. Tianshufirst analyzes the dataflow graph to acquire all operations’target hardware and the dependencies between them. Ateach iteration, it first finds all operations that their prereq-uisite operations have been finished. Then, it dispatchesthese operations to their target hardware. When an op-eration is finished on the hardware, the hardware willnotify the simulator to update the dependent status andcheck whether some new operations can be executed. The

Model BS Input shape Num of Op Avg Op time(us)VGG16 64 [224,224,3] 255 1013.53Resnet50 32 [224,224,3] 1052 102.98Inception3 32 [224,224,3] 1589 89.50LSTM 16 [256] 62190 5.87Seq2seq 16 [128] 30413 5.74BERT-base 32 [32,7,30522] 6617 8.33
Table 1. Information of test DNN models. The input data is random floattensors with given batch sizes and shapes. The average operation time ismeasured by Tianshu on single V100 GPU.

simulator repeats these two steps until all operations arefinished. Figure 8 gives out an example of how does the dis-crete event simulator dispatches all operations in a neuralnetwork step-by-step.A notable thing is that existing works usually assumethat the communication and computation operations onthe same GPU will not interact with each other. However,we found that the widely used AllReduce operation, whichsynchronizes all parameters’ update value among GPUs,not only transmits data but also contains some computa-tion tasks. According to Nvidia’s document, the AllReduceoperation will occupy 16 Streaming-Multiprocessors(SM)of the GPU in default, which will slow-down other compu-tation tasks. This effect has been proofed in a recent workHwang et al. (2023). For example, a Tesla V100 GPU has80 SMs, the AllReduce operation will occupy 16/80 = 20%of computation resources. Tianshu simulates this mecha-nism by adding N virtual computation operation for each
AllReduce operation (green circles in Figure 7. The exe-cution time of these virtual operations is the same as theresource occupy proportion. In the above example, theirexecution time is 20% of the AllReduce’s execution time.
4. Evaluation Result and Discussion

In this section, we first evaluate the accuracy of Tianshu’smeasuring tool in Sec 4.2. Then, we evaluate the accuracyof the operation estimation model in Sec 4.3. Finally, weevaluate the discrete event simulator for full DNN modelsin Sec 4.4.
4.1. Experiment settings

Hardware.All experiments are conducted on two V100 serversbased on Azure cloud virtual machines. Each server has 4xV100 GPU connected by PCIe gen 3 link. And these serversare connected by a 40Gbps Infiniband network.
Runtime environment. All experiments are executed inDocker containers. The Docker images uses Ubuntu 18.04LTS, CUDA 10.0, cuDNN 7.6.5 and TensorFlow 1.15.
Test DNN models. We evaluate Tianshu using 6 well-known DNN models, including 3 CNN models: VGG16,Resnet50 and Inception3; 2 RNN models: LSTM andSeq2seq; and a transformer model: BERT-base. The in-put shapes and average execution time of operations areshown in Table 1. Notably, these models have different
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Model Real(ms) Tianshu TF-Profiler NvprofVGG16 265.64 258.45 265.49 265.38Resnet50 109.34 106.09 114.89 104.85Inception3 142.22 136.33 151.10 134.63LSTM 365.16 378.55 681.47 256.41Seq2seq 174.71 188.85 310.68 88.55BERT-base 55.10 56.52 88.76 50.17

Table 2. The sum of all operations’ measuring result of six DNN modelson the single V100 GPU. The result of Nvprof method is the sum all GPUkernel’s execution time gathered by the Nvprof.

figures/result_measuring.pdf

Figure 9.Measuring result of all operations on the single V100 GPU. Themeasuring result is normalized to the real model’s iteration time to presentthe measuring accuracy more clearly.

kinds of operations. CNN models contain heavy convolu-tion operations, and the average execution time of theiroperations is much longer than that of other models. RNNmodels have many more operations, but their average op-eration time is very short, making it hard to measure. TheBERT-base model is at the medium, with a higher averageoperation time than RNN models.
To prevent the interference of I/O devices, we replacethe data loading part with random tensors with the samedata type and shape as the original input data.

