

© 2024 The Authors. This article is an open access article distributed under the terms and conditions of the Creative
Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

1

36th European Modeling & Simulation Symposium, 010
21th International Multidisciplinary Modeling & Simulation Multiconference

2724-0029 © 2024 The Authors.
doi: 10.46354/i3m.2024.emss.010

Easy Communication Environment for Heterogeneous
and Distributed Simulation Models Design

Artis Aizstrauts1 and Egils Ginters2,*

1Sociotechnical Systems OU, Sakala 7-2, Tallinn, 10141, Estonia
2Riga Technical University, Zunda Krastmala 10-522, Riga, LV-1048, Latvia

*Corresponding author. Email address: egils.ginters@rtu.lv

Abstract
The rapid and pervasive development of digital technologies not only affects but determines the life of society and the economy,
as well as changing our living models. Today, society can be described as a complex socio-technical system, the model of which
is heterogeneous, stochastic, and the results are therefore difficult to predict. To simulate the functioning of such a system, a
distributed and heterogeneous model is needed. However, the designing of such simulation models is difficult due to the lack of
easy-to-use communication tools that are not laborious and do not require specific software engineering knowledge from the
modeler. The article explains the Easy Communication Environment (ECE) architecture and functionality that has been developed
and validated over time, changing implementation stack but keeping the basic idea of designing a communication environment
unchanged. The ECE methodology developed by the authors provides the modeler, who does not have specific skills in software
engineering, the ability to design distributed and heterogeneous simulation models, as well as to ensure their interaction. The
content of the article will be useful both for researchers and professionals in various fields who need to use simulation for the
analysis of complex systems.

Keywords: Distributed simulation; Easy Communication Environment; High-Level Architecture; Simulation technologies

1. Introduction

Digital technologies have become the cornerstone of
our society and economy. The quality of these
technologies determines our well-being and living
conditions. The market for digital technologies is
growing at immeasurable speed and volume. There is a
digital transformation of our lives, where digital
technologies are changing not only industry, but also
our behaviour and communication patterns. The
penetration of artificial intelligence (AI) and
development of Big Data analytics, cloud computing,
mobile technologies, business intelligence and Internet
of Things (IoT), as well as the global and pervasive
impact of social media have a significant impact on our
life.

The size of the global digital transformation market
in 2023 was $880.28 billion, but it is expected that it
reaches $1,070.43 billion in 2024. The market growth is
characterized by a compound annual growth rate of
about 27.6%. Projections suggest that the size of the
digital transformation market will reach $4,617.78
billion by 2030 (Grand View Research, 2024).

The existence of society today can be described as a
sociotechnical system, the sustainability of which
depends on the development of the sustainability of
digital technologies. The stochastic nature of digital
technology, which includes a hidden set of influences
(Ginters and Revathy, 2021), as well as a pervasive
nature, has the most diverse and unexpected impacts
on the development of society, the economy, and the

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:egils.ginters@rtu.lv

2 | 36th European Modeling & Simulation Symposium, EMSS 2024

environment, as well as on the daily life of everyone.

The number of resources available and explored by
mankind is decreasing, climate changes are taking
place, the life cycle of technologies is shortening, AI
tools are creating both a positive effect and have a
negative impact on society. The above determines the
increasing relevance of the need for reasonable
forecasts. In turn, the development of a reliable
forecast and the validation of various scenarios require
modeling of the problem.

The model of a sociotechnical system is a simplified
reflection of objective reality, however, respecting the
high proportion of stochastic influence factors, it
remains complex. Complex problems cannot be
explained by primitive and/or homogeneous patterns.
The model of a real sociotechnical system is
heterogeneous and usually requests for different
simulation technologies use. If, for example, discrete-
event simulation allows for good modeling of processes
related to queues and delays, but it is better to use
agent-based models (ABM) to study the behaviour and
interaction of individual objects, then the overall
changes will be better specified by system dynamics
simulation equations. If also the sections of applied
data processing and analysis must be added, then a
heterogenous distributed modeling system must be
designed and exploited.

In 2012, when conducting an analysis of distributed
simulation platforms and tools, the authors (Aizstrauts
et al., 2012) found that the number of options is very
limited with Distributed Interactive Simulation (DIS),
High-Level Architecture (HLA), Common Object
Request Broker Architecture (CORBA), or customizable
web service-based solutions, but there are practically
no universal and easy to use tools for designing
distributed simulation systems models.

And even today, nothing fundamental has changed.
Separate sufficiently fast communication tools Robot
Operating System (ROS) and Lightweight
Communications and Marshalling (LCM) have
emerged, which were created for real-time robotics
applications, and the situation has forced modelers to
use those to somehow compensate for the lack of tools
needed to design distributed models. (Xu et al., 2021).
Also, the development of IoT has contributed to the
development of special device-device communication
tools such as IoTivity (Xu et al., 2021). However, these
tools serve poorly to provide heterogeneous model
collaboration. A ray of hope was the protocol and
standard Data Distribution Service (DDS) (OMG, 2015)
created by Object Management Group for real-time
distributed operational systems. However, these are
only instructions and guidelines to achieve model
interoperability, but to bring the recommendations to
life, the author of each model will have to invest serious
time and software engineering resources.

It must be honestly acknowledged that the still
dominant tool to ensure the interaction of simulation

models is the High-Level Architecture (HLA), which
was created by the US Department of Defence back in
1995 (Dahmann, Fujimoto and Weatherly, 1997), but it
is also supplemented, improved and widely used in the
civilian sectors (Jabbour, Possik and Zacharewicz,
2023; Possik, 2021). In fact, HLA has become the
standard solution for providing distributed models
interoperability. One of the main drawbacks of HLA
was and still is "Standard is too "heavy", i.e. very complex,
difficult to learn and thus time consuming to adopt and
use" (Strassburger, Schulze and Fujimoto, 2008), and
without good skills in software engineering its use is
impossible.

