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Abstract 
The Oil & Gas industry is on the threshold of digital transformation through integrating Digital Twins and Artificial Intelligence. 
However, the widespread adoption of this technology is still limited. This study introduces an innovative use of Digital Twins 
based on models obtained through artificial intelligence to analyse a vertical tank behaviour of an experimental plant. Moving 
beyond the traditional non-real-time analysis software that currently dominates plant operations, this approach leverages real-
time data to advance the modelling process. From the previous research about using artificial neural networks to model an ejector, 
the present work expands the scope to include the vertical reservoir. It adds a new piece to constructing a system that can correctly 
describe the experimental plant and detect its anomalies. The tank model is realised through two artificial intelligence algorithms 
that accurately predict pressures and water levels inside the tank at the “t+1” time step. These algorithms have been rigorously 
trained and tested with real plant data, demonstrating high fidelity in modelling tank behaviour with an accuracy of 99.98% and 
99.75%. With this experimental case, the synergy between Artificial Intelligence and Digital Twins demonstrates its relevance in 
real-time Oil & Gas plant management. It underscores the potential for transformation to enable more dynamic, resilient, 
effective and safe plant operations. 
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1. Introduction  

Industrial plants comprise complex systems where 
advanced technological elements interact seamlessly. 
The growing integration of digital solutions, such as 
Cyber-Physical Systems (CPSs), within modern 
industrial setups (Ina Lidere & Lektauers, 2023) 
enhances operational efficiency and functionality 
(Institute of Standards, 2014).  The digital 
transformation is revolutionising all sectors (Pierluigi 
Sandonnini, 2022; Wanasinghe et al., 2020), including 
the Oil and Gas sector, driven by advancements in 
Industry 4.0, incorporating technologies such as IoT, 

Big Data, and AI (Elijah et al., 2021).  However, this 
digitalisation introduces vulnerabilities, necessitating 
thorough investigations into potential system failures 
within the cyber-physical realm. To achieve this, 
detailed performance evaluations must be conducted 
within simulated environments, enabling the 
exploration of hypothetical scenarios without real-
world disruptions. These simulations rely on Digital 
Twins (DTs) to ensure accurate mirroring of cyber-
physical assets (Zipper & Diedrich, 2019). DTs 
represent asset and process states, accounting for 
potential changes in behaviour caused by technical 
malfunctions, natural disasters, or human-induced 
damages, whether intentional or accidental. Failures 
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within industrial systems can significantly degrade 
plant performance and result in many consequences, 
spanning economic losses to safety, security, and 
environmental risks. Therefore, comprehensive 
system performance assessments are imperative, 
facilitated by simulated environments where 
hypothetical scenarios can be explored without real-
world repercussions. Plant simulations leverage Digital 
Twins to maintain accurate reflections of cyber-
physical assets (Zipper & Diedrich, 2019). These 
representations depict the state of assets and 
processes, considering factors such as ageing, faults, 
and wear that occur over time. This paper is a follow-
up to the previous work on the construction of a Digital 
Twin of an experimental Oil & Gas plant (Pietrangeli et 
al., 2023) related to an ejector modelling to estimate 
some performance and criticalities of the system. This 
paper focuses on modelling another component of the 
same plant: the vertical tank. In this case, the model 
will be realised through Artificial Intelligence (AI) 
algorithms that can predict the characteristic 
parameters of the studied plant elements, such as 
internal tank pressure and water tank level, at the next 
step. This paper differs from the previous one in the 
element to be modelled, especially, in how it is 
modelled: it was decided to include a newly emerging 
tool such as artificial intelligence.  In this context, the 
DT emerges as a transformative technology, 
optimising asset management and expanding 
operational and strategic benefits (Elijah et al., 2021; 
Pietrangeli et al., 2023).  Specifically, in Section 2 a brief 
literature review will be reported; in Section 3, a 
panoramic view of the experimental setup will be given, 
specifically dealing with the vertical tank and the 
acquisition system; Section 3 will present the general 
elements regarding modelling by briefly describing the 
type of AI algorithm; Section 4 will give all the specific 
information about the two algorithms with the results 
obtained; finally, the discussion and conclusion. 

