
36th EuropeanModeling& Simulation Symposium, 00521st International Multidisciplinary Modeling & Simulation Multiconference
2724-0029 © 2024 The Authors.doi: 10.46354/i3m.2024.emss.005

© 2024 The Authors. This article is an open access article distributed under the terms and conditions of the CreativeCommons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Comparison of ECDSA Signature Verification
Implementations on Bare-Metal Embedded Systems
Philipp Holzer1,*, Franz Leopold Wiesinger2 and Michael Bogner2
1Photeon Technologies GmbH, Hintere Achmuehlerstrasse 1, Dornbirn, 6850, Austria2University of Applied Sciences Upper Austria - Department of Embedded Systems Engineering, Softwarepark 11,Hagenberg, 4232, Austria
*Corresponding author. Email address: philipp.holzer@photeon.com

Abstract
The elliptic curve digital signature algorithm (ECDSA) is a cryptographic scheme used to generate digital signatures and to verify them.In the course of this research, two software libraries got implemented that perform an ECDSA signature verification. Those twoimplementations of the ECDSA signature verification are discussed and compared regarding their performance. Both implementationstarget a single core RISC-V CPU in a minimal simulated test environment. The first implementation is done purely in software, whilethe second implementation is done using a coprocessor to accelerate execution. To access this coprocessor, the RISC-V GNU Toolchaingot extended with custom instructions during this research. This is done by reason of the ECDSA and its requirement for especiallylarge numbers (e.g. 283 bit integers). Handling those numbers in software requires a relatively high amount of execution time,especially on single core systems with low clock frequency. For those systems, the coprocessor library is very well suited for mostscenarios. If the systems clock frequency is respectively high, then the pure software implementation might fit one’s requirements aswell without the need for additional hardware. Furthermore, if the number of signature verifications is very low (e.g. just once atapplication startup), then the coprocessor would require chip area that is mostly unused during runtime.
Keywords: Cryptographics, ECDSA, RISC-V, Coprocessor, Performance Evaluation

1. Introduction

In today’s manufacturing facilities, as many productionsteps as possible are automated in order to minimize down-time of machines and maximize the output. This kind ofautomation requires a lot of communication between dif-ferent kinds of machines or production robots, as well asmonitoring and controlling of the whole production pro-cess, and maintaining the machines. Despite all the ad-vantages that Industry 4.0 brings, it also comes with therisks of cyber security breaches. Every interface to the sys-tem forms a potential attack vector that may be exploitedby an attacker. For example, a maintenance interface of amachine that communicates over some wireless protocol

(e.g. Bluetooth or WiFi) with a mobile device, like a tabletor smart phone, could form an attack vector. Normally,the maintenance interface is used to track some diagnos-tic data, configure some parameters for controlling theproduction process, or maybe even to perform a softwareupdate. However, if no proper security mechanisms areimplemented, an attacker that gained access to the facility,e.g. by joining a guided tour, could use a mobile device toestablish a connection to a production machine and accessthe maintenance interface. The attacker would then beable to obtain some production data or even bring that ma-chine to halt, by changing some configuration parameters,or upload a new software image, and thereby disrupt theproduction process.

1

https://creativecommons.org/licenses/by-nc-nd/4.0/.


2 | 36th EuropeanModeling& Simulation Symposium, 005, EMSS 2024

A solution for the described scenario would be to re-strict access for any unknown device to the maintenanceinterface. This could be done by using public key cryp-tography to authenticate the mobile device, before grant-ing access to the the maintenance interface. The "Ellip-tic Curve Digital Signature Algorithm" (in short ECDSA)would be an option to implement this restriction. In thedescribed scenario, the mobile device would be asked tosign a random message, and send the signature to theproduction machine. The production machine is able toverify the signature. If the signature is valid, then accessto the maintenance interface is granted, otherwise furthercommunication with the mobile device is refused by theproduction machine. Therefore, only known mobile de-vices that are dedicated to controlling and maintaining theproduction machines, are able to access the maintenanceinterface.
This article’s focus is set on the implementation of thesignature verification according to the ECDSA scheme forembedded systems. The ECDSA signature verification al-gorithm got implemented two times. The first implemen-tation is done purely in software, the second implementa-tion is using a coprocessor, to accelerate the execution ofthe ECDSA signature verification. The reason for those twoimplementations, is the complexity of the ECDSA signa-ture verification algorithm. Since the ECDSA verificationrequires arithmetic operations with relatively large inte-gers (up to 283 bits, details follow in Chapter 2), the puresoftware implementation is expected to need relativelymuch execution time on small embedded devices with lowclock frequency. On bigger platforms, like for examplesystems running Embedded Linux or industrial PCs, thecoprocessor might not be needed. Both implementationsare discussed and compared in this article. The copro-cessor has been implemented and integrated in a 32-bitRISC-V CPU by (Jahn, 2023).
In this article the necessary basics to understand theECDSA as well as the aim of this research are introducedin the section "State of the art". Afterwards the "Materi-als and Methods" section follows, which handles the de-tails of the target platform, the implementation of the twoECDSA software libraries and how the performance mea-surements have been recorded. Those performance meas-ruements are then discussed in the next section called"Results and Discussion". At the end the main findingsare summarized and a prospect for future work is given in"Conclusions".

