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Abstract 
The rapid and pervasive development of digital technologies not only affects but determines the life of society and the economy, 
as well as changing our living models. Today, society can be described as a complex socio-technical system, the model of which 
is heterogeneous, stochastic, and the results are therefore difficult to predict. To simulate the functioning of such a system, a 
distributed and heterogeneous model is needed. However, the designing of such simulation models is difficult due to the lack of 
easy-to-use communication tools that are not laborious and do not require specific software engineering knowledge from the 
modeler. The article explains the Easy Communication Environment (ECE) architecture and functionality that has been developed 
and validated over time, changing implementation stack but keeping the basic idea of designing a communication environment 
unchanged. The ECE methodology developed by the authors provides the modeler, who does not have specific skills in software 
engineering, the ability to design distributed and heterogeneous simulation models, as well as to ensure their interaction. The 
content of the article will be useful both for researchers and professionals in various fields who need to use simulation for the 
analysis of complex systems. 
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1. Introduction 

Digital technologies have become the cornerstone of 
our society and economy. The quality of these 
technologies determines our well-being and living 
conditions. The market for digital technologies is 
growing at immeasurable speed and volume. There is a 
digital transformation of our lives, where digital 
technologies are changing not only industry, but also 
our behaviour and communication patterns. The 
penetration of artificial intelligence (AI) and 
development of Big Data analytics, cloud computing, 
mobile technologies, business intelligence and Internet 
of Things (IoT), as well as the global and pervasive 
impact of social media have a significant impact on our 
life. 

The size of the global digital transformation market 
in 2023 was $880.28 billion, but it is expected that it 
reaches $1,070.43 billion in 2024. The market growth is 
characterized by a compound annual growth rate of 
about 27.6%.  Projections suggest that the size of the 
digital transformation market will reach $4,617.78 
billion by 2030 (Grand View Research, 2024).  

The existence of society today can be described as a 
sociotechnical system, the sustainability of which 
depends on the development of the sustainability of 
digital technologies. The stochastic nature of digital 
technology, which includes a hidden set of influences 
(Ginters and Revathy, 2021), as well as a pervasive 
nature, has the most diverse and unexpected impacts 
on the development of society, the economy, and the 
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environment, as well as on the daily life of everyone. 

The number of resources available and explored by 
mankind is decreasing, climate changes are taking 
place, the life cycle of technologies is shortening, AI 
tools are creating both a positive effect and have a 
negative impact on society. The above determines the 
increasing relevance of the need for reasonable 
forecasts. In turn, the development of a reliable 
forecast and the validation of various scenarios require 
modeling of the problem. 

The model of a sociotechnical system is a simplified 
reflection of objective reality, however, respecting the 
high proportion of stochastic influence factors, it 
remains complex. Complex problems cannot be 
explained by primitive and/or homogeneous patterns. 
The model of a real sociotechnical system is 
heterogeneous and usually requests for different 
simulation technologies use. If, for example, discrete-
event simulation allows for good modeling of processes 
related to queues and delays, but it is better to use 
agent-based models (ABM) to study the behaviour and 
interaction of individual objects, then the overall 
changes will be better specified by system dynamics 
simulation equations. If also the sections of applied 
data processing and analysis must be added, then a 
heterogenous distributed modeling system must be 
designed and exploited. 

In 2012, when conducting an analysis of distributed 
simulation platforms and tools, the authors (Aizstrauts 
et al., 2012) found that the number of options is very 
limited with Distributed Interactive Simulation (DIS), 
High-Level Architecture (HLA), Common Object 
Request Broker Architecture (CORBA), or customizable 
web service-based solutions, but there are practically 
no universal and easy to use tools for designing 
distributed simulation systems models. 

And even today, nothing fundamental has changed. 
Separate sufficiently fast communication tools Robot 
Operating System (ROS) and Lightweight 
Communications and Marshalling (LCM) have 
emerged, which were created for real-time robotics 
applications, and the situation has forced modelers to 
use those to somehow compensate for the lack of tools 
needed to design distributed models. (Xu et al., 2021). 
Also, the development of IoT has contributed to the 
development of special device-device communication 
tools such as IoTivity (Xu et al., 2021). However, these 
tools serve poorly to provide heterogeneous model 
collaboration. A ray of hope was the protocol and 
standard Data Distribution Service (DDS) (OMG, 2015) 
created by Object Management Group for real-time 
distributed operational systems. However, these are 
only instructions and guidelines to achieve model 
interoperability, but to bring the recommendations to 
life, the author of each model will have to invest serious 
time and software engineering resources. 