The use of the above-mentioned solutions requires
well financial justification, since high level software
engineering knowledge is untypical for representatives
of other industries who are aimed at creating
distributed problem-oriented models. So, for
professionals in other industries, this path to creating
a distributed model is still closed, or it is necessary to
attract software engineering specialists who will have
to translate the insights and regularities of the
industry. So, the life cycle of this model will most likely
end with a loss of interest from the software
engineering specialist. Moreover, the licensing terms
of commercial tools will impose an additional financial
burden on further distribution of the designed model.

To address the above problem, simulation
environment developers incorporate multiple
simulation technologies at the same time, which makes
it possible to construct heterogeneous models, such as
AnyLogic (Borshchev, 2014). However, the question
remains how to integrate models already created
earlier from other simulation environments, such as
FlexSim (Wang, Wang and Zhang, 2022), NetLogo
(Wilensky and Rand, 2015) and STELLA (Dissanayake,
2016), etc., as well as provide a link to the subsystems
of data analysis.

There is an urgent need for a tool that would enable
modelers to make the previously impossible possible,
and to allow industry professionals with basic
knowledge in information technology and modeling to
create distributed heterogenous simulation models
themselves, without the involvement of coders and
additional financial expenses.

If the modeler works with ABM, then he has at least
a minimal understanding of object-oriented
programming. If the modeler uses discrete-event
tools, then he has knowledge of statistical processing
of data and understands probabilities. If the modeler
develops system dynamics models, then he is familiar
with differential equations. That is, he has enough
knowledge to create a distributed and heterogenous
simulation model using Easy Communication
Environment (ECE), which has been developed and
improved since 2008 (Aizstrauts et al., 2012).

The aim of the article is to discuss the Easy
Communication Environment (ECE) concept, which

Aizstrauts et al. | 3

provides heterogeneous and distributed simulation
models design capabilities to any specialist in other
fields with appropriate knowledge in modeling.

The audience of the article is researchers and
industry professionals engaged in the modeling of
processes and phenomena, as well as designers of data
processing systems who want to create distributed data
processing and exchange systems. The authors'
approach could also be of interest to designers of digital
twins.

In Section 2, the authors review the development of
ECE, starting with the first attempts to replace HLA
with CORBA and similar solutions used in software
engineering, and ending with the design of an HLA
alternative. Section 3 of the article analyzes the
structural architecture and functionality of ECE, while
Section 4 examines a specific application example and
various issues related to the use of ECE.

2. State of the art

In 2007, the authors conducted research on Ligatne
Natural Trails, which is part of the Gauja National Park
(Ginters and Silins, 2007). In a limited area, moose,
deer, wild boar, wolves, bears, and other
representatives of the national fauna live there in a
natural environment. In order not to damage natural
resources, the sightseeing places connect pedestrian
tourist trails. However, for the convenience of lazy
visitors, an asphalt road has been arranged, for which
private cars can move along a certain route and order,
since there is a parking lot next to each sight. The
question of the research was, what is the permissible
load on the natural resource, so that the damage caused
by visitors does not lead to irreversible consequences
and the resource is able to recover at a certain time
interval?

It was necessary to create a discrete-event model
that provides an analysis of the movement of cars to
understand how large parking spaces should be
allocated and how equipping them with WC and other
should be carried out. The model was implemented in
the Extend Suite environment and served as a data
source for the second ABM model in the NetLogo
environment, which assessed the regenerative capacity
of the natural resource.

Then the question arose, how to ensure the
interoperability of models? An analysis of existing
distributed simulation support mechanisms was
carried out. DIS and HLA were found to be usable.
However, the implementation of an interoperability
mechanism between the models in the HLA was
laborious and complex. It became clear that designing
distributed models using the tools HLA and similar is
impossible without good knowledge of software
engineering, and for nature researchers this path is
closed.

The authors continued looking for distributed

simulation communication tools that are usable to
other industry professionals (Ginters, Silins and
Andrusaitis, 2007).

An analysis of the suitability of the Aggregate Level
Simulation Protocol (ALSP), CORBA, The Foundation
for Physical Intelligent Agents (FIPA) and HLA was
carried out. Special attention was paid to the CORBA
mechanism, whose Object Request Broker (ORB) was
used to ensure communication between Extend Suite
and NetLogo models. Simulation environments
extension modules C++ (Extend Suite) and Java
(NetLogo) were implemented. The solution provided
models communication, unfortunately, change
management without serious software engineering
knowledge was impossible.

In 2008, the adaptation of the CORBA ORB
mechanism for distributed simulation continued
(Ginters and Silins, 2008a), however, the low CORBA
performance, which affected the modelling quality,
began to cause problems.

The authors (Ginters and Silins, 2008b) returned to
performance measurements and made comparisons
between CORBA and HLA communication mechanisms.
The suspicions were confirmed as the length of the
message packets increased, significant HLA
advantages over CORBA began. It was decided that the
use of CORBA in distributed simulation is
unsustainable.

In 2010, the authors published a solution (Silins,
Ginters and Aizstrauta, 2010) that eased access to the
HLA federation. The solution was based on the
Communication Adapter, which provided a link
between the simulation model and HLA. The adapter
was created as part of the HLA environment and
interpreted the HLA data in a format that was
understandable by the simulation model. The
communication adapter listened to the models and
accumulated the sent messages in the data storage.
Another model that needed the data could read them
from the data storage on demand. At the same time,
data storage provided time synchronization options.
Each simulation environment required a library to
interact with the adapter. Cooperation between the
simulation tool and adapter was initiated by requests in
XML format. In conformity with the model parameters
the adapter generated the Federation Object Model
(FOM), which allowed to connect to the HLA federation.
However, this adapter should have been easy enough to
manage since the parameters of the simulation models
are variable. The implementation of this requirement
turned out to be more complicated than it seemed at
first glance, as it provoked corresponding changes in
the chain of compatibility with HLA. Thus, the first
version of Easy Communication Environment (ECE)
was born.

In 2011, the improvement of the first version of ECE
continued, working on supplementing the simulation
tools Communication library. An intermediate

4 | 36th European Modeling & Simulation Symposium, EMSS 2024

Communication Gateway was created that provided the
data exchange among Communication Adapters prior
to connection to the HLA environment (Aizstrauts,
Ginters and Aizstrauta, 2011). The improvement
reduced the modeler's workload by creating HLA-
based distributed simulation models.