2. State of the art

In 1976, public key cryptography has been introduced byWhitfield Diffie and Martin Hellman. The idea, behindpublic key cryptosystems, is that each participating partygenerates a pair of keys. Those keys are called "public key"or "enciphering key" and "private key" or "decipheringkey". As the names already suggest, the private key mustnot be known to any other party, while the public key can

Alice

Private
Key Alice

encryption

decryption

Bob

Private
Key Bob

encryption

decryption

Insecure
Channel

Public
Key Alice

Public
Key Bob

Figure 1. Secure communication using public key cryptography(Mühlberghuber, 2011).

be accessed by anyone. All participating parties use thesame set of functions to transform plain text into ciphertext (encrypt or encipher) and the other way around (de-crypt or decipher) (Diffie and Hellman, 1976).Figure 1 shows how a communication with a public keycryptosystems works. In this particular case there are twocommunicating parties called Alice and Bob. If Alice wantsto send a message to Bob over an insecure channel, then Al-ice uses Bob’s public key to encrypt her message and sendsit to Bob. Bob is then able to decrypt that message, sincehe knows the corresponding private key. Any other eaves-dropper on the insecure channel can not decrypt the en-crypted message Alice sent to Bob (Mühlberghuber, 2011).
2.1. Digital signatures

The described scenario used public key cryptosystems toexchange data over an insecure channel. However, publickey cryptosystems can also be used to generate digitalsignatures. According to (Johnson et al., 2001), a digitalsignature is a number that depends on some secret knownonly to the signer, and on contents of a message that isgetting signed. This secret is the private key of an entityin the public key crypto system (Johnson et al., 2001). Forexample, Alice wants to be sure that she is communicatingwith Bob. In this case Alice would send a random message
m to Bob and ask Bob to sign it. Bob then calculates thesignature that is depending onm and his private key, usinghis encryption function. The result is Bobs signature of themessagem. The signature is sent back to Alice, who then isusing Bob’s public key to "decrypt" the received signature.If the result of the decryption is then equal to the originalmessagem, Alice can be sure that the received signaturewas sent by Bob, since only Bob knows the correspondingprivate key, to his public key (Diffie and Hellman, 1976).
2.2. Elliptic curve digital signature algorithm

The elliptic curve digital signature algorithm (in shortECDSA) is a cryptographic scheme that uses public keycryptography in order to generate and verify digital sig-



Holzer et al. | 3

natures. The ECDSA is a variant of the so-called "DigitalSignature Algorithm" (in short DSA). Both schemes canbe used for digital signature generation and verification,however it is way harder to calculate a private key froma public key for an ECDSA key pair than a DSA key pair.Therefore, ECDSA key pairs can achieve the same crypto-graphic security as DSA key pairs with a smaller bit length.This results in smaller elliptic curve parameters, fastercomputations and less memory usage compared to theDSA (Johnson et al., 2001).
2.2.1. Finite fieldsFinite fields or Galois fields form the base of every ECDSAimplementation. Each elliptic curve that is used to imple-ment an elliptic curve cryptography (in short ECC), has anunderlying finite field. This means that the coordinatesof points on those elliptic curves are elements of the un-derlying finite field. Finite fields consist of a finite set ofelements. Furthermore, every field element is invertible,and two operations are defined on finite fields, the addi-tion and the multiplication of field elements. The result ofthose operations is always another element of the field. Let
Fq be a finite field with q = pm, where p is prime numberandm ∈ N. In this case p is called the characteristic of Fqandm is called the "extension degree" ofFq (Johnson et al.,2001).There are two large groups of finite fields commonlyused in modern cryptography, the so-called "prime fields"
Fq or GF(q) where the order of the field is an odd prime(q = p) and the "binary fields" F2m or GF(2m), where theorder is a power of two (q = 2m) (Johnson et al., 2001).According to (Wenger and Hutter, 2012), hardware ECCimplementations based on binary fields have better run-time and energy performance, than those based on primefields.For this article the most important difference betweenbinary and prime fields, is the representation of field el-ements. In prime fields the elements simply are naturalnumbers from zero to (q–1). In binary fields there are mul-tiple ways to represent field elements. For this article the"polynomial basis representation" is of interest. In thisrepresentation, the field elements represent polynomialsof the form