2. A short literature review 

Digital Twins have become a cornerstone in complex 
systems engineering and management (Alimam et al., 
2023; Ina Lidere & Lektauers, 2023). A DT is a digital 
replica of a physical asset, process, or system that 
enables real-time simulation, analysis, and 
optimisation of operations (Lanzini et al., 2023). This 
technology can range from simple static models to 
sophisticated dynamic representations that update and 
change with their physical counterparts.  DTs are 
particularly valuable in the Oil & Gas industry due to the 
complexity and risks associated with operations. They 
simulate drilling, production, and logistics processes, 
enabling companies to anticipate problems, optimise 
performance and improve predictive maintenance. For 
instance, through Digital Twin models, the status of oil 
rigs, subsea pipelines and other critical infrastructure 
can be monitored in real-time, thereby reducing 
downtime and increasing safety (Mendoza et al.; 
Wishnow et al., 2019). The integration of AI into DTs 

has marked another step forward in the ability of these 
models to predict failures and optimise processes 
without direct human intervention. AI enables DTs to 
analyse large amounts of operational data in real-time, 
continuously learning and adapting to offer 
increasingly accurate predictions (Elijah et al., 2021). 
This fusion of AI and DT can become crucial for 
companies seeking to remain competitive in a 
globalised and technologically advanced market 
(Wishnow et al., 2019). Advances in this field continue 
to push the boundaries of technology and reconfigure 
expectations of what is possible in monitoring, 
maintaining, and operating industrial infrastructure 
globally (Ahmed Soomro et al., 2024). From the 
literature, it is already possible to understand that the 
combination of DT and AI in the Oil & Gas sector is not 
that common. In fact, by performing a search on Scopus 
with the key " "digital twin*" AND "artificial intelligence" 
AND "oil and gas" ", 46 articles can be identified.  As 
expected, all the articles were published over the past 6 
years, as seen in Figure 1. The combination of AI and 
DTs has garnered increasing interest in recent years. 

 
Figure 1. Documents per year – Scopus 

As shown in Figure 2, the fields involved in this 
theme are diverse and range from the area of 
"Engineering" (23.5%) to "Energy" (20.6%), 
"Computer Science" (12.7%), “Earth and Planet” 
(15.7%), "Materials Science" (5.9%), etc. To focus the 
search more on the industry, a filter was applied that 
limited the search to the engineering subject area. 
Therefore, the number of articles was reduced to 24.  

 

Figure 2. Documents by subject area -Scopus 

From a reading of the articles abstracts it was 
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possible to exclude those related to the construction 
and civil engineering sector, focusing on the related to 
the industrial engineering field.  Thus, 11 articles were 
analysed in Table 1 and ranked according to the 
presence (the number of “●” represents the degree of 
presence) of a description of DT elements, AI 
algorithms, and listing other similar strategies 
mentioned. 

Table 1. Literature review 

Ref. DT AI Other technologies cited 

(Poddar, 
2018) 

●●● ●●● - 

(Wishnow et 
al., 2019) 

●● ● - Aerial Data Gathering 
& Interpretation 

- Machine & Deep 
Learning 

- Natural Language 
Processing 

- Quantum Computing  
- 3D Printing 

(Elijah et al., 
2021) 

●● ●● - IIoT 
- Big Data Analytics 
- Cloud computing 
- AM 
- Augmented Reality 
- Cyber-Physical 

System 
(Mendoza et 
al., 2021) 

●● ●● - ASPEN HYSYS 

(Yusupbekov 
et al., 2022) 

●●● ●● - 

(Ma et al., 
2022) 