Since the first versions of the ECE were based on the
presence of HLA, the search for more suitable
communication environments, architectures,
protocols, and message data formats continued
(Ginters et al., 2011).

The authors attempted to apply the ideology of ISO
OSI 7498 in distributed simulation, creating the
Simulation Highway concept as a multi-layered open
architecture. The Simulation Highway was formed by
the set of simulation cells, but the distributed
simulation task was accomplished by the inclusion of
appropriate simulation cells in the task chain. The
requirements for specific software engineering skills
were eased, as high-level languages such as SimAL and
SimQL were allowed for modeling requests in
accordance with the client-server approach. However,
the communication backbone was still the HLA. In
addition, the implementation of Simulation Highway
required very significant resources. After a self-
assessment of the sustainability development of
Simulation Highway, the authors abandoned this idea.

In 2012, the FP7 project No.287119 FUPOL was
launched. In the framework of the project, the
development of several heterogeneous simulators was
carried out both for the design of the zoning of the
public park in Zagreb, the forecasting of the occupancy
of tourist facilities and the planning of the bicycle route
network of the city of Skopje (Ginters et al., 2014).

The FUPOL project was the next step of ECE
development (Aizstrauts et al., 2012), as it made it
possible to validate the quality of the previously
developed ECE version. To implement and test
response time boundary intervals in a territorially
distributed model, the ECE was deployed in a virtual
computing environment of Amazon Elastic Compute
Cloud (EC2), while simulation model management was
done with Remote Desktop Protocol (RDP). In this
version of the ECE and in the future, the authors
abandoned the use of HLA, expanding the functionality
of the previously designed Communication Gateway.

One of the main tasks of FUPOL project was to create
a simulation-based support mechanism for policy
decision-making. The consortium conducted an
analysis of more than 60 generic and problem-oriented
simulation tools, which confirmed earlier suspicions
that most problem-oriented simulation environments
are closed, and it is not possible to attach external
models. Unfortunately, closed environments usually
offer limited functionality that did not provide an
implementation of heterogeneous distributed models.

 The basic concept of the FUPOL simulator was
developed (Aizstrauts et al., 2013), where Fuzzy

Cognitive Maps and Colored Petri Networks were used
at the higher level of design, while simulation models
were implemented in RePast Symphony. However,
STELLA, a system dynamics simulation environment,
was used to simulate system changes over time. Data
processing and analysis were implemented in Python.
The data was stored in PostgreSQL base. To improve the
visualization of the results and facilitate the
management of the modeling sessions, the NetLogo
environment was used, because the visualization
mechanism of the RePast Symphony was rather poor.
Data exchange in FUPOL simulation subsystem was
provided by the ECE. To ensure an interoperability with
other FUPOL systems an ECE alignment with the
Enterprise Service Bus was designed. The FUPOL
project provided excellent validation opportunities for
the ECE concept.

One of FUPOL's use cases where the ECE
environment was validated was the Skopje Bicycle
Routes Simulator (Aizstrauts et al., 2015). Simulator
was aimed to provide route choices for cyclists,
depending on the load on the route, the quality of the
pavement and infrastructure, as well as meteorological
conditions. Here the ECE had to ensure interoperability
between NetLogo, RePast and Python.

The analysis of several Message Brokers was carried
out, recognizing as the most promising RabbitMQ,
which was subsequently used as an ECE component.
The Advanced Message Queuing Protocol (AMQP) was
used by simulation model to communicate with the
Message Broker. Henceforth the authors of the ECE
abandoned the use of any clouds for communication
needs, which did not provide a guaranteed response
time and raised doubts about the timeline of the
simulation session. The FUPOL validation results
replenished the ECE set of requirements, and
specifically, not only the convenience of the modeler is
important, but also the universality of the
communication environment.

In the following a prototype of the cycle route
planning tool Velorouter was created (Aizstrauts et al.,
2020). The research was initiated by previous FUPOL
results and FP7 FLAG-ERA FuturICT 2.0 (2017-2020)
project. Velorouter users had the ability to develop their
own routes, as well as recommend them to the
municipality, providing feedback through ticketing,
which is a basic rule for the development of sustainable
management and control.

Here, for the first time, the multi-layer architecture
of the ECE was presented and the functionality of each
layer was defined. Based on the universality and
compatibility requirement, the ECE communication
and data exchange mechanism was based on JSON data
formats and the AMQP protocol disclaiming further use
of XML.

The ECE versions were validated in several national
and international research projects:

Aizstrauts et al. | 5

• No. 2006/11 “Simulation Tools EXTEND and
NetLogo use for Ecosystems Analysis” funded by
the Latvian Ministry of Education and Science.

• No. 2007/1-17/26 “Communication Environment
of Hybrid Simulation Systems” funded by the
Latvian Ministry of Education and Science.

• No.2DP/2.1.1.2.0/10/APIA/VIAA/001 “Support for
preparation of IST FP7 STRE project “Simulation
Highway”” funded by ERDF.

• FP7 No.287119 FUPOL „Future Policy Modelling”
funded by European Commission.

• FP7 FLAG-ERA FuturICT 2.0 (2017-2020) "Large
scale experiments and simulations for the second
generation of FuturICT" funded by European
Commission.

The research results were validated and used in the
study course "Sociotechnical Systems Modeling"
(Vidzeme University of Applied Sciences and Riga
Technical University). Research results have been
reported at 15 international conferences.

The ECE's multi-layer architecture and a description
of the functionality will be discussed below.

3. Methodology

The structural and functional description of the Easy
Communication Environment explains the basic
principles of architecture and layer interoperability.

3.1. Structural Model of Easy Communication
Environment

The Easy Communication Environment (ECE) is a
versatile and user-friendly communication tool. The
primary goal is to facilitate communication between
diverse simulation models. Additionally, it aims to be
user-friendly for distributed simulation model
designers, even those with limited software
engineering knowledge.

Easy Communication Environment's structural
multi-layer model has an open system architecture
based on the basic building principles of OSI ISO 7498
(Ginters et al., 2011) and Dijkstra machines (Dijkstra,
1968).