4.2. Accuracy of TheMeasuring Tool

The measuring result of operations is the foundation ofsimulation. In this experiment, we compare Tianshu’smeasuring tool to two commonly used tools: TensorFlow’sbuilt-in profiler and the Nvprof, a GPU profiler providedby Nvidia. We use the single GPU training iteration timeas the ground truth. In the single GPU scenario, all op-erations are executed in sequence, and the iteration timeis the same as the sum of all operations’ execution time.Table 2 shows the evaluation result. For Tianshu and Ten-sorFlow profiler, the result is the sum of all operations’

execution time. For the Nvprof, the result is the sum of allGPU kernels’ execution time. To help readers understandthe measuring accuracy, Figure 9 shows the normalizedresult to the real model’s iteration time.For CNN models, all tools’ results are very close to thereal iteration time, with a lower than 5% error. However,for RNN models that consist of minor operations, the twoexisting tools show huge errors. The tensorFlow profiler’smeasuring result could be 86.6% larger than the real valueof the LSTM model because it introduces overhead to oper-ations’ execution. The Nvprof’s result is also 49.3% smallerthan the real value of the Seq2seq model. The reason ofNvprof’s error is that it only considers the GPU kernels’ ex-ecution time, not including the time to launch and schedul-ing GPU kernels. Notably, in the Nvprof’s log of Seq2seqmodel, the time gap between the last and first kernel is607ms, which is much larger than the real iteration time.This means Nvprof also introduces huge overheads be-tween kernels’ execution. Therefore, it is not applicableto use the time gap between adjacent kernels to representthe time use of scheduling and launching the kernel.In conclusion, this experiment proves that Tianshu’smeasuring tool can produce accurate results for differenttypes of models. Especially for models that consist of tinyoperations, Tianshu’s measuring tool does not introduceany measuring error and is far more precise than existingtools like TensorFlow’s profiler and Nvprof.
4.3. Accuracy of operation estimationmodel

To evaluate Tianshu’s operation estimation models, weselect 9 most common ops as the target operation of theprediction. Including basic arithmetic operations, activa-tion layer, matrix multiplication, and convolution opera-tions. For each operation, we prepared a dataset of 11,000samples with random input shape and parameters. Eachdimension of the input tensor’s shape is randomly gener-ated within in the range of [1, 1024], and the value of otherparameters are gathered from test models. 90% of dataare used as the training set, and 10% of data are used as thetesting set. All data is collected by Tianshu’s measuringtool on a V100 GPU.To evaluate the effect of Tianshu’s principal component,we also train the estimation model with the same structurebut without the principal component. Table 3 shows theprediction accuracy for all operations. On average, Tian-shu’s estimation model achieves 4.11% average predictionerror for all these operations. However, the estimationmodel without the principal component has a 16.03% aver-age error, which is three times higher than Tianshu. Thisresult proves the effectiveness of our idea to introduce theprincipal component.The value of principal component varies among differ-ent types of operations. For simple operations like basicarithmetic and activation, Tianshu achieves over 98% ac-curacy, while the no-PC model can also achieves a 95%accuracy. These operations’ algorithm is quite simple so
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Operation Best Model Error No-PC ErrorAdd L3N3 0.57% 11.05%Sub L5N6 1.47% 3.74%Mul L6N6 1.49% 4.48%Realdiv L4N3 0.66% 4.68%Matmul L5N7 2.92% 9.85%Relu L5N7 0.29% 4.52%Conv2D L8N12 8.94% 30.58%Conv2DBPInput L8N12 8.33% 32.31%Conv2DBPFilter L8N12 12.35% 43.07%Average - 4.11% 16.03%
Table 3. Average operation execution time estimation errors on V100datasets. The value LxNy of the best model means the best prediction modelcontains x layers and y neurons for each layer.The column “No-PC Error”is the error of the model that is trained without the principal component.The full name of “Conv2DBPInput” operation is “Conv2DBackpropInput”,same dose the “Conv2DBPFilter”.