f(x) = m–1∑
i=0
cixi (1)

where c0, c1, ..., cm–1 ∈ F2. Since the coefficients of thepolynomial can only be zero or one, a polynomial can berepresented as bit string of the widthm. The position ofthe bit in the bit string represents the order of the corre-sponding x (Johnson et al., 2001).
2.2.2. Elliptic curve parametersFor the ECDSA to work, some specific domain parame-ters have to be defined. Those parameters depend on the

Table 1. Parameters and their meaning of the elliptic curve B-283 accordingto (Chen et al., 2023).
Parameter name Description
m Bit length of field elements
a Elliptic curve equation coefficient
b Elliptic curve equation coefficient
G(x, y) Base point
n Order of the base point

concrete elliptic curve that has been chosen for the imple-mentation of the ECDSA application (Johnson et al., 2001).The elliptic curve used for this ECDSA implementation,is the so-called "Curve B-283" that got defined by (Chenet al., 2023). Curve B-283 is defined by the equation
y2 + xy = x3 + ax2 + b (2)

and the domain parameters described in Table 1. The un-derlying finite field is a binary field.The bit lengthm of the field elements for Curve B-283equals 283. The coefficient a of the curve equation equalsone and the coefficient b is a non-zero element of GF(2m)(Chen et al., 2023). The base point G(x, y) is required todefine the relationship between a public and private key.The relation between the public key Q, which is a point onthe elliptic curve, and the private key k, which is a naturalnumber is
Q = G ∗ k (3)

where the ∗-operator represents a multiplication of a pointon the elliptic curve with a natural number (Johnson et al.,2001). According to (Liu et al., 2021) the security of theECC relies on the elliptic curve discrete logarithm problem(in short ECDLP). This means it is easy to calculate thepublic key Q if one knows the base point G and the privatekey k, but it is very hard to calculate the private key k if oneknows the public key Q and the base point G. As soon asone would be able to calculate the private key k, an attackercould fake digital signatures using that private key.
2.2.3. ECDSA signature generationThe procedure to generate a digital signature accordingto the ECDSA scheme is shown in Algorithm 1. First ahash (e.g. SHA-256) has to be calculated over the randommessagem. If the result of the hash function has a greaterbit length, than the finite field elements, then only the
i-leftmost bits are needed for the rest of the algorithm.Next a random integer has to be chosen between one and
n – 1, where n is the order of the base point. Then theprivate key k is multiplied with the base point G. Finallythe integers r and s that form the digital signature arecalculated (Johnson et al., 2001).
2.2.4. ECDSA signature verificationThe procedure to verify a digital signature according tothe ECDSA scheme is shown in Algorithm 2. Again a hash



4 | 36th EuropeanModeling& Simulation Symposium, 005, EMSS 2024

Algorithm 1 ECDSA signature generation (Johnson et al.,2001).
Require: Messagem
Ensure: Digital signature (r, s) ofm
e = HASH(m)Define li as the i-leftmost bits of e.Choose t ∈ [1,n– 1] at random.(x1, y2) = k ∗ G
r = x1 mod n
s = t–1(li + rk)
return (r, s)

Algorithm 2 ECDSA signature verification (Johnson et al.,2001).
Require: Digital Signature (r, s), Messagem
Ensure: valid
e = HASH(m)Define li as the i-leftmost bits of e.
u1 = lis–1
u2 = rs–1
(x1, y1) = u1 ∗ G + u2 ∗ Q
rverify = x1 mod n
return rverify == r

has to be calculated over the messagem. It is crucial thatthe hash function is the same function that has been usedto create the signature. Next the integers u1 and u2 getcalculated, which depend on the input signature. The basepoint gets multiplied with u1 and the public key Q getsmultiplied with u2. The results of those multiplicationsare then added to form the point (x1, y1), which is again apoint on the elliptic curve. Only if x1 mod n, where n is theorder of the base point is equal to r, then the signature isvalid (Johnson et al., 2001).
2.3. Aim of this research