It must be honestly acknowledged that the still 
dominant tool to ensure the interaction of simulation 

models is the High-Level Architecture (HLA), which 
was created by the US Department of Defence back in 
1995 (Dahmann, Fujimoto and Weatherly, 1997), but it 
is also supplemented, improved and widely used in the 
civilian sectors (Jabbour, Possik and Zacharewicz, 
2023; Possik, 2021). In fact, HLA has become the 
standard solution for providing distributed models 
interoperability.  One of the main drawbacks of HLA 
was and still is "Standard is too "heavy", i.e. very complex, 
difficult to learn and thus time consuming to adopt and 
use" (Strassburger, Schulze and Fujimoto, 2008), and 
without good skills in software engineering its use is 
impossible. 

The use of the above-mentioned solutions requires 
well financial justification, since high level software 
engineering knowledge is untypical for representatives 
of other industries who are aimed at creating 
distributed problem-oriented models. So, for 
professionals in other industries, this path to creating 
a distributed model is still closed, or it is necessary to 
attract software engineering specialists who will have 
to translate the insights and regularities of the 
industry. So, the life cycle of this model will most likely 
end with a loss of interest from the software 
engineering specialist. Moreover, the licensing terms 
of commercial tools will impose an additional financial 
burden on further distribution of the designed model. 

To address the above problem, simulation 
environment developers incorporate multiple 
simulation technologies at the same time, which makes 
it possible to construct heterogeneous models, such as 
AnyLogic (Borshchev, 2014). However, the question 
remains how to integrate models already created 
earlier from other simulation environments, such as 
FlexSim (Wang, Wang and Zhang, 2022), NetLogo 
(Wilensky and Rand, 2015) and STELLA (Dissanayake, 
2016), etc., as well as provide a link to the subsystems 
of data analysis. 

There is an urgent need for a tool that would enable 
modelers to make the previously impossible possible, 
and to allow industry professionals with basic 
knowledge in information technology and modeling to 
create distributed heterogenous simulation models 
themselves, without the involvement of coders and 
additional financial expenses.  

If the modeler works with ABM, then he has at least 
a minimal understanding of object-oriented 
programming. If the modeler uses discrete-event 
tools, then he has knowledge of statistical processing 
of data and understands probabilities. If the modeler 
develops system dynamics models, then he is familiar 
with differential equations. That is, he has enough 
knowledge to create a distributed and heterogenous 
simulation model using Easy Communication 
Environment (ECE), which has been developed and 
improved since 2008 (Aizstrauts et al., 2012). 

The aim of the article is to discuss the Easy 
Communication Environment (ECE) concept, which 
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provides heterogeneous and distributed simulation 
models design capabilities to any specialist in other 
fields with appropriate knowledge in modeling. 

The audience of the article is researchers and 
industry professionals engaged in the modeling of 
processes and phenomena, as well as designers of data 
processing systems who want to create distributed data 
processing and exchange systems. The authors' 
approach could also be of interest to designers of digital 
twins. 

In Section 2, the authors review the development of 
ECE, starting with the first attempts to replace HLA 
with CORBA and similar solutions used in software 
engineering, and ending with the design of an HLA 
alternative. Section 3 of the article analyzes the 
structural architecture and functionality of ECE, while 
Section 4 examines a specific application example and 
various issues related to the use of ECE. 

2. State of the art 

In 2007, the authors conducted research on Ligatne 
Natural Trails, which is part of the Gauja National Park 
(Ginters and Silins, 2007). In a limited area, moose, 
deer, wild boar, wolves, bears, and other 
representatives of the national fauna live there in a 
natural environment. In order not to damage natural 
resources, the sightseeing places connect pedestrian 
tourist trails. However, for the convenience of lazy 
visitors, an asphalt road has been arranged, for which 
private cars can move along a certain route and order, 
since there is a parking lot next to each sight. The 
question of the research was, what is the permissible 
load on the natural resource, so that the damage caused 
by visitors does not lead to irreversible consequences 
and the resource is able to recover at a certain time 
interval?  

It was necessary to create a discrete-event model 
that provides an analysis of the movement of cars to 
understand how large parking spaces should be 
allocated and how equipping them with WC and other 
should be carried out. The model was implemented in 
the Extend Suite environment and served as a data 
source for the second ABM model in the NetLogo 
environment, which assessed the regenerative capacity 
of the natural resource.  