●●● ●● - 

(Alimam et 
al., 2023) 

●●● ●● - Augmented Reality  
- ML  

(Chelliah et 
al., 2023) 

- ●● - ML 
- Deep Learning 

algorithms  
- Computer Vision  
- Natural Language 

Processing  
- Industrial Internet of 

Things  
- Cyber-Physical 

Systems  
- 5G communication,  
- Event-Driven 

Architecture 
- Micro-Services 

Architecture  
(Ahmed 
Soomro et al., 
2024) 

● ●●● - ML  
- ANNs 
- Support Vector 

Machine (SVM) 
- Decision tree 
- Random forest  
- Gradient boosting 

(Camara Dit 
Pinto et al., 
2024) 

●● ●● - 

(Pietrangeli 
et al., 2023) 

●●● - - ANNs 

Most of these articles are literature reviews 

investigating the potentialities of AI-integrated DTs, 
and the main aspects emphasised are the possibility of 
reducing costs, waste, and risks associated with the Oil 
& Gas system, etc., due to the presence of AI algorithms 
based and trained on the real and truthful data of the 
system itself (Ahmed Soomro et al., 2024; Elijah et al., 
2021; Mendoza et al., 2021).  The construction of Digital 
Twins whose models are realised by exploiting AI and 
real data, makes it possible to better grasp the specific 
characteristics of a certain plant while also favouring 
its resilience: as initially introduced by Holling (1973), 
resilience in industrial settings can be defined as the 
ability to anticipate, absorb, adapt and recover from a 
disruptive event (Patriarca et al., 2018) and plants’ 
resilience implies being able of monitoring systems 
operations and running strategies to facilitate the 
system’s response against known and unknown 
hazards and disturbances. Introducing new 
technologies in the context of DT certainly, such as AI, 
new types of communications and connections, etc., 
ensures resilience and a faster and more effective 
response capacity to any risk (Luis et al., 2021). Still, it 
confronts us with a greater risk, which is that of cyber-
attacks. Once the entire DT has been constructed and all 
the external connections have been enabled, assessing 
its resistance and resilience to this type of increasingly 
widespread phenomena will be necessary. Here, an 
application of AI algorithms has been reported for the 
development of a model of the plant's vertical tank; the 
algorithms will be used in the context of the Digital 
Twin of the entire plant.  

3. Materials and Methods 

This work is closely related to the work reported in this 
article (Pietrangeli et al., 2023), where the realisation 
of the ejector model for the Digital Twin of the plant 
was presented. The ejector is an instrument upstream 
of the vertical tank that, in the context of the DT of the 
whole system, provides values at t instant that are then 
used by the tank model to predict the internal tank 
pressure value of instant t+1. Both models will be used 
in the final DT, which will be able to provide a real-time 
representation of the state of the experimental plant. 
The experimental plant, the vertical tank and the 
acquisition system will be described below. 

3.1. The experimental plant 

The facility in focus is an experimental plant located 
within the laboratories of the Department of Industrial 
Engineering and Mathematical Sciences (DIISM) of the 
Polytechnic University of Marche. Originally built in the 
1990s, the main objective of this facility was to study 
the operation of one of the most common methods of 
extracting oil from inactive wells. To avoid the high 
costs associated with installing pumps at the bottom of 
the reservoir whose internal pressure does not 
guarantee a natural surfacing of oil and gas, a 
technique was developed that exploits an ejector using 
the pressure of an adjacent active well (Figure 3). The 
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operation of this extraction method is reproduced by 
taking advantage of the UNIVPM experimental plant.  
The experimental system uses water and air instead of 
oil and gas for safety. This system configuration is 
shown in Figure 4.  