An ECDSA signature generation has been implementedin hardware by (Pittner, 2022). The implemented ellipticcurve cryptography used for this implementation relies onthe Curve B-283 defined by (Chen et al., 2023). Further-more, a coprocessor that is used to accelerate the ECDSAsignature verification has been implemented and inte-grated in a RISC-V CPU by (Jahn, 2023).During this research, two software libraries have beenimplemented. Both libraries provide an implementationof the ECDSA signature verification. The first implemen-tation is done purely in software, while the second imple-mentation utilizes the previously mentioned coprocessor.Since the coprocessor is directly integrated into the RISC-VCPU and not connected like a peripheral (for further de-tails see (Jahn, 2023)), custom assembler instructions arenecessary to access the coprocessor. Therefor, the RISC-V GNU Toolchain got extended with custom instructionsthat provide the functionality to access the coprocessor in

the course of this research.Of course, the coprocessor implementation is expectedto be faster than the pure software implementation. How-ever, the coprocessor requires additional chip area (for de-tails see (Jahn, 2023)). To spend this additional chip areafor the coprocessor might not be necessary, if the ECDSAsignature verification in software is done in a reasonableamount of time. On small single core embedded systemswith bare-metal applications, the execution speed heavilydepends on the systems clock frequency. The aim of thisresearch is to determine, in which scenarios the use ofthe coprocessor or respectively the pure software libraryfor the ECDSA signature verification is more beneficial onthose small single core systems.
3. Materials and Methods

Both implementations of the ECDSA signature verificationhave been run on the same simulated target platform. Theexecution of the performance measurements was done in acycle accurate simulation. For performance measuring theneeded cycles for the whole ECDSA signature verificationhave been recorded.
3.1. Target platform

The target RISC-V CPU is the so-called "Ibex RISC-V Core"that got developed by (lowRISC, 2023). The Ibex core hasa number of optional hardware features that improve per-formance. All of them have been deactivated, except forthe hardware support for multiplications and divisions,and the instruction prefetch buffer. Additionally the co-processor for the ECDSA signature verification has beenintegrated into the Ibex core by (Jahn, 2023). This modi-fied Ibex core is integrated in a small simulation environ-ment (the so-called "Ibex Simple System"), consisting ofa memory for instructions and data, a peripheral for writ-ing ASCII output into a log file and a timer peripheral. Fordetails about the Ibex Simple System see (lowRISC, 2022).
3.2. Pure software library

The pure software library consists of three layers. The firstlayer implements the finite field arithmetic for the fieldelements of the elliptic curve’s binary field. This meansthis layer provides the necessary arithmetic operations for283 bit wide bitstrings that represent polynomials. Fur-thermore all required arithmetic operations for the regular283 bit wide integers (e.g. r, s, u1, u2, see Algorithm 2) areimplemented in this layer as well. The second layer is ontop of the finite field arithmetic layer and provides twofunctions, one to multiply a scalar value with a point onthe elliptic curve (e.g. u1 ∗ G) and a function to add twopoints on the elliptic curve (e.g. u1 ∗ G + u2 ∗ Q, see Algo-rithm 2). The third layer implements the whole ECDSAsignature verification using the other layers.Another approach would have been to use open-source



Holzer et al. | 5

libraries like "Mbed TLS" or "libecc" for comparison in-stead of implementing an own library. However, this ap-proach was not chosen, since those libraries only supportelliptic curves with an underlying prime field. This meansthe low level arithmetic in the software would have beendifferent, compared to the one implemented in the copro-cessor, since the field elements of the prime fields are notrepresented as polynomials.
3.3. Coprocessor library