Then the question arose, how to ensure the 
interoperability of models? An analysis of existing 
distributed simulation support mechanisms was 
carried out. DIS and HLA were found to be usable. 
However, the implementation of an interoperability 
mechanism between the models in the HLA was 
laborious and complex. It became clear that designing 
distributed models using the tools HLA and similar is 
impossible without good knowledge of software 
engineering, and for nature researchers this path is 
closed. 

The authors continued looking for distributed 

simulation communication tools that are usable to 
other industry professionals (Ginters, Silins and 
Andrusaitis, 2007).  

An analysis of the suitability of the Aggregate Level 
Simulation Protocol (ALSP), CORBA, The Foundation 
for Physical Intelligent Agents (FIPA) and HLA was 
carried out. Special attention was paid to the CORBA 
mechanism, whose Object Request Broker (ORB) was 
used to ensure communication between Extend Suite 
and NetLogo models. Simulation environments 
extension modules C++ (Extend Suite) and Java 
(NetLogo) were implemented. The solution provided 
models communication, unfortunately, change 
management without serious software engineering 
knowledge was impossible. 

In 2008, the adaptation of the CORBA ORB 
mechanism for distributed simulation continued 
(Ginters and Silins, 2008a), however, the low CORBA 
performance, which affected the modelling quality, 
began to cause problems.  

The authors (Ginters and Silins, 2008b) returned to 
performance measurements and made comparisons 
between CORBA and HLA communication mechanisms. 
The suspicions were confirmed as the length of the 
message packets increased, significant HLA 
advantages over CORBA began. It was decided that the 
use of CORBA in distributed simulation is 
unsustainable. 

In 2010, the authors published a solution (Silins, 
Ginters and Aizstrauta, 2010) that eased access to the 
HLA federation. The solution was based on the 
Communication Adapter, which provided a link 
between the simulation model and HLA. The adapter 
was created as part of the HLA environment and 
interpreted the HLA data in a format that was 
understandable by the simulation model. The 
communication adapter listened to the models and 
accumulated the sent messages in the data storage. 
Another model that needed the data could read them 
from the data storage on demand. At the same time, 
data storage provided time synchronization options. 
Each simulation environment required a library to 
interact with the adapter. Cooperation between the 
simulation tool and adapter was initiated by requests in 
XML format.  In conformity with the model parameters 
the adapter generated the Federation Object Model 
(FOM), which allowed to connect to the HLA federation. 
However, this adapter should have been easy enough to 
manage since the parameters of the simulation models 
are variable. The implementation of this requirement 
turned out to be more complicated than it seemed at 
first glance, as it provoked corresponding changes in 
the chain of compatibility with HLA. Thus, the first 
version of Easy Communication Environment (ECE) 
was born. 

In 2011, the improvement of the first version of ECE 
continued, working on supplementing the simulation 
tools Communication library. An intermediate 
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Communication Gateway was created that provided the 
data exchange among Communication Adapters prior 
to connection to the HLA environment (Aizstrauts, 
Ginters and Aizstrauta, 2011). The improvement 
reduced the modeler's workload by creating HLA-
based distributed simulation models. 

Since the first versions of the ECE were based on the 
presence of HLA, the search for more suitable 
communication environments, architectures, 
protocols, and message data formats continued 
(Ginters et al., 2011).  

The authors attempted to apply the ideology of ISO 
OSI 7498 in distributed simulation, creating the 
Simulation Highway concept as a multi-layered open 
architecture. The Simulation Highway was formed by 
the set of simulation cells, but the distributed 
simulation task was accomplished by the inclusion of 
appropriate simulation cells in the task chain. The 
requirements for specific software engineering skills 
were eased, as high-level languages such as SimAL and 
SimQL were allowed for modeling requests in 
accordance with the client-server approach. However, 
the communication backbone was still the HLA. In 
addition, the implementation of Simulation Highway 
required very significant resources. After a self-
assessment of the sustainability development of 
Simulation Highway, the authors abandoned this idea. 

In 2012, the FP7 project No.287119 FUPOL was 
launched. In the framework of the project, the 
development of several heterogeneous simulators was 
carried out both for the design of the zoning of the 
public park in Zagreb, the forecasting of the occupancy 
of tourist facilities and the planning of the bicycle route 
network of the city of Skopje (Ginters et al., 2014).  