 
Figure 3. Scheme of extraction plant 

 
Figure 4. Plant scheme 

The starting point is an open water tank; water is 
pumped from this tank (in green in Figure 4) to the 
ejector, which blends with air, forming a two-phase 
mixture. This mixture is then directed to a vertical tank 
that acts as a separator, allowing the air to be expelled 
back into the open tank through a special channel. 
Throughout the system, there are three electro valves 
(coloured in turquoise), eight sensors (coloured in light 
blue) and manual valves (coloured in orange) 
strategically placed to facilitate the simulation of 
system failures. Manual valves have been inserted 
physically but in a controlled manner to simulate 
anomalies, such as blockages, that may occur in the real 
system. These manual valves can be closed in such a 
way as to realise three levels of anomalies: 100% 
opening (closure) defined at steady state; above 67% 
opening (closure) corresponds to anomaly level 1; 
above 34% anomaly level 2; and 0% opening (closure) 
anomaly level 3. More details will be provided in Section 
2.2.  In the experimental plant, the inlet air channel 
represents the real inactive oil well while the inlet water 
channel (from the open reservoir to the pump) 
represents the active well; the ejector plays the same 
role while the vertical reservoir represents the 
collection point of gas and oil where the two fluids 
separate and are then collected separately. Figure 4 
shows the elements representing the active and 

inactive wells with the same colours as in Figure 3. 

 
Figure 5. The experimental plant 

Table 2. PID values 

Value PID 1- V1  Pid 2 - V2  PID 3 - V3  

Setpoint 4.437 [mA] 9.556 [mA] 12.813 [mA] 

kp 1 1.7 0.8 

ki 0.7 0.7 0.4 

kd 0 0.1 0 

Figure 5 shows pictures of the actual experimental 
facility in the DIISM laboratories. Table 3 and Table 4 
show the characteristics of each sensor and electro-
valves in the system. As shown in Table 3, the sensors 
acquire several variables that will then be reported in 
the dataset with their units of measurement; Table 2, 
on the other hand, shows the characteristics of the 3 
solenoid valves that are controlled by a PID system that 
adjusts their openings and closings based on the values 
recorded in the system. The parameters characterising 
the PID are kp, ki and kd and are specified for each 
electro-valve (Table 2).  

Table 3. Sensors 

ID  Description UM  Type  Tag  

S1  Inlet water 
pressure  

[bar]  OUTPUT  Endress+ Hauser 
Cerabar M PMP51  

S2  Inlet water flow 
rate  

[m3/h]  OUTPUT  Endress+ Hauser 
Promag W  

S3  Ejector pressure  [bar]  OUTPUT  Setra 280E  
S4  Mixture 

pressure in the 
diffuser  

[bar]  OUTPUT  Foxboro 841GM CI1  

S5  Tank pressure  [bar]  OUTPUT  Foxboro 841GM0CI1  

S6  Inlet air flow 
rate  

[m3/h]  OUTPUT  Foxboro Vortez DN 
50  

S7  Water level in 
the tank  

[mm]  OUTPUT  Foxboro IDP010  

S8  Air flow rate at 
the outlet  

[m3/h]  OUTPUT  Endress+ Hauser 
Prowirl 200  

Table 4. Electro-valves 

ID  Description UM  Type  

V1  Valve 1 closure  [%]  INPUT  
V2  Valve 2 closure [%]  INPUT  
V3  Valve 3 closure  [%]  INPUT  
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3.1.1. The vertical tank  

 
Figure 6. Vertical Tank 

The vertical tank (Figure 6) allows the storage of 
pressurised water and performs the vertical separator 
task. This device is generally made of galvanised steel 
in a hot bath, such as the one studied in this article, or, 
alternatively, with stainless steel. The tank under 
consideration has an access point (1) for the two-phase 
fluid exiting the ejector, an outlet channel for the liquid 
component (2), and an outlet point for the gaseous part 
of the incoming mixture (3). According to regulations, 
a spring-loaded safety valve is set at a pressure 10% 
lower than the maximum allowable pressure. 