The ECE structural model (1) (see Figure 1) consists
of four layers, each of which is responsible for specific
and functional tasks - ECE framework messaging
protocol (A), ECE framework notation layer (B), ECE
framework messaging library (C) and Simulation sub-
model (D).

ECE framework is determined by

𝐸𝐶𝐸 = 〈𝐴, 𝐵, 𝐶, 𝐷〉 (1)

where

A – ECE framework messaging protocol. Messaging
protocol consists of two functional parts – message
transportation and message carrier format.

Figure 1. ECE structural model.

For message transportation ECE uses Advanced
Message Queuing Protocol (AMQP) protocol. It is an
open standard application layer protocol for message-
oriented middleware. The defining features of AMQP
are message orientation, queuing, routing (including
point-to-point and publish-and-subscribe) and
reliability (Naik, 2017). Reliability is one of the core
features of AMQP, and it offers two preliminary levels
of Quality of Service (QoS) for delivery of messages –
“At most once” and “At least once”.

ECE uses “At most once” service level, the recipient
does not acknowledge receipt of the message. Data
storage functionality is implemented at ECE
architecture abstraction layer C. For the message
carrier ECE uses JSON data format.

ECE combines AMQP and JSON to deliver
sophisticated communication architecture that is
highly reliable and easy maintainable. AMQP ensures
that message is delivered to the right client/subscriber
(and resilience) and JSON allows to transmit
complicated data that can be parsed and understood by
most of the programming languages.

B – ECE framework notation layer. Notation layer is one
of the highest levels in ECE communication
architecture. This layer ensures that each node (sub-
model) under-stands each other and speaks the same
language. ECE notation is based on JavaScript Object
Notation (JSON) data format and requires three fields
for the message:

• tick - represents simulations time when this
message has been sent.

• datatype – describes what type of data has been
sent.

• data – the data to send to other simulation
models.

C – ECE framework messaging library. Messaging library
is custom built software that integrates into modelling
toolkit, simulation suits, etc. as extensions or plugins.
The abstraction layers of the ECE architecture are
generic and open, so it is possible to develop such
extensions/plugins for different simulation tools
independently.

The ECE messaging library (C-layer) includes the
basic functions that enable interoperability with the D-

6 | 36th European Modeling & Simulation Symposium, EMSS 2024

layer (see Table 1).

Table 1. ECE messaging library (C-layer).

Function Description

init Initialises the connection to AMQP server.
Close Closes the connections to AMQP server.
isConnected Returns the status of the connections to

AMQP server.
Subscribe Subscribes to communications topic. Will

receive and store all the messages that are
sent to that topic.

Unsubscribe Unsubscribes from topic, will not receive
any messages to this topic and purges all
messages that were received before.

sendString Sends String type message to specific
topic.

sendInteger Sends Integer type message to specific
topic.

sendDouble Sends Double type message to specific
topic.

sendBoolean Sends Boolean type message to specific
topic.

getStringData Returns String data for specific topic at
specific tick.

getIntegerData Returns Integer data for specific topic at
specific tick.

getDoubleData Returns Double data for specific topic at
specific tick.

getBooleanData Returns Boolean data for specific topic at
specific tick.

getLastStringData Returns String data for specific topic with
the latest (largest) tick.

getLastIntegerData Returns Integer data for specific topic with
the latest (largest) tick.

getLastDoubleData Returns Double data for specific topic with
the latest (largest) tick.

getLastBooleanData Returns Boolean data for specific topic
with the latest (largest) tick.

getLastTick Returns the latest (largest) tick for specific
topic.

D – Simulation sub-model. Sub-model is any program or
algorithm that consumes or produces any data. Such
sub-model uses API of extensions/plugin from C-layer
to send or receive data from other models. To ensure
mutual interoperability of two or more simulation
models (D-layer) and data exchange during the
session, a chain of cooperation between ECE layers is
established (see Figure 1).

The next chapter will explain the ECE
communication algorithm in more detail.

3.2. Functionality and Implementation

The interoperability of the ECE A, B, C and D-layers is
shown in the BPMN2 diagram (see Appendix A),
demonstrating the collaboration between the two
simulation models (D-layer). The processes occurring
in each layer during the simulation session proceed in
parallel. Parallel processes exchange messages and
signals, and a process that occurs in one layer can
initiate and/or affect another process in the other layer.

The ECE initialization operation is activated at the
D-layer "Simulation sub-model" by sending a signal to
the C-layer "ECE framework messaging library". If the
model wants to send data, then the appropriate library
in the C-layer is called. If the model does not have any
data to be transmitted, and the simulation session is
over, then a signal is sent that stops the plug-in of the
model in the C-layer.

C-layer processes are activated by a signal that is
received from the D-layer simulation model. Upon
receiving a signal about the launch of the simulation
session, the C-layer provides a connection to the AMQP
server. If a data message is received from the D-layer,
then a raw data object is created from it, which is
transferred to the B-layer "ECE framework notation
layer". Receiving a data object activates the B-layer,
where the message is transformed in the JSON data
format, and then the message is sent back to the C-
layer. After that the message in JSON format is sent to
the AMQP server on the A-layer "ECE framework
messaging protocol". If the C-layer has not received a
signal about the end of the simulation session, then the
process of sending data continues, otherwise the
connection to the AMQP server is interrupted. The A-
layer is activated by data message received from the C-
layer. The message is recorded to an AMQP storage
queue corresponding to a specific data topic. At the
same time, the AMQP server broadcasts a queued data
message.

The sent message receives/process the model whose
topic it is needed. In the C-layer of the other simulation
model, the received AMQP message is converted to
internal raw format and recognized, but then converted
to JSON format again in B-layer and sent back to C-
layer, where the message is stored in topic local
storage. If the process is not interrupted by a signal
received from the D-layer about the end of the
simulation session, then it is divided in two directions
- a request to read data from the D-layer is pending and
a signal to subscribe to topic is expected at the same
time. The data object in the internal format is then sent
to the simulation model (D-layer), while the message
in JSON format goes to the queues in the A-layer, which
correspond to the relevant topic and are deployed in the
AMQP storage.