The FUPOL project was the next step of ECE 
development (Aizstrauts et al., 2012), as it made it 
possible to validate the quality of the previously 
developed ECE version. To implement and test 
response time boundary intervals in a territorially 
distributed model, the ECE was deployed in a virtual 
computing environment of Amazon Elastic Compute 
Cloud (EC2), while simulation model management was 
done with Remote Desktop Protocol (RDP). In this 
version of the ECE and in the future, the authors 
abandoned the use of HLA, expanding the functionality 
of the previously designed Communication Gateway. 

One of the main tasks of FUPOL project was to create 
a simulation-based support mechanism for policy 
decision-making. The consortium conducted an 
analysis of more than 60 generic and problem-oriented 
simulation tools, which confirmed earlier suspicions 
that most problem-oriented simulation environments 
are closed, and it is not possible to attach external 
models. Unfortunately, closed environments usually 
offer limited functionality that did not provide an 
implementation of heterogeneous distributed models. 

 The basic concept of the FUPOL simulator was 
developed (Aizstrauts et al., 2013), where Fuzzy 

Cognitive Maps and Colored Petri Networks were used 
at the higher level of design, while simulation models 
were implemented in RePast Symphony. However, 
STELLA, a system dynamics simulation environment, 
was used to simulate system changes over time. Data 
processing and analysis were implemented in Python. 
The data was stored in PostgreSQL base. To improve the 
visualization of the results and facilitate the 
management of the modeling sessions, the NetLogo 
environment was used, because the visualization 
mechanism of the RePast Symphony was rather poor. 
Data exchange in FUPOL simulation subsystem was 
provided by the ECE. To ensure an interoperability with 
other FUPOL systems an ECE alignment with the 
Enterprise Service Bus was designed. The FUPOL 
project provided excellent validation opportunities for 
the ECE concept. 

One of FUPOL's use cases where the ECE 
environment was validated was the Skopje Bicycle 
Routes Simulator (Aizstrauts et al., 2015). Simulator 
was aimed to provide route choices for cyclists, 
depending on the load on the route, the quality of the 
pavement and infrastructure, as well as meteorological 
conditions. Here the ECE had to ensure interoperability 
between NetLogo, RePast and Python.  

The analysis of several Message Brokers was carried 
out, recognizing as the most promising RabbitMQ, 
which was subsequently used as an ECE component. 
The Advanced Message Queuing Protocol (AMQP) was 
used by simulation model to communicate with the 
Message Broker. Henceforth the authors of the ECE 
abandoned the use of any clouds for communication 
needs, which did not provide a guaranteed response 
time and raised doubts about the timeline of the 
simulation session. The FUPOL validation results 
replenished the ECE set of requirements, and 
specifically, not only the convenience of the modeler is 
important, but also the universality of the 
communication environment. 

In the following a prototype of the cycle route 
planning tool Velorouter was created (Aizstrauts et al., 
2020). The research was initiated by previous FUPOL 
results and FP7 FLAG-ERA FuturICT 2.0 (2017-2020) 
project. Velorouter users had the ability to develop their 
own routes, as well as recommend them to the 
municipality, providing feedback through ticketing, 
which is a basic rule for the development of sustainable 
management and control.  

Here, for the first time, the multi-layer architecture 
of the ECE was presented and the functionality of each 
layer was defined. Based on the universality and 
compatibility requirement, the ECE communication 
and data exchange mechanism was based on JSON data 
formats and the AMQP protocol disclaiming further use 
of XML. 

The ECE versions were validated in several national 
and international research projects: 
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• No. 2006/11 “Simulation Tools EXTEND and 
NetLogo use for Ecosystems Analysis” funded by 
the Latvian Ministry of Education and Science.  

• No.  2007/1-17/26 “Communication Environment 
of Hybrid Simulation Systems” funded by the 
Latvian Ministry of Education and Science. 

•  No.2DP/2.1.1.2.0/10/APIA/VIAA/001 “Support for 
preparation of IST FP7 STRE project “Simulation 
Highway”” funded by ERDF. 

• FP7 No.287119 FUPOL „Future Policy Modelling” 
funded by European Commission.  

• FP7 FLAG-ERA FuturICT 2.0 (2017-2020) "Large 
scale experiments and simulations for the second 
generation of FuturICT" funded by European 
Commission. 

The research results were validated and used in the 
study course "Sociotechnical Systems Modeling" 
(Vidzeme University of Applied Sciences and Riga 
Technical University). Research results have been 
reported at 15 international conferences. 