Table 5. Vertical tank - specification 

ID  Description 

Model Elbi 780-l 

Capacity 780 l 

Maximum pressure 9.8 bar 

Operating temperature -10° to +50° C 

Material Galvanized Steel 

3.2. Acquisition system and dataset 

All sensors and solenoid valves on the plant are 
physically connected to a device called Revolution Pi 
(RevPi).  Revolution Pi is an open, modular, low-cost 
industrial PC based on the well-known Raspberry Pi. 
Housed in a slim DIN rail housing, the three available 
base modules can seamlessly expand with various I/O 
modules and fieldbus gateways (Revolution Pi Products 
- Industrial Raspberry Pi). This device collects and 
transmits data via Ethernet to a dedicated plant 

interface. The User Interface (UI) interface developed is 
shown in Figure 7. The UI has a CAD model on which it 
is possible to display the flow of water, the graphs 
relating to the measured variables (Table 3), the section 
dedicated to the PID in which you can also set the 
additive, derivative and proportional constants, a 
section devoted to the manual valves and a section to 
record the values collected from the moment of 
starting the recording until its stop. Through this last 
section, it was possible to collect the data relating to the 
plant. The dataset was acquired by recording the table 
variables for about 3 minutes by changing the 
openings/closures of the 7 manual valves. From the 
dataset acquired by the sensors on the system, only the 
values of the water flow inlet and airflow inlet in the 
tank, as well as the internal tank pressure and the water 
level, are extracted. The parameters related to the 7 
manual valves are collected by the operator recording 
the specific UI test. The dataset for training the AI 
algorithm is reconstructed by entering the pressure 
and level data related to the tank at instant t, values for 
manual valves (variable from 0 to 3 depending on the 
degree of closure/ level of anomaly, explained in Table 
6), and pressure and levels data at the instant t+1. 

 

Figure 7. Experimental plant – user interface 

Table 6. Manual Valves - Anomalies levels 

 VM Normally opened VM Normally closed 

VM3 ,VM5, VM6, VM7, VM9 VM8 ,VM10 

0 0% closed = rotation of 0° 0% opened = rotation of 0° 
1 33,3% closed = rotation of 30° 33,3% opened = rotation of 30° 
2 66,6% closed = rotation of 60° 66,6% opened = rotation of 60° 
3 100% closed = rotation of 90 °  100% opened = rotation of 90 ° 

Table 7. Dataset for the AI algorithms 

N° QairIN(t) QwatIN(t) Ps(t) Ls(t) Ps(t+1) Ls(t+1) VM3 VM5 VM6 VM7 VM8 VM9 VM10 V2 V3 

1 QairIN(t) 
– 

air flow 
rate at 

the tank 
inlet 

Qwatin(t) 
– 

water 
flow rate 

at the 
tank inlet 

ps1 ls1 ps2 ls2 0 0 0 0 0 0 0 The value 
assumed by the 
electro valves 
V2 and V3 are 
established by 
the PID control 
and are 
expressed in 
the percentage 
of opening. 
 

2 ps2 ls2 ps3 ls3 1 0 0 0 0 0 0 

3 ps3 ls3 ps4 ls4 2 0 0 0 0 0 0 

4 ps4 ls4 ps5 ls5 3 0 0 0 0 0 0 

5 ps5 ls5 ps6 ls6 0 1 0 0 0 0 0 

6 ps6 ls6 ps7 ls7 0 2 0 0 0 0 0 

7 ps7 ls7 ps8 ls8 0 3 0 0 0 0 0 

8 ps8 ls8 ps9 ls9 0 0 1 0 0 0 0 

9 ps9 ls9 ps10 ls10 0 0 2 0 0 0 0 
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10 ps10 ls10 ps11 ls11 0 0 3 0 0 0 0 