4. Results and Discussion

The extract from FUPOL's cycling route planning
heterogeneous and distributed simulation model,
where communication is provided by the ECE, is
discussed below.

The task of the distributed and heterogenous model
is to simulate the load in different segments of the
route, so that the cyclist can combine the route that
suits him.

It is not the full model of Skopje network simulation,
but its middleware, which is aimed to show the use of
the ECE.

Aizstrauts et al. | 7

The model concept map (see Figure 2) includes
simulator objects that provide the necessary
functionality.

Figure 2. Simulator concept map.

Segments load simulation is provided by RePast
agent-based model. Weather data is coming from the
Python part, while simulator control and information
visualization are implemented in the NetLogo
environment.

All simulator sub-models are connected to the ECE,
which provides communication and data exchange
options. Models and requests to libraries make layer D
of the ECE. Each model specification (D-layer) includes
commands that ensure that notifications/data are sent
and received (subscribe/send/get).

The task of the modeler is to embed the appropriate
commands in the model specification. ECE parts A, B
and C are not the subject of interest to the modeller.

Causal loop diagram (CLD) (see Figure 3) describes
the concept of simulator functionality.

Figure 3. Causal loop diagram of route planning.

The simulator helps to the cyclist in selecting right
segments of travel route. The selection of segment is
influenced by meteorological conditions, which can
impair the quality of the path surface. On the other
hand, in bad weather, the load on routes decreases due
to a decrease in the number of cyclists. Route load is
affected by the season (winter, summer) and calendar
(weekdays and holidays), during which the number of

cyclists increases/decreases. The load affects the choice
of a particular route segment, since the profiles of the
cyclist are different and determined by the set of
attributes: skills, type of bike, age, presence of children
in the group, size of the group, etc. Each selection
increases the number of cyclists on the segment, which
in turn leads to an increase in load. The increase in loud
reduces the probability of route selection in further
iterations. The initial conditions of the simulation
session are adjusted with real load data creating a
balanced system.

Simulation workbench (see Figure 4) is
implemented in NetLogo and ensures control and
visualization options. The user interface has three
compartments – Control, Map visualization and
Results.

Figure 4. Simulation model workbench.

Setup button initializes model and ECE
communication, that is, defines global variables and
subscribe for ECE session. In this case all the global
values will be received from other models via ECE. ECE
Netlogo plugin instance (C-layer) will asynchronously
receive data for each of these subscribed topics and
store it locally with specific timestamp (tick from the
message itself) (see Figure 5).

The C-layer libraries at the beginning of the
simulation session must connect to ECE AMQP server.
It is done with commands ece: init, in this case
connection is to localhost.

Go button start/stop simulation process. Starting
time and selected travel date are manually adjustable.
Time is defined as minute of 24 hours, but date is
consecutive day of year.

User can define the bicycle lane coverage and
infrastructure quality with drop-down menus
(ROAD_i). In this model, the user simulates the load on

8 | 36th European Modeling & Simulation Symposium, EMSS 2024

six segments of a possible route. The map shows four
starting points/destinations (P1, P2, P3 and P4), bicycle
lanes among these points are split into six edges or
segments (a, b, c, d, e, and f). Lane load is simulated in
RePast for each segment separately.

Figure 5. NetLogo Setup implementation.

The Results compartment displays the possible
weather conditions provided by Python part for the
selected day and time (precipitation, wind speed and
temperature) and shows a bar chart representing the
potential load for each segment simulated. According
to the load results, the cyclist can decide to include this
segment in his route or reject it.

NetLogo model software (D-layer), includes
requests for C-layer libraries (see Figure 6).

Figure 6. NetLogo model D-layer specification.

Weather simulation is developed in Python
programming language. ECE library (C-layer) provides

Python ECE class collection (D-layer) with functions to
communicate via ECE framework. The main purpose of
this model is to broadcast the weather conditions for
travel date and time.

Load simulation is implemented in RePast
Symphony according to a previously validated
algorithm (Ginters, Aizstrauts et al., 2016). RePast C-
layer library is designed in generic pattern and can be
implemented in any Java application. The user's D-
layer includes requests for C-layer libraries, such as
NetLogo and Python.

And now a little about challenges and problems. In the
example considered, to access the ECE, the task of the
modeler is to include D-layer commands in the sub-
model code, while the higher layers of the ECE are
responsible for the rest of the communication. If the
modeler has sufficient knowledge to prepare NetLogo,
RePast, or other simulation model code, then he will
have sufficient skills to incorporate the necessary ECE
commands. The level of complexity is not even
comparable to those software engineering skills
required for HLA use.

The performance of the distributed model is
determined by the model’s interoperability algorithm
designed by the modeler, while ECE provides only
communication tube. The same can be said for HLA.
The exciting question would be, which of the
communication environments HLA or ECE has higher
performance?

Since ECE is based on AMQP, which is one of the
fastest protocols, the possible latency associated with
ECE operation will be lower than in an HLA
environment. AMQP is significantly faster than HTTP,
so if the modeler deploys the simulations on the web
environment, then ECE will not be the reason for the
delay.

Is AMQP fast enough for real-time applications
when a modeler creates digital twins for real-time
control of IoT objects? IoT applications usually use
more primitive protocols, such as Message Queue
Telemetry Transport (MQTT), because shorter data
messages are used to control the technical system. If
ECE will be based on the MQTT protocol, then its use for
heterogeneous systems design would be severely
limited. However, the RabbitMQ stack also includes
MQTT, so customizing ECE wouldn't be a problem.

In recent years, the term "digital twins" has become
popular, which describes a simulation model working
in parallel with the controlled object. The simulation
model receives data from the external environment and
simulates the operation of a real object. The peculiarity
is that the result of modeling must be achieved in real
time, otherwise an error is detected. This is nothing
new, because successfully working simulation models
that control real physical objects were tested back in
the late 90s. For example, Alexander Verbraeck of Delft
University of Technology demonstrated to the authors

Aizstrauts et al. | 9

the Automatic Guided Vehicle (AGV), which
transported flowers through underground tunnels
between Schiphol Amsterdam and Flower Auction
(Versteegt and Verbraeck, 2002). The CORBA
environment was used. This was a very interesting
example, since it was problematic in underground
tunnels to provide control feedback, so the possible
location of the AGV was calculated by a simulation
model that worked in real time. Could the ECE be used
here? Of course, because CORBA and ECE performance
are similar, but the convenience of applying ECE is
significantly better.