The ECE's multi-layer architecture and a description 
of the functionality will be discussed below. 

3. Methodology 

The structural and functional description of the Easy 
Communication Environment explains the basic 
principles of architecture and layer interoperability. 

3.1. Structural Model of Easy Communication 
Environment 

The Easy Communication Environment (ECE) is a 
versatile and user-friendly communication tool. The 
primary goal is to facilitate communication between 
diverse simulation models. Additionally, it aims to be 
user-friendly for distributed simulation model 
designers, even those with limited software 
engineering knowledge. 

Easy Communication Environment's structural 
multi-layer model has an open system architecture 
based on the basic building principles of OSI ISO 7498 
(Ginters et al., 2011) and Dijkstra machines (Dijkstra, 
1968). 

The ECE structural model (1) (see Figure 1) consists 
of four layers, each of which is responsible for specific 
and functional tasks - ECE framework messaging 
protocol (A), ECE framework notation layer (B), ECE 
framework messaging library (C) and Simulation sub-
model (D). 

ECE framework is determined by 

𝐸𝐶𝐸 =  〈𝐴, 𝐵, 𝐶, 𝐷〉                                   (1) 

where 

A – ECE framework messaging protocol. Messaging 
protocol consists of two functional parts – message 
transportation and message carrier format. 

 

 
Figure 1. ECE structural model. 

For message transportation ECE uses Advanced 
Message Queuing Protocol (AMQP) protocol. It is an 
open standard application layer protocol for message-
oriented middleware. The defining features of AMQP 
are message orientation, queuing, routing (including 
point-to-point and publish-and-subscribe) and 
reliability (Naik, 2017). Reliability is one of the core 
features of AMQP, and it offers two preliminary levels 
of Quality of Service (QoS) for delivery of messages – 
“At most once” and “At least once”.  

ECE uses “At most once” service level, the recipient 
does not acknowledge receipt of the message. Data 
storage functionality is implemented at ECE 
architecture abstraction layer C. For the message 
carrier ECE uses JSON data format. 

ECE combines AMQP and JSON to deliver 
sophisticated communication architecture that is 
highly reliable and easy maintainable. AMQP ensures 
that message is delivered to the right client/subscriber 
(and resilience) and JSON allows to transmit 
complicated data that can be parsed and understood by 
most of the programming languages. 

B – ECE framework notation layer. Notation layer is one 
of the highest levels in ECE communication 
architecture. This layer ensures that each node (sub-
model) under-stands each other and speaks the same 
language. ECE notation is based on JavaScript Object 
Notation (JSON) data format and requires three fields 
for the message: 

• tick - represents simulations time when this 
message has been sent. 

• datatype – describes what type of data has been 
sent. 

• data – the data to send to other simulation 
models. 

C – ECE framework messaging library. Messaging library 
is custom built software that integrates into modelling 
toolkit, simulation suits, etc. as extensions or plugins. 
The abstraction layers of the ECE architecture are 
generic and open, so it is possible to develop such 
extensions/plugins for different simulation tools 
independently. 

The ECE messaging library (C-layer) includes the 
basic functions that enable interoperability with the D-
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layer (see Table 1). 
 

Table 1. ECE messaging library (C-layer). 

Function Description 

init   Initialises the connection to AMQP server. 
Close   Closes the connections to AMQP server. 
isConnected   Returns the status of the connections to 

AMQP server. 
Subscribe   Subscribes to communications topic. Will 

receive and store all the messages that are 
sent to that topic. 

Unsubscribe   Unsubscribes from topic, will not receive 
any messages to this topic and purges all 
messages that were received before.  

sendString   Sends String type message to specific 
topic. 

sendInteger   Sends Integer type message to specific 
topic. 

sendDouble   Sends Double type message to specific 
topic. 

sendBoolean   Sends Boolean type message to specific 
topic. 

getStringData   Returns String data for specific topic at 
specific tick. 

getIntegerData   Returns Integer data for specific topic at 
specific tick. 

getDoubleData   Returns Double data for specific topic at 
specific tick. 

getBooleanData   Returns Boolean data for specific topic at 
specific tick. 

getLastStringData   Returns String data for specific topic with 
the latest (largest) tick. 

getLastIntegerData   Returns Integer data for specific topic with 
the latest (largest) tick. 

getLastDoubleData   Returns Double data for specific topic with 
the latest (largest) tick. 

getLastBooleanData   Returns Boolean data for specific topic 
with the latest (largest) tick. 

getLastTick   Returns the latest (largest) tick for specific 
topic. 