11 ps11 ls11 ps12 ls12 0 0 0 1 0 0 0 

12 ps12 ls12 ps13 ls13 0 0 0 2 0 0 0 

13 ps13 ls13 ps14 ls14 0 0 0 3 0 0 0 

14 ps14 ls14 ps15 ls15 0 0 0 0 1 0 0 

15 ps15 ls15 ps16 ls16 0 0 0 0 2 0 0 

16 ps16 ls16 ps17 ls17 0 0 0 0 3 0 0   

17 ps17 ls17 ps18 ls18 0 0 0 0 0 1 0   

18 ps18 ls18 ps19 ls19 0 0 0 0 0 2 0   
19 ps19 ls19 ps20 ls20 0 0 0 0 0 3 0   

20 ps20 ls20 ps21 ls21 0 0 0 0 0 0 1   

21 ps21 ls21 ps22 ls22 0 0 0 0 0 0 2   

22 ps22 ls22 ps23 ls23 0 0 0 0 0 0 3   

 

Figure 8. ANNs model of the ejector (light blue), AI-model of the tank (blue), PID 2 and PID 3 controller (green),  PID 1 controller  (gray)

4. Artificial Intelligence algorithms 

As already pointed out in the previous work (Pietrangeli 
et al., 2023), today, the models of the elements used in 
the Oil & Gas plants are almost carried out with specific 
software (also not open sources) that mainly performs 
thermos-dynamic and/or fluid-dynamic analyses. In 
addition, it is impossible to analyse a system 
completely using a single platform or a single 
technology, but it is necessary to use multiple software 
and devices that must communicate and collaborate, 
with all its attendant difficulties.  The best alternative 
in this context, proposed also in this article, is the 
construction of a DT of the system. Modelling all parts 
of the plant provides a tool to analyse, simulate and 
control the plant in real-time. As mentioned above, the 
ejector model was realised and explained in a previous 
work (Pietrangeli et al., 2023) and exploited artificial 
neural networks to estimate the flow rate of water from 
the air and the pressure of the ejector. In this case, the 
vertical reservoir behaviour model is developed using 
two artificial intelligence algorithms developed in 
Python with the same structure. These two algorithms 
will take information about the air and water flow rate 
from the ejector model. Then, they will be used in the 
PID control system for punctual adjustment of the 

parameters of interest by the electro-valves, as shown 
in Figure 8. With this model connected to the PID 
system, online or offline analysis, simulations and 
tests can be carried out without incurring any possible 
system damage or danger. 

5. The applied model  

To predict the value of pressure and level at time t+1, we 
used two artificial intelligence algorithms that take the 
same input parameters. The two AI algorithms are of 
supervised type and are schematised in Figure 9.  