The memory map of the coprocessor is shown in Table 3.The coprocessor library only has to initialize the copro-cessor and retrieve the result from it. The whole ECDSAsignature verification is implemented in the coprocessor,except for the hash calculation. The hash calculation isdone in parallel by the coprocessor library to save chiparea. According to (Jahn, 2023), the coprocessor performsthe multiplication u2 ∗ Q before the multiplication u1 ∗ Gand the calculation of u1 (see Algorithm 2). The result ofthe hash calculation is only needed to calculate u1, whichmeans while the coprocessor is calculating u2 ∗ Q, the CPUhas time to calculate the hash value and write it into thecoprocessor. Therefore, chip area is saved, without affect-ing the overall execution time, given the condition thatthe hash value has been written into the coprocessor, be-fore the multiplication u2 ∗ Q is finished. The coprocessorlibrary implements the following procedure:
1. Write the digital signature (r and s) and the public key
Q into the coprocessor.2. Calculate the hash value for the messagem.3. Write the hash value into the coprocessor and set the"hash value sync" bit in the coprocessor’s control register.4. Poll the "busy bit" of the coprocessor’s status register.5. Read the "signature valid" bit, once the "busy bit" iscleared.

To access the coprocessor integrated in the Ibex core,the RISC-V GNU Toolchain got extended with custom in-structions. Those instructions are all based on the RISC-VI-type instruction format (see Figure 2). The bits 31 downto 20 form a twelve bit immediate, the bits 19 down to 15are used to encode a CPU source register and the bits 14down to twelve encode the type of operation (in this caseload word, move data from CPU register to coprocessorregister and the other way around). Furthermore, the bits

Immediate [11:0] rs1 funct3 rd opcode

31 20 19 15 14 12 11 7 6 0

Figure 2. RISC-V I-type instruction format (Waterman et al., 2019).

Table 2. Custom instructions for accessing the coprocessor.
Name 31:28 27:22 21:20 19:15 14:12 11:7 6:2 1:0

lw.ecdsa 0000 rd_ecdsa 00 rs1 000 00000 00010 11wcr.ecdsa 0000 101100 00 rs1 001 00000 00010 11rsr.ecdsa 0000 101101 00 00000 010 rd 00010 11

Table 3. Coprocessor memory map according to (Jahn, 2023).
Address offset Description Bitfields Access

0x00-0x20 r value of signature 0-281 value write282-287 reserved
0x24-0x44 s value of signature 0-281 value write282-287 reserved
0x48-0x8C Public key Q 0-282 x-coordinate write283-287 reserved288-570 y-coordinate571-575 reserved
0x90-0xAC Calculated hash e 0-255 value write

0xB0 Control register 0 start verification write1 reset unit2 hash value sync3-31 reserved
0xB4 Status register 0 busy read1 signature valid2 error invalid input3-31 reserved

eleven down to seven encode a CPU source register andthe bits six down to zero represent the instructions opcode(Waterman et al., 2019). Table 2 shows the three addedcustom instructions. The immediate (bits 31 down to 20) isalways used to reference a coprocessor register. CPU sourceregisters are referenced with the "rs1" operand and CPUdestination registers are referenced with the "rd" operand.The "lw.ecdsa" instruction is used to load a four byte wordfrom the main memory directly into a coprocessor register.The register referenced by the operand "rs1" contains thebase address of the to be transferred data. The operand"rd_ecdsa" is a register index. It forms the register ad-dress together with the rest of the immediate. The registerindex of a desired register, is the address according to thememory map divided by four. To determine the memoryaddress of the four byte word that should be loaded into thecoprocessor, the address offset of the target coprocessorregister is added to the base address stored in the registerreferenced in "rs1". The instruction "wcr.ecdsa" is used toaccess the control register of the coprocessor. It writes thecontent stored in the CPU register referenced by "rs1" intothe coprocessor’s control register. The "rsr.ecdsa" instruc-tion reads the content of the coprocessor’s status registerand stores it in the CPU register referenced by "rd".
3.4. System simulation and testing

To verify the correct functionality of the two software li-braries, as well as the correct implementation and integra-tion of the coprocessor and the modification of the RISC-VGNU Toolchain, an automated system test has been setup in cooperation with (Jahn, 2023). The following de-scription of the system test is visualized in Figure 3. At thebeginning of the system test, random ECDSA signaturesget generated by a script, with the help of a golden modelimplementation in Python of the whole ECDSA scheme(signature generation and verification). Those randomgenerated signatures, get passed into a header file for thetest software. The test software containing one of the twoimplemented ECDSA signature verification libraries, de-