 

D – Simulation sub-model. Sub-model is any program or 
algorithm that consumes or produces any data. Such 
sub-model uses API of extensions/plugin from C-layer 
to send or receive data from other models. To ensure 
mutual interoperability of two or more simulation 
models (D-layer) and data exchange during the 
session, a chain of cooperation between ECE layers is 
established (see Figure 1). 

The next chapter will explain the ECE 
communication algorithm in more detail. 

3.2. Functionality and Implementation 

The interoperability of the ECE A, B, C and D-layers is 
shown in the BPMN2 diagram (see Appendix A), 
demonstrating the collaboration between the two 
simulation models (D-layer). The processes occurring 
in each layer during the simulation session proceed in 
parallel. Parallel processes exchange messages and 
signals, and a process that occurs in one layer can 
initiate and/or affect another process in the other layer. 

The ECE initialization operation is activated at the 
D-layer "Simulation sub-model" by sending a signal to 
the C-layer "ECE framework messaging library". If the 
model wants to send data, then the appropriate library 
in the C-layer is called. If the model does not have any 
data to be transmitted, and the simulation session is 
over, then a signal is sent that stops the plug-in of the 
model in the C-layer. 

C-layer processes are activated by a signal that is 
received from the D-layer simulation model. Upon 
receiving a signal about the launch of the simulation 
session, the C-layer provides a connection to the AMQP 
server. If a data message is received from the D-layer, 
then a raw data object is created from it, which is 
transferred to the B-layer "ECE framework notation 
layer". Receiving a data object activates the B-layer, 
where the message is transformed in the JSON data 
format, and then the message is sent back to the C-
layer. After that the message in JSON format is sent to 
the AMQP server on the A-layer "ECE framework 
messaging protocol". If the C-layer has not received a 
signal about the end of the simulation session, then the 
process of sending data continues, otherwise the 
connection to the AMQP server is interrupted. The A-
layer is activated by data message received from the C-
layer. The message is recorded to an AMQP storage 
queue corresponding to a specific data topic. At the 
same time, the AMQP server broadcasts a queued data 
message. 

The sent message receives/process the model whose 
topic it is needed. In the C-layer of the other simulation 
model, the received AMQP message is converted to 
internal raw format and recognized, but then converted 
to JSON format again in B-layer and sent back to C-
layer, where the message is stored in topic local 
storage. If the process is not interrupted by a signal 
received from the D-layer about the end of the 
simulation session, then it is divided in two directions 
- a request to read data from the D-layer is pending and 
a signal to subscribe to topic is expected at the same 
time. The data object in the internal format is then sent 
to the simulation model (D-layer), while the message 
in JSON format goes to the queues in the A-layer, which 
correspond to the relevant topic and are deployed in the 
AMQP storage. 

4. Results and Discussion 

The extract from FUPOL's cycling route planning 
heterogeneous and distributed simulation model, 
where communication is provided by the ECE, is 
discussed below.  

The task of the distributed and heterogenous model 
is to simulate the load in different segments of the 
route, so that the cyclist can combine the route that 
suits him. 

It is not the full model of Skopje network simulation, 
but its middleware, which is aimed to show the use of 
the ECE.  
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The model concept map (see Figure 2) includes 
simulator objects that provide the necessary 
functionality.  

 
Figure 2. Simulator concept map. 

Segments load simulation is provided by RePast 
agent-based model. Weather data is coming from the 
Python part, while simulator control and information 
visualization are implemented in the NetLogo 
environment.  

All simulator sub-models are connected to the ECE, 
which provides communication and data exchange 
options. Models and requests to libraries make layer D 
of the ECE. Each model specification (D-layer) includes 
commands that ensure that notifications/data are sent 
and received (subscribe/send/get).  

The task of the modeler is to embed the appropriate 
commands in the model specification. ECE parts A, B 
and C are not the subject of interest to the modeller. 

Causal loop diagram (CLD) (see Figure 3) describes 
the concept of simulator functionality.  

 
Figure 3. Causal loop diagram of route planning. 