 
Figure 9. AI algorithms 

Both AI algorithms have the same structure: the 
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algorithm that goes into the model is implemented 
through the sklearn library in Python. The model is 
specifically a DecisionTreeRegressor, which is used to 
predict the value of a target variable Ps(t+1) and Ls(t+1) 
based on a set of other variables (features) extracted 
from the dataset loaded via an Excel file (dataset as 
presented in Table 7). The code was built by first 
implementing a section for loading data. The data is 
stored in a pandas DataFrame. From this 
pandas.DataFrame, the columns Ps(t), Ls(t), QairIN(t), 
QwatIN(t), VM3, VM5, VM6, VM7, VM8, VM9, VM10, V2 
and V3 are then selected and assigned to the 
independent variable X while the column Ps(t+1) and 
the column Ls(t+1) become the dependent variable y 
respectively of the AI algorithms for predicting the 
pressure and level at the next instant. The dataset is 
divided into training and test sets with 
train_test_split, keeping 20% of the data for testing 
and using a random_state of 42 to ensure 
reproducibility. A DecisionTreeRegressor with 
random_state=42 is instantiated to ensure consistency 
across runs. No parameters are specified, such as 
maximum tree depth (max_depth), minimum number 
of samples per leaf (min_samples_leaf), etc., so the 
model will use the default values. The model is then 
trained on the training data (X_train, y_train) and is 
first tested on the (X_test, y_test) data. The coefficient 
of determination R² is used to evaluate the model's 
performance on the test data. The value of r2_score 
indicates how well the model predicts the target 
compared with the target mean. The Root Mean Square 
Error (RMSE) between the predicted and actual values 
is also calculated, measuring the prediction error in 
absolute terms. The two algorithms realised in this way 
allow to predict the values of the internal tank pressure 
and the tank level with scores of 99.91% and 99.71%, 
respectively, and therefore, the average square error 
committed will be 0.00336 bar and 2.70 mm, 
respectively. Hyperparameterization could be useful in 
optimising model performance using a scikit-learn 
Decision Tree Regressor type algorithm, so it was 
decided to evaluate it at the end of the algorithms that 
already reach a good score. The hyperparameters that 
were analysed are the criterion, the maximum tree 
depth (max_depth), the minimum number of samples 
needed to subdivide a node (max_leaf_nodes), and the 
minimum number of samples in a leaf 
(min_samples_leaf). To do this, sklearn's 
GridSearchCV search grid was applied. For the 
parameters entered in the GridSearcCV and reported in 
Table 8, the algorithm for tank pressure prediction 
obtained better results (even if slightly) than the 
default parameters. In contrast, the tank-level 
prediction algorithm achieved the same score with the 
optimal combination of parameters found throughout 
hyper-parametrisation. 

Table 8. Hyperparametrization values 

GridSearchCV : parameters 

"criterion" 
 

['squared_error', 'friedman_mse', 
'absolute_error', 'poisson'] 

"max_depth" [7, 10, 15,20,25] 
"min_samples_leaf
" 

[20, 40, 100] 

"max_leaf_nodes" [5, 20, 100] 

Results for Ps(t+1) Results for Ls(t+1) 

criterion='absolute_error', 
max_depth=25,min_samples
_leaf=20, random_state= 42 
, max_leaf_nodes=100 
 
SCORE:99.92% 

random_state=42,criterion='squ
ared_error', max_depth= 10, 
max_leaf_nodes=100, 
min_samples_leaf=20 
 
SCORE: 99.75% 

random_state=42 
(other default parameters) 
 
SCORE:99.98% 

random_state=42 
(other default parameters) 
 
SCORE: 99.75% 

In order to demonstrate the goodness of the artificial 
intelligence algorithm, learning curves were also 
extracted (Figure 10), which highlighted several 
aspects: 

• the convergence of the training and test curves: 
these curves converge, which indicates that the 
model is generalising well to the new, un-
processed data. This is a positive sign that the 
model is not over-fitting the training data; 

• the distance between the two curves: it is rather 
narrow, especially in the final stages of learning. 
This suggests that the model has a good 
generalisation capability even with a larger 
number of training examples; 

• the model stability: beyond a certain threshold of 
training data (approx. 10,000 examples), the 
increase in the number of training examples does 
not seem to produce a significant improvement in 
the model's performance. This may indicate that 
the model has reached its maximum learning 
capacity with the current data and characteristics. 

• the areas of high variance: In the initial part of the 
curve, there is an area of high variance as shown 
by the shaded areas, which represent the standard 
deviation of the scores. This indicates that the 
model is less stable and more sensitive to the 
particularities of the training data when the 
amount of data is limited. 

 

Figure 10. Learning Curves- R2 metrics 

Figure 11 and Figure 12 show the results: since the 
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predictions of both AI algorithms are nearly 100% 
correct, it is not easy to distinguish between the two 
graphs, predicted and real data. Therefore, the 
correlation graph between the predicted and actual 
pressure and reservoir level variables is also proposed. 
The fact that the two graphs return with an almost 
perfect straight line guarantees that the prediction is 
accurate.  To validate these two models obtained with 
AI, it is possible to select the collected data N°4 from 
Table 7, which describes the situation with the manual 
valve 3 at level 3 that is 100% closed (90° rotation). 
Level and pressure prediction results, real data and 
relative errors can be seen in Figure 13 and Figure 14.  