6 | 36th EuropeanModeling& Simulation Symposium, 005, EMSS 2024

Ibex Simple SystemECDSA Golden
Model

Signature Generation
Script

Memory and HW
Peripherals

Ibex Core

ECDSA Signature
Verification
Coprocessor

Signature
Generation

Source Code of
Test Software

SW Library Under Test

Generated Signature
Parameters

RISC-V GNU
Toolchain

Custom
Instructions

SW Binary

Signature
Verification

Use

Use result_log.txt

HW
Simulation

Result Verification Script

Pass Fail

Generated Signature Parameters

Figure 3. Flow chart describing the procedure of a system test.

pending on which library should be tested, gets built usingthe modified RISC-V GNU Toolchain. The software binary,gets then loaded as memory content at the start of a cycleaccurate hardware simulation of the Ibex Simple System.The Ibex Core in that particular Ibex Simple System con-tains the coprocessor. During the simulation of the IbexSimple System, executing the test software, a log file getsgenerated that contains the results of all performed ECDSAsignature verifications. After the simulation is finisheda script gets executed that verifies the results producedby the simulation. This is done by taking the signatureparameters that got generated for the test software anduse the golden model of the ECDSA signature verificationto verify those signatures again. If all results that are pro-duced by the golden model match the results produced bythe simulation, then the system test passes.

Table 4. Averaged numbers of required clock cycles to perform an ECDSAsignature verification.
Implementation Clock cycles Time[s] (50 MHz Clock)

Pure software 798,634,348 15.97Coprocessor 515,374 0.01031

3.5. Performance measurements

In order to record the performance measurements thesame principle as described in Section 3.4 or respectivelyshown in Figure 3 has been used in general. The only dif-ference is that for the performance measurements the sig-nature generation script, generated ten random and validsignatures that got reused for all measurements insteadof generating new random signatures on each run. Alsothe test software that is running during the simulation onthe Ibex Core, slightly differs from the test software thatgot used during the system test. Those modifications werenecessary to record the measurement results. However,those changes do not affect any of the ECDSA signatureverification libraries. Table 4 shows the needed clock cy-cles for the corresponding ECDSA signature verificationimplementation. The usage of the coprocessor brings aspeedup of approximately 1550. The clock cycle valuesare averaged values. Each implementation verified tenrandom and valid signatures, to ensure the whole ECDSAprocedure is executed, and no error handling, or parame-ter validation would terminate the verification at an earliertime.Additionally, the needed clock cycles to calculate thehash value, have been measured as well, it takes 7068 clockcycles. According to (Jahn, 2023), the following steps areexecuted by the coprocessor after setting the "start verifi-cation" bit in the control register, before the coprocessorneeds the hash value:
1. Calculation of the inverse of s. Needs 899 clock cycles.2. Multiplication of s–1 with r. Needs 494 clock cycles.3. Multiplication of u2 (r · s–1) with Q. Needs 248781 clockcycles.
This results in a total of 250147 clock cycles that pass, be-fore the coprocessor needs the hash value. Since the con-crete hash calculation (SHA-256) in software needs only7068 cycles, the CPU has enough time to write the hashvalue into the coprocessor and set the "hash value sync"bit, without blocking the coprocessor.
4. Results and Discussion

A speedup of the given size (1550) was expected since asoftware implementation got compared with an almostpure hardware implementation. Given those implementa-tions would run on a single core embedded system, with-out any kind of operating system, and a clock frequency of50 MHz, the pure software implementation of the ECDSAsignature verification would take 15.97 seconds (see Ta-ble 4). In general this is too much execution time, for a



Holzer et al. | 7

Table 5. Execution times in seconds for various clock frequencies.
Clock Frequency [MHz] Pure software [s] Coprocessor [s]

50 15.97 0.01031100 7.99 0.00515200 3.99 0.00258300 2.66 0.00172400 2.0 0.00129500 1.6 0.00103