The simulator helps to the cyclist in selecting right 
segments of travel route. The selection of segment is 
influenced by meteorological conditions, which can 
impair the quality of the path surface. On the other 
hand, in bad weather, the load on routes decreases due 
to a decrease in the number of cyclists. Route load is 
affected by the season (winter, summer) and calendar 
(weekdays and holidays), during which the number of 

cyclists increases/decreases. The load affects the choice 
of a particular route segment, since the profiles of the 
cyclist are different and determined by the set of 
attributes: skills, type of bike, age, presence of children 
in the group, size of the group, etc. Each selection 
increases the number of cyclists on the segment, which 
in turn leads to an increase in load. The increase in loud 
reduces the probability of route selection in further 
iterations. The initial conditions of the simulation 
session are adjusted with real load data creating a 
balanced system. 

Simulation workbench (see Figure 4) is 
implemented in NetLogo and ensures control and 
visualization options. The user interface has three 
compartments – Control, Map visualization and 
Results. 

 
Figure 4. Simulation model workbench. 

Setup button initializes model and ECE 
communication, that is, defines global variables and 
subscribe for ECE session. In this case all the global 
values will be received from other models via ECE.  ECE 
Netlogo plugin instance (C-layer) will asynchronously 
receive data for each of these subscribed topics and 
store it locally with specific timestamp (tick from the 
message itself) (see Figure 5).  

The C-layer libraries at the beginning of the 
simulation session must connect to ECE AMQP server. 
It is done with commands ece: init, in this case 
connection is to localhost. 

Go button start/stop simulation process. Starting 
time and selected travel date are manually adjustable. 
Time is defined as minute of 24 hours, but date is 
consecutive day of year.  

User can define the bicycle lane coverage and 
infrastructure quality with drop-down menus 
(ROAD_i). In this model, the user simulates the load on 
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six segments of a possible route. The map shows four 
starting points/destinations (P1, P2, P3 and P4), bicycle 
lanes among these points are split into six edges or 
segments (a, b, c, d, e, and f). Lane load is simulated in 
RePast for each segment separately.  

 

 
Figure 5. NetLogo Setup implementation. 

The Results compartment displays the possible 
weather conditions provided by Python part for the 
selected day and time (precipitation, wind speed and 
temperature) and shows a bar chart representing the 
potential load for each segment simulated. According 
to the load results, the cyclist can decide to include this 
segment in his route or reject it. 

NetLogo model software (D-layer), includes 
requests for C-layer libraries (see Figure 6). 

 
Figure 6. NetLogo model D-layer specification. 

Weather simulation is developed in Python 
programming language. ECE library (C-layer) provides 

Python ECE class collection (D-layer) with functions to 
communicate via ECE framework. The main purpose of 
this model is to broadcast the weather conditions for 
travel date and time. 

Load simulation is implemented in RePast 
Symphony according to a previously validated 
algorithm (Ginters, Aizstrauts et al., 2016). RePast C-
layer library is designed in generic pattern and can be 
implemented in any Java application. The user's D-
layer includes requests for C-layer libraries, such as 
NetLogo and Python. 

And now a little about challenges and problems. In the 
example considered, to access the ECE, the task of the 
modeler is to include D-layer commands in the sub-
model code, while the higher layers of the ECE are 
responsible for the rest of the communication. If the 
modeler has sufficient knowledge to prepare NetLogo, 
RePast, or other simulation model code, then he will 
have sufficient skills to incorporate the necessary ECE 
commands. The level of complexity is not even 
comparable to those software engineering skills 
required for HLA use. 

The performance of the distributed model is 
determined by the model’s interoperability algorithm 
designed by the modeler, while ECE provides only 
communication tube. The same can be said for HLA. 
The exciting question would be, which of the 
communication environments HLA or ECE has higher 
performance? 

Since ECE is based on AMQP, which is one of the 
fastest protocols, the possible latency associated with 
ECE operation will be lower than in an HLA 
environment. AMQP is significantly faster than HTTP, 
so if the modeler deploys the simulations on the web 
environment, then ECE will not be the reason for the 
delay.  

Is AMQP fast enough for real-time applications 
when a modeler creates digital twins for real-time 
control of IoT objects? IoT applications usually use 
more primitive protocols, such as Message Queue 
Telemetry Transport (MQTT), because shorter data 
messages are used to control the technical system. If 
ECE will be based on the MQTT protocol, then its use for 
heterogeneous systems design would be severely 
limited. However, the RabbitMQ stack also includes 
MQTT, so customizing ECE wouldn't be a problem. 