HLA is rarely used in real-time applications. The
cornerstone of HLA is not maximum performance, but
safety. HLA provides callback functions that reside in
each federate, which increases safety and the load of
computing resources, which in turn causes delays in
communication. The ECE broadcasting mechanism is
simpler and therefore faster.

ECE will provide the modeler with reasonable
timeliness, scalability, modularity, safety, and
performance parameters, however, if the modeler
wants to design distributed simulation systems that
support human life-critical functions, and
programming in C++ does not cause any problems,
then it would still be more reasonable to use the old, the
well-tested, standardized, heavy, inconvenient,
complex and expensive HLA mechanism.

Still, attempts to humanize HLA and replace it with
Service Oriented Architecture (SOA) in critical
simulation applications have failed (Iagaru, 2022).

5. Conclusions

The sociotechnical systems that permeate our society
and industry are complex because they are influenced
by many different stochastic factors, of which human
effect is the most significant and least predictable. To
check scenarios of the development of various
situations and the possible consequences of our
actions, simulation is used. Analytical solutions in
conditions of high uncertainty and real-time, when the
system evolves during a modeling session, are not
sufficiently usable. Modeling of the behaviour and
interaction of individual objects using analytical
approach are especially difficult.

Complex processes and phenomena cannot be
specified by homogeneous simulation models. Patterns
become distributed and heterogeneous. A major
problem is ensuring the exchange of data between
these models and coordinating their operation over
time.

This is amazing, but still distributed simulation uses
HLA, which is not possible to modelers without specific
knowledge and good skills in software engineering.

 This is a problem that slows down adequate policy
decision-making and analysis of various scenarios of
development in any industry, as it becomes dependent

on the coding skills of third parties. In addition, part of
the model knowledge usually disappears in translation.

 A second option remains, to use one of the
multifunctional but closed simulation environments
and hope that this environment will be sustainable and
versatile, and with a long enough life cycle.

Over 17 years, the authors have developed and
validated the Easy Communication Environment (ECE)
data exchange environment for distributed and
heterogeneous simulation, which is accessible to
professionals in other industries without specific
software engineering skills.

A stack of flexible protocols and data formats has
been designed, the changes of which do not cause
problems in running simulation models. Multi-layer
open architecture provides interoperability of various
simulation technologies.

The advantages of ECE are its application not only in
the development of distributed simulation models, but
also in the provision of software subsystems
interoperability, so ECE audience is not only
researchers and modelers, but also developers of
distributed data processing systems.

When developing the ECE communication
mechanism, the authors deliberately did not use
message confirmation, which creates a delay in
information exchange. Therefore, ECE is not
recommended for simulating systems with specific
safety requirements.

The concept and functionality of the ECE have been
validated in several national and European
Commission funded projects, while research results
have been published in various sources and announced
at international conferences.

For the time being, ECE lacks methodological and
training materials, as well as not having a large enough
library of simulation tools, however, the authors will
continue to work on the preparation of these
deliverables. The next step of ECE will be connecting
heterogeneous simulation models to a Bayesian
network to support cyber threat forecasting for
individual nodes connected to the data transmission
network.

Acknowledgements

The authors would like to thank Vidzeme University of
Applied Sciences and Information Technology Institute
of Riga Technical University for their support during
the development of ECE research.

The development of the ECE is the longest project in
the simulation life, so the authors would like to thank
not only their colleagues who endured the never-
ending improvements and modifications of the ECE,
but also their families, who reconciled and allowed
them to devote time to ECE research.

10 | 36th European Modeling & Simulation Symposium, EMSS 2024

Appendix A. BPMN2 diagram of ECE layer interactions

The diagram describes the send/receive operations between two simulation models, looking at the macro-level
interoperability of the ECE layers implemented at both ends of one and the other model.

Aizstrauts et al. | 11

Appendix A. BPMN2 diagram of ECE layer interactions (continuation)

12 | 36th European Modeling & Simulation Symposium, EMSS 2024

References

Aizstrauts, A., Burkhardt, D., Ginters, E., & Nazemi, K.
(2020). On Microservice Architecture Based
Communication Environment for Cycling Map
Developing and Maintenance Simulator. In 2020
61st International Scientific Conference on Information
Technology and Management Science of Riga Technical
University (ITMS) (pp. 1-4). doi:
10.1109/ITMS51158.2020.9259299. Retrieved from
https://www.researchgate.net/publication/347072
223_On_Microservice_Architecture_Based_Com
munication_Environment_for_Cycling_Map_De
veloping_and_Maintenance_Simulator#fullTextF
ileContent

Aizstrauts, A., Ginters, E. & Aizstrauta, D. (2011). Easy
Communication Approach for Data Exchange in
Distributed Simulation Environment. In Proceedings
of the 13th WSEAS international conference on
Automatic control, modelling & simulation (ACMOS'11)
(pp. 34-38). Stevens Point: World Scientific and
Engineering Academy and Society (WSEAS).
Retriewed from http://www.wseas.us/e-
library/conferences/2011/Lanzarote/ACMOS/ACMO
S-04.pdf

Aizstrauts, A., Ginters, E., Aizstrauta, D., &
Sonntagbauer, P. (2012). Easy Communication
Environment on the Cloud as Distributed
Simulation Infrastructure. In Proceedings of the 5th
WSEAS congress on Applied Computing conference, and
Proceedings of the 1st international conference on
Biologically Inspired Computation (BICA'12) (pp. 173-
178). Stevens Point, Wisconsin: World Scientific and
Engineering Academy and Society (WSEAS).
Retrieved from http://www.wseas.us/e-
library/conferences/2012/Algarve/BICA/BICA-
29.pdf.