signature verification, therefore the pure software imple-mentation is not suitable for applications that run on smallsystems with low clock frequency. However, if the clockfrequency would be increased to e.g. 500 MHz, then theexecution time reduces time 1.6 seconds (see Table 5). Thismay already be an acceptable time to complete a deviceauthentication. For example, if the ECDSA signature veri-fication only needs to be executed at the systems startup,1.6 seconds could be a reasonable execution time. How-ever, in a scenario where a lot of signature verificationshave to be executed, 1.6 seconds are still a lot of time, sincethe CPU is completely occupied during the verification. Assoon as for example a real time operating system is usedfor the application, the ECDSA verification will be furtherinterrupted by context switches and other tasks, whichmakes the situation even worse.The coprocessor on the other hand performs very wellover all clock frequencies, compared to the pure softwarelibrary. The overall ECDSA signature verification time of10.31 milliseconds with a clock frequency of 50 MHz hasgood chances to fit the needs of most applications regard-ing signature verification. Furthermore, the coprocessoris expected to perform also well, if a real time operatingsystem is used. This is because most parts of the ECDSAsignature verification are done in parallel to the CPU. Oncethe hash value is written into the coprocessor, it wouldbe possible to execute a different task on the CPU to re-duce the polling time of the coprocessor’s busy bit. Themajor drawback of the coprocessor, is the required addi-tional chip area. The worst scenario for the coprocessor, iswhen the systems clock frequency is quite high and onlyone signature has to be verified at startup like already de-scribed above. Then the additional chip area is spent, butmost of the time not used. Furthermore, depending on theconcrete clock frequency a pure software implementationmight be fast enough as well.
5. Conclusions

In general, for small single core embedded systems, thecoprocessor library is better suited than the pure softwarelibrary. However, if the system’s clock frequency is respec-tively high, and the number of signature verifications isvery small, then the pure software library might be bet-ter suited for the ECDSA signature verification, since thecoprocessor would need chip area that is mostly unusedduring the application’s runtime. The bigger the systemson the other hand (e.g. systems capable of running Em-

bedded Linux), the more suitable the pure software imple-mentation becomes, since the execution time of the puresoftware library will decrease.
5.1. Prospect

For the future one could invest some time in additionaltuning of the pure software library, to increase the puresoftware library’s performance in contrast to the docu-mented implementation. Additionally, the pure softwarelibrary could be ported to a dual-core platform and be refac-tored to use parallelization, and compare the performanceagain against the coprocessor on the single core system.This would increase the performance of the pure firmwarelibrary, and furthermore the whole application could uti-lize the second core. In the best case scenario the secondcore would need just as much or less chip area, than thecoprocessor.
References
Chen, L., Moody, D., Regenscheid, A., Robinson, A., andRandall, K. (2023). Recommendations for discretelogarithm-based cryptography: Elliptic curve domainparameters. Technical report, National Institute of Stan-dards and Technology, Gaithersburg, MD.Diffie, W. and Hellman, M. (1976). New directions incryptography. IEEE Transactions on Information Theory,22(6).Jahn, S. (2023). Extension of a risc-v architecture withcustom instructions to perform an elliptic curve digitalsignature algorithm verification.Johnson, D., Menezes, A., and Vanstone, S. (2001). Theelliptic curve digital signature algorithm (ecdsa).Liu, S.-G., Chen, W.-Q., and Liu, J.-L. (2021). An efficientdouble parameter elliptic curve digital signature algo-rithm for blockchain. IEEE Access, 9:77058–77066.lowRISC (2022). Ibex simple system. URL:

https://github.com/lowRISC/ibex/tree/master/
examples/simple_system, Accessed: 04-05-2023.lowRISC (2023). Ibex risc-v core. URL: https://github.
com/lowRISC/ibex, Accessed: 20-03-2024.Mühlberghuber, M. (2011). Comparing ecdsa hardwareimplementations based on binary and prime fields.Pittner, D. (2022). Design and hardware implementationof an elliptic curve cryptography.Waterman, A., Asanovic, K., and Foundation, R.-V. (2019).The risc-v instruction set manual, volume i: User-levelisa, document version 20191213. https://riscv.org/
technical/specifications/, Accessed: 02-03-2023.Wenger, E. and Hutter, M. (2012). Exploring the designspace of prime field vs. binary field ecc-hardware im-plementations. In Laud, P., editor, Information Security
Technology for Applications, pages 256–271, Berlin, Hei-delberg. Springer Berlin Heidelberg.

https://github.com/lowRISC/ibex/tree/master/examples/simple_system
https://github.com/lowRISC/ibex/tree/master/examples/simple_system
https://github.com/lowRISC/ibex
https://github.com/lowRISC/ibex
https://riscv.org/technical/specifications/
https://riscv.org/technical/specifications/

	Introduction
	State of the art
	Digital signatures
	Elliptic curve digital signature algorithm
	Finite fields
	Elliptic curve parameters
	ECDSA signature generation
	ECDSA signature verification

	Aim of this research

	Materials and Methods
	Target platform
	Pure software library
	Coprocessor library
	System simulation and testing
	Performance measurements

	Results and Discussion
	Conclusions
	Prospect