In recent years, the term "digital twins" has become 
popular, which describes a simulation model working 
in parallel with the controlled object. The simulation 
model receives data from the external environment and 
simulates the operation of a real object. The peculiarity 
is that the result of modeling must be achieved in real 
time, otherwise an error is detected. This is nothing 
new, because successfully working simulation models 
that control real physical objects were tested back in 
the late 90s. For example, Alexander Verbraeck of Delft 
University of Technology demonstrated to the authors 
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the Automatic Guided Vehicle (AGV), which 
transported flowers through underground tunnels 
between Schiphol Amsterdam and Flower Auction 
(Versteegt and Verbraeck, 2002). The CORBA 
environment was used. This was a very interesting 
example, since it was problematic in underground 
tunnels to provide control feedback, so the possible 
location of the AGV was calculated by a simulation 
model that worked in real time. Could the ECE be used 
here? Of course, because CORBA and ECE performance 
are similar, but the convenience of applying ECE is 
significantly better. 

HLA is rarely used in real-time applications. The 
cornerstone of HLA is not maximum performance, but 
safety. HLA provides callback functions that reside in 
each federate, which increases safety and the load of 
computing resources, which in turn causes delays in 
communication. The ECE broadcasting mechanism is 
simpler and therefore faster. 

ECE will provide the modeler with reasonable 
timeliness, scalability, modularity, safety, and 
performance parameters, however, if the modeler 
wants to design distributed simulation systems that 
support human life-critical functions, and 
programming in C++ does not cause any problems, 
then it would still be more reasonable to use the old, the 
well-tested, standardized, heavy, inconvenient, 
complex and expensive HLA mechanism.  

Still, attempts to humanize HLA and replace it with 
Service Oriented Architecture (SOA) in critical 
simulation applications have failed (Iagaru, 2022). 

5. Conclusions 

The sociotechnical systems that permeate our society 
and industry are complex because they are influenced 
by many different stochastic factors, of which human 
effect is the most significant and least predictable. To 
check scenarios of the development of various 
situations and the possible consequences of our 
actions, simulation is used. Analytical solutions in 
conditions of high uncertainty and real-time, when the 
system evolves during a modeling session, are not 
sufficiently usable. Modeling of the behaviour and 
interaction of individual objects using analytical 
approach are especially difficult. 

Complex processes and phenomena cannot be 
specified by homogeneous simulation models. Patterns 
become distributed and heterogeneous. A major 
problem is ensuring the exchange of data between 
these models and coordinating their operation over 
time.  

This is amazing, but still distributed simulation uses 
HLA, which is not possible to modelers without specific 
knowledge and good skills in software engineering. 

 This is a problem that slows down adequate policy 
decision-making and analysis of various scenarios of 
development in any industry, as it becomes dependent 

on the coding skills of third parties. In addition, part of 
the model knowledge usually disappears in translation. 

 A second option remains, to use one of the 
multifunctional but closed simulation environments 
and hope that this environment will be sustainable and 
versatile, and with a long enough life cycle. 

Over 17 years, the authors have developed and 
validated the Easy Communication Environment (ECE) 
data exchange environment for distributed and 
heterogeneous simulation, which is accessible to 
professionals in other industries without specific 
software engineering skills.  

A stack of flexible protocols and data formats has 
been designed, the changes of which do not cause 
problems in running simulation models. Multi-layer 
open architecture provides interoperability of various 
simulation technologies. 

The advantages of ECE are its application not only in 
the development of distributed simulation models, but 
also in the provision of software subsystems 
interoperability, so ECE audience is not only 
researchers and modelers, but also developers of 
distributed data processing systems. 

When developing the ECE communication 
mechanism, the authors deliberately did not use 
message confirmation, which creates a delay in 
information exchange. Therefore, ECE is not 
recommended for simulating systems with specific 
safety requirements. 

The concept and functionality of the ECE have been 
validated in several national and European 
Commission funded projects, while research results 
have been published in various sources and announced 
at international conferences. 

For the time being, ECE lacks methodological and 
training materials, as well as not having a large enough 
library of simulation tools, however, the authors will 
continue to work on the preparation of these 
deliverables. The next step of ECE will be connecting 
heterogeneous simulation models to a Bayesian 
network to support cyber threat forecasting for 
individual nodes connected to the data transmission 
network. 
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Appendix A. BPMN2 diagram of ECE layer interactions 

The diagram describes the send/receive operations between two simulation models, looking at the macro-level 
interoperability of the ECE layers implemented at both ends of one and the other model. 
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Appendix A. BPMN2 diagram of ECE layer interactions (continuation) 
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