Aizstrauts, A., Ginters, E., Baltruks, M., & Gusev, M.
(2015). Architecture for Distributed Simulation
Environment. Procedia Computer Science, 43, pp. 18-
25. doi: 10.1016/j.procs.2014.12.004. Retrieved from
https://www.sciencedirect.com/science/article/pii/
S1877050914015725

Aizstrauts, A., Ginters, E., Lauberte, I., & Piera Eroles,
M.A. (2013). Multi-level Architecture on Web
Services Based Policy Domain Use Cases Simulator.
In Lecture Notes in Business Information Processing
(vol 153, pp.130-146). Berlin: Springer.
doi:10.1007/978-3-642-41638-5_9. Retrieved
from
https://www.researchgate.net/publication/282289
690_Multi-
level_Architecture_on_Web_Services_Based_Po
licy_Domain_Use_Cases_Simulator#fullTextFile
Content

Borshchev, A. (2014). Multi-method modelling:

AnyLogic. In Discrete-Event Simulation and System
Dynamics for Management Decision Making (eds S.
Brailsford, L. Churilov and B. Dangerfield). doi:
10.1002/9781118762745.ch12

Dahmann, J.S., Fujimoto, R.M., & Weatherly, R.M.
(1997). The Department of Defense High Level
Architecture. In Proceedings of the 29th conference on
Winter simulation (WSC '97) (pp. 142-149). IEEE
Computer Society. doi: 10.1145/268437.268465

Dijkstra, E.W. (1968). The Structure of the “THE” -
Multiprogramming System. Commun. ACM, 11, 342–
346.

Dissanayake, S. T. M. (2016). Using STELLA Simulation
Models to Teach Natural Resource Economics. The
Journal of Economic Education, 47(1), 40–48. doi:
10.1080/00220485.2015.1106358

Ginters, E., Aizstrauts, A., Baltruks, M., Merkuryev, Y.,
Novickis, L., Grundspenkis, J., & Grabis, J. (2016).
VeloRouter - Technology for Urban Transport
Intermodal Sustainability. In City Planning and
Urban Design Conference, 07-09 April (CPUD’16) (pp.
211-220). Istanbul: DAKAM. ISBN 978-605-9207-
21-8. Retrieved from
https://www.dakamconferences.org/_files/ugd/ba
c820_3252301ff80b453e928fb159e78a9910.pdf

Ginters, E., Aizstrauts, A., Dreija, G., Ablazevica, M.,
Stepucev, S., Sakne, I., Baltruks, M., Piera Eroles,
M.-A., Buil, R., Gusev, M., & Velkoski, G. (2014).
Skopje Bicycle Inter-modality Simulator – e-
Involvement Through Simulation and Ticketing. In
Proceedings of 26th Europen Modelling & Simulation
Symposium (EMSS 2014) (pp. 557-563). Retrieved
from https://www.msc-
les.org/proceedings/emss/emss2014/emss2014_55
7.html

Ginters, E., Sakne, I., Lauberte, I., Aizstrauts, A., Dreija,
G., Aquilar Chinea, R.-M., Merkuryev, Y., Novitsky,
L., & Grundspenkis, J. (2011). Simulation Highway –
Direct Access Intelligent Cloud Simulator. In
Proceedings of 23rd European Modelling & Simulation
Symposium (EMSS 2011) (pp. 62-72). Retrieved from
https://docplayer.net/16307931-Simulation-
highway-direct-access-intelligent-cloud-
simulator.html

Ginters, E., & Silins, A. (2007). Multi-level approach for
environmental systems modelling in the Ligatne
Natural Trails. WSEAS Transactions on Systems, 6(4),
795-801. Retrieved from
https://www.researchgate.net/publication/2971181
69_Multi-
level_approach_for_environmental_systems_m
odelling_in_the_Ligatne_Natural_Trails

Ginters, E., & Silins, A. (2008a). Exchange Mechanisms
in Distributed Simulation of Sociotechnical
Systems. In Information Society and Modern Business.
Proceedings of 3rd International conference, 21-22

http://www.wseas.us/e-library/conferences/2011/Lanzarote/ACMOS/ACMOS-04.pdf
http://www.wseas.us/e-library/conferences/2011/Lanzarote/ACMOS/ACMOS-04.pdf
http://www.wseas.us/e-library/conferences/2011/Lanzarote/ACMOS/ACMOS-04.pdf
http://www.wseas.us/e-library/conferences/2012/Algarve/BICA/BICA-29.pdf
http://www.wseas.us/e-library/conferences/2012/Algarve/BICA/BICA-29.pdf
http://www.wseas.us/e-library/conferences/2012/Algarve/BICA/BICA-29.pdf
http://dx.doi.org/10.1007/978-3-642-41638-5_9
https://www.researchgate.net/publication/282289690_Multi-level_Architecture_on_Web_Services_Based_Policy_Domain_Use_Cases_Simulator#fullTextFileContent
https://www.researchgate.net/publication/282289690_Multi-level_Architecture_on_Web_Services_Based_Policy_Domain_Use_Cases_Simulator#fullTextFileContent
https://www.researchgate.net/publication/282289690_Multi-level_Architecture_on_Web_Services_Based_Policy_Domain_Use_Cases_Simulator#fullTextFileContent
https://www.researchgate.net/publication/282289690_Multi-level_Architecture_on_Web_Services_Based_Policy_Domain_Use_Cases_Simulator#fullTextFileContent
https://www.researchgate.net/publication/282289690_Multi-level_Architecture_on_Web_Services_Based_Policy_Domain_Use_Cases_Simulator#fullTextFileContent
https://www.dakamconferences.org/_files/ugd/bac820_3252301ff80b453e928fb159e78a9910.pdf
https://www.dakamconferences.org/_files/ugd/bac820_3252301ff80b453e928fb159e78a9910.pdf
javascript:void(0)
https://www.researchgate.net/publication/297118169_Multi-level_approach_for_environmental_systems_modelling_in_the_Ligatne_Natural_Trails
https://www.researchgate.net/publication/297118169_Multi-level_approach_for_environmental_systems_modelling_in_the_Ligatne_Natural_Trails
https://www.researchgate.net/publication/297118169_Multi-level_approach_for_environmental_systems_modelling_in_the_Ligatne_Natural_Trails
https://www.researchgate.net/publication/297118169_Multi-level_approach_for_environmental_systems_modelling_in_the_Ligatne_Natural_Trails