 
Figure 11. Tank Pressure- R2 evaluation 

 

Figure 12. Tank Level - R2 evaluation 

 
Figure 13. Tank Pressure -V3 100% closed 

 
Figure 14. Tank Level-V3 100% closed 

The same kind of analysis can be evaluated by 
considering the data of tests No. 11 and 12 in Table 7 in 
which air valve 7 is closed at level 1 and 2 
(corresponding to about 33.3° and 66.6°). The results 
are displayed in Figure 15, Figure 16, Figure 17, Figure 
18. The choice to specifically control these data sets 
(manual valve 7) is because manual valve 7 controls the 
air entering the system. The air in the system 
represents the most critical parameter in the study and 
modelling of the entire system. Demonstrating that the 
AI algorithms can correctly predict the pressure and 
level values of the reservoir as the inlet air changes 
means that the system can also capture the critical 
importance of this fluid and, consequently, a faithful 
prediction of the vertical tank system. 

 
Figure 15. Tank Pressure - V7 33,3% closed 

 

Figure 16. Tank Level - V7 33,3% closed 
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Figure 17. Tank Pressure - V7 66,6% closure 

 
Figure 18. Tank Level - V7 66,6% closure 

6. Conclusions 

This paper highlights the promising integration of 
Artificial Intelligence and Digital Twins in the Oil & Gas 
industry, highlighting their role in real-time plant 
management.  The proposed innovative approach uses 
AI models to model plant elements and integrate them 
into a Digital Twin, realising more dynamic and 
predictive management of complex plant operations. 
One of the main results of this research is the 
demonstration of the effectiveness of AI models, 
particularly Decision Tree Regressors, in predicting 
with exceptional accuracy the pressures and water 
levels of a vertical reservoir of an experimental plant 
present in the DIISM laboratories.  Modelling the 
behaviour of this system makes it possible to anticipate 
and eventually manage variations in the plant's 
operating conditions, thus possibly simultaneously 
reducing the risk of failure and improving the overall 
safety of operations. In addition, using Digital Twins 
based on AI models enables real-time analysis of the 
conditions of the experimental plant, especially of the 
vertical tank-related section. Also, it enables the 
possibility of conducting offline/online simulations. 
This approach represents a significant advance over 
traditional non-real-time analysis methods, which 
may be more limited in their ability to respond quickly 
to changes in operating conditions. However, while this 

study has demonstrated the potential of combining AI 
and DT in the oil and gas industry, challenges remain to 
be addressed. For example, integrating AI and DT 
systems requires a robust technology infrastructure 
and accurate data management to ensure the quality 
and reliability of forecasts. In addition, there is a need 
to continue to develop and refine AI models to address 
the ever-increasing complexity of industrial plants and 
further improve the performance of Digital Twins. In 
conclusion, this study provides a solid foundation for 
future developments in the field of Oil & Gas, 
highlighting the transformative potential of the 
integration of Artificial Intelligence and Digital Twins 
to significantly improve the efficiency, safety, and 
sustainability of operations in the industry, thus 
helping to drive the industry toward a smarter and 
more innovative future. As future developments, the 
aim is to complete the model development of the entire 
experimental facility to build a complete Digital Twin 
of the entire experimental facility; in particular, it is 
necessary to explain why and how to connect all the 
models developed to each other and how to integrate 
better with the PID system.  Once the entire 
experimental plant is described and represented by the 
DT, it could be interesting to study the possibility of 
identifying anomalies and distinguishing if they are 
generated by a malfunction or cyber-attack.  The last 
step will be to translate the system into SimPy, an 
open-source library in Python designed to support the 
modelling and analysis of complex systems and 
connect the system via MQTT communication to make 
it externally accessible. 
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