Model 1 GPU 2 GPUs 4 GPUs 8 GPUsVGG16 2.47% 6.84% 1.61% 0.67%Resnet50 4.58% 1.99% 10.04% 10.88%Inception3 5.58% 1.18% 5.71% 5.84%LSTM 1.47% 4.55% 11.13% 19.33%Seq2seq 1.23% 1.26% 12.51% 17.43%BERT-base 4.67% 7.70% 21.97% 17.23%
Table 4. Simulation error of Tianshu’s discrete event simulator for differentDNN models with different training GPUs.

simple MLP models are enough to predict their executiontime. For complex operations like Conv2D and its back-propagation operations, the principal component bringshuge improvement to the estimation accuracy. Withoutthe principal component, the estimation accuracy can onlyachieve 60-70%. This result proves that Tianshu’s prin-cipal components greatly helps the MLP model to predictcomplex operations’ execution time.As a reference, Habitat (Geoffrey et al., 2021) builds adataset that contains over 600,000 samples for each oper-ation, and uses MLP models with 8192 neurons to predictthe operation’s execution time on the specific target hard-ware using the operation’s information and its measuredexecution time on another existing hardware. It achievesan 18% average prediction error on similar operations ofthe PyTorch framework. Tianshu achieves higher averageaccuracy with much less training data and model parame-ters. The reason is that Tianshu’s feature engineering suc-cessfully captures helpful information about operations.
4.4. End-to-end Simulation for DNNModels

To evaluate Tianshu’s discrete event simulator, we mea-sure the end-to-end training time and the simulated timefor all six DNN models on the cluster. In this experi-ment, we adopt the default data-parallel strategy usingthe Horovod library for multi-GPU training. Figure 10 andFigre 11 show the simulation result with different numberof GPUs. Table 4 shows the detailed simulation error. Fromthe result we can draw two major conclusions:First, Tianshu makes accurate end-to-end predictionsfor both single GPU and distributed training. The aver-

figures/sim_cnn_v100.pdf

Figure 10. The simulation result of CNN models.The label of x-axis meansthe number of GPUs.

age simulation accuracy for all models on the V100 clusterachieves 92.89%. For CNN models, the accuracy is evenover 95%. This high accuracy comes from two reasons:Accurate performance measuring and estimation and thereasonable design of the simulator. If we do not considerthe interaction of computation and communication opera-tions, the simulation result will downgrade over 20% forCNN models with 8 GPUs.Second, Tianshu achieves high accuracy for modelswith different architectures, including CNN, RNN, andtransformers. CNN models consist of huge convolutionlayers and are computationally intensive. RNN models arebuilt up with tens of thousands of minor operations, mak-ing them hard to profile accurately. Transformer modelBERT-base is a communication-intensive model whosecommunication time (over 120ms) is far longer than itscomputation time.This experiment also reveals some remaining problems.RNN models’ training time grows rapidly with the numberof GPUs. However, Tianshu’s simulator does not capturethis trend. These models contain relatively small commu-nication data sizes, which should be overlapped by othercomputation operations. However, these communicationoperations cause considerable training time growth in themulti-GPU scenarios. This result points out that the sim-ulation for communication still has much space to exploreand improve, which will be critical to designing a moreaccurate simulator.
5. Conclusion

In this paper, we propose Tianshu, an accurate simulationframework for DNN models. Tianshu includes an accurateoperation measuring tool, an operation estimation model
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figures/sim_rnn_v100.pdf

Figure 11. The simulation result of RNN and Transformer models.The labelof x-axis means the number of GPUs.

to estimate the operation’s execution time with unseenparameters, and a discrete event simulator to simulate theentire model’s training. We evaluate Tianshu using sixwell-known DNN models with 8x V100 GPUs on the Azurecloud. Tianshu’s measuring tool achieves over 95% aver-age accuracy with a maximum error of 8%, which reducesthe measuring error by up to 90% compared to existingtools. The estimation model achieves 96% avearge predic-tion accuracy on 9 typical operations. Finally, the discreteevent simulator achieves a 93% accuracy on average acrossdifferent types of DNN models and operations. This resultproves the effectiveness of Tianshu’s design. The resultalso reveals that the communication of distributed DNNtraining is not as simple as we think. In the future, wewill explore deeper into the communication mechanismof multi-GPU training and propose a better simulationdesign and further provide some valuable optimizationsuggestions to the machine learning system.
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