Aizstrauts et al. | 13

September 2007, Ventspils (p. 362). Ventspils:
Ventspils University College. Retrieved from
https://daugavpils.biblioteka.lv/alisepac/Details?tit
le=Information-Society-and-Modern-Business.-
3rd-International-conference-%3A-proceedings-
21-22-September,-2007,-
Ventspils&Id=85013&Ident=1218592&InstanceId=1
3&LibraryId=0#bibliographic

Ginters, E., & Silins, A. (2008b). Simulation Data
Exchange in Distributed E-learning Environment.
In Proceedings of the 4th WSEAS/IASME International
Conference on Education Technologies (EDUTE’08)
(pp. 138-143). Corfu: WSEAS. Retrieved from
http://www.wseas.us/e-
library/conferences/2008/corfu/edute/edute23.pdf

Ginters, E., Silins, A., & Andrusaitis, J. (2007).
Communication in Distributed Simulation
Environment. In ICOSSSE'07: Proceedings of the 6th
WSEAS international conference on System science and
simulation in engineering (pp. 217-221). Stevens
Point: World Scientific and Engineering Academy
and Society. doi: 10.5555/1974442.1974475
Retrieved from http://www.wseas.us/e-
library/conferences/2007venice/papers/600-
139.pdf

Ginters, E., & Revathy, J. G. (2021). Hidden and Latent
Factors’ Influence on Digital Technology
Sustainability Development. Mathematics, 9(21),
2801. doi: 10.3390/math9212801

Grand View Research,. (2024). Digital Transformation
Market Size, Share, Growth & Trends Analysis Report by
Solution, By Deployment, By Service, By Enterprise Size,
By End-use, By Region, And Segment Forecasts, 2024 –
2030. Report ID: GVR-1-68038-851-0. Retrieved from
https://www.grandviewresearch.com/industry-
analysis/digital-transformation-market

Iagăru, E. (2022). Comparative Analysis Between High
Level Architecture (HLA) and Service Oriented
Architecture (SOA) in the Field of Military Modelling
and Simulation. Scientific Bulletin, 27(1), pp. 30 - 40.
doi: 10.2478/bsaft-2022-0004

Jabbour, J., Possik, J., & Zacharewicz, G. (2023). A
Modeling and Distributed Simulation Platform for
Immersive Experience. In JIAE 2023 - Journées sur
l’Interopérabilité des Applications d’Entreprise, Pôle
Grand Sud-Ouest (PGSO). Lille, France. Retrieved
from https://hal.science/hal-04199808/document

Naik, N. (2017). Choice of Effective Messaging
Protocols for IoT Systems: MQTT, CoAP, AMQP and
HTTP. In 2017 IEEE International Systems Engineering
Symposium (ISSE) (pp. 1-7). IEEE. doi:
10.1109/SysEng.2017.8088251

OMG (Object Management Group),. (2015). About the
Data Distribution Service Specification Version 1.4.
Retrieved from https://www.omg.org/spec/DDS/1.4

Possik, J., Gorecki, S., Asgary, A., Solis, A.O.,
Zacharewicz, G., Tofighi, M., Shafiee, M.A.,
Merchant, A.A., Aarabi, M., Guimaraes, A., & Nadri,
N. (2021). A Distributed Simulation Approach to
Integrate AnyLogic and Unity for Virtual Reality
Applications: Case of COVID-19 Modelling and
Training in a Dialysis Unit. In 2021 IEEE/ACM 25th
International Symposium on Distributed Simulation
and Real Time Applications (DS-RT) (pp. 1-7).
Valencia: IEEE.

Silins, A., Ginters, E., & Aizstrauta, D. (2010). Easy
Communication Environment for Distributed
Simulation. In Computational Intelligence in Business
and Economics (pp. 91-
98). https://doi.org/10.1142/9789814324441_0014.
Retrieved from
https://www.researchgate.net/publication/282288
675_Easy_Communication_Environment_for_Di
stributed_Simulation#fullTextFileContent

Strassburger, S., Schulze, T., & Fujimoto, R. (2008).
Future Trends in Distributed Simulation and
Distributed Virtual Environments: Results of a Peer
Study. In 2008 Winter Simulation Conference (pp.
777-785). Miami, FL, USA. doi:
10.1109/WSC.2008.4736140. Retrieved from
https://ieeexplore-ieee-
org.resursi.rtu.lv/stamp/stamp.jsp?tp=&arnumber
=4736140

Versteegt, C., & Verbraeck, A. (2002). The Extended Use
of Simulation in Evaluating Real-Time Control
Systems of AGVs and Automated Material Handling
Systems. In Proceedings of the 2002 Winter
Simulation Conference (pp. 1659-1666). San Diego.
doi: 10.1109/WSC.2002.1166448

Xu, L., Lin, SY., Hlynka, A.W. et al. (2021). Distributed
Simulation Platforms and Data Passing Tools for
Natural Hazards Engineering: Reviews,
Limitations, and Recommendations. Int J Disaster
Risk Sci, 12, 617–634. doi: 10.1007/s13753-021-
00361-7

Wang, S., Wang, S.M., & Zhang, N. (2022). Flexsim-
based Simulation and Optimization of Green
Logistics Distribution Center. In Proceedings of the
14th International Conference on Computer Modeling
and Simulation (ICCMS '22) (pp.76-82). New York:
Association for Computing Machinery. doi:
10.1145/3547578.3547590

Wilensky, U., & Rand, W. (2015). An Introduction to
Agent-Based Modeling. Modeling Natural, Social,
and Engineered Complex Systems with NetLogo.
MIT Press.

http://www.wseas.us/e-library/conferences/2008/corfu/edute/edute23.pdf
http://www.wseas.us/e-library/conferences/2008/corfu/edute/edute23.pdf
https://dl.acm.org/doi/proceedings/10.5555/1974442
https://dl.acm.org/doi/proceedings/10.5555/1974442
https://dl.acm.org/doi/proceedings/10.5555/1974442
https://doi.org/10.1142/9789814324441_0014

