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Abstract

Reducing the realism gap between real and simulated sensor data remains a critical challenge in current research in modeling andsimulation. Virtual Testbeds (VTBs) provide a safe, cost-effective environment for research, development, and testing but often fall shortin the photorealism of the simulated camera sensors compared to real ones. To address this, we leveraged a state-of-the-art frameworkbased on Generative Adversarial Networks (GANs) to enhance the photorealism of these VTBs. This paper introduces a generativeArtificial Intelligence (AI) framework originally proposed to translate simulated image data from video games into photorealistic urbanscenes. We adapt and extend this framework to different simulated data generated with a physically accurate 3D simulator. Variousimplementations with urban scenes were proposed and analyzed to assess their effectiveness in real-world scenarios. We evaluatedour promising implementations using a real-time capable object detector to assess the impact of the enhancements and to identifypersistent problems in enhancing the realism of simulated data.
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1. Introduction

In recent years, progress in the field of deep learning (DL),has led to the use of DL frameworks in applications in-volving style adaptation between different visual domains.Mapping an image from one domain to another usingDL techniques is known as image-to-image translation,while its video counterpart is addressed as video-to-videosynthesis. One common approach in this field involvesusing AI frameworks based on Generative Adversarial Net-works (GANs). These models are implemented such that,the initial data are modified to preserve their semanticcontent while being as visually similar as possible to the

target reference domain.One of the potential applications of the image-to-imagetranslation and video-to-video synthesis frameworks isto improve the photorealism of simulated images, whichcan be used to significantly enhance the visual realism ofsimulation environments and generate closer-to-realityvirtual training data. The use of realistic Virtual Testbeds(VTBs) has become particularly important in the last years.This is because it allows us to work in environments wherethe gap between simulation and real-world is minimized(Müller et al., 2021). These environments can be morepractically useful and efficient for AI applications deployedin real-world scenarios. Moreover, employing DL frame-
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works can reduce the computational and human efforttypically required to create accurate and realistic simula-tion environments, and overcome the challenge of directlymodeling the geometric and material features of the sys-tem, exploiting Neural Networks trained on large datasets(Richter et al., 2021).The work proposed in this paper starts from the analysisand implementation of the promising framework "En-hancing Photorealism Enhancement" (EPE) presentedin (Richter et al., 2021), introduced for image-to-imagetranslation and video-to-video synthesis of simulated im-ages extracted from the GTA V videogame, to achieve ur-ban scenes with an enhanced photorealism. This paperaims to adapt the framework to work with simulated sen-sor data generated within a VTB in the accurate 3D simu-lation software VEROSIM (VEROSIM GmbH) to enhancephotorealism in the simulation environment. This couldfacilitate the generation of photorealistic virtual trainingdata that further closes the gap to real data. Future re-search will validate the benefit of training with such data,but a performance improvement with respect to AI trainedwith lower quality virtual data is expected, particularly inAI intended for deployment in real-world sectors whereannotated open real datasets are scarce or expensive andeven dangerous to create (e.g. construction, forestry, agri-culture, space).
2. State of the art and Related works

2.1. Generative Adversarial Networks

Generative Adversarial Networks (GANs) were first intro-duced in (Goodfellow et al., 2014), to propose an innovativegenerative model. Unlike discriminative models, genera-tive models are trained to learn the statistical distributionof a given training dataset to generate new samples fromthe learned distribution (Creswell et al., 2018).GANs are based on the presence of two neural networks, agenerator, and a discriminator, that work in an adversarialmanner. In the learning strategy introduced by GANs, thegenerator aims to generate synthetic samples that are assimilar as possible to the ones of a target training distri-bution, without having access to it. On the other side, thegoal of the discriminator is to learn how to correctly dis-criminate samples if they are coming from the real targetdistribution or if they are samples generated by the gen-erator network. The adversarial learning procedure leadsboth networks to improve their outcomes and the finalideal result consists of having the generator generatingexamples that are indistinguishable from the ones sam-pled from the training dataset (Goodfellow et al., 2014).Important extensions to GANs are Conditional GANs(CGANs), introduced in (Mirza and Osindero, 2014) andinfoGANs presented in (Chen et al., 2016).Due to their significant achievements in generating re-alistic data samples, GANs are increasingly employed ina wide range of applications, such as image generation,data augmentation, style transfer and in numerous other

domains (Chakraborty et al., 2023).
2.2. Image-to-image translation and video-to-video

synthesis deploying GANs

The primary aim of image-to-image translation tasks isto generate images that assume the style of the data be-longing to the target domain and appear indistinguishablefrom them. In parallel to it, its counterpart that addressesvideo data is known as video-to-video synthesis. In thiscase, the additional objective is to preserve also the tempo-ral continuity among the consecutive frames of the video(Wei et al., 2018).Many tasks related to image processing and computergraphics can be addressed as image-to-image translationand video-to-video synthesis tasks. Some examples ofthese tasks are colorization of images (Zhang et al., 2016),translation from low resolution to high resolution (Leeet al., 2018), obtaining photorealistic images starting fromsemantic label maps (Isola et al., 2018) or from edge maps.In addition to these, the task of enhancing the photore-alism of simulated images assumes a significant impor-tance.In (Zhu et al., 2017) and in (Hoffman et al., 2017), the prob-lem of unsupervised image-to-image translation is ad-dressed by employing adversarial networks and an ad-ditional cycle-consistency loss to preserve consistencyamong the starting and generated samples and to ensureto construct a reversible map. Differently from (Zhu et al.,2017), in (Hoffman et al., 2017) a further semantic loss isadded to improve the translation. Also in (Huang et al.,2018), cycle-consistency is imposed but, in this case, itis assumed that a content latent code, that is domain-invariant and a style latent code, characteristic of the spe-cific domain, can be associated with each image and itconsiders the additional aim of capturing the diversity ofthe different target domains. Finally, in (Park et al., 2020)the idea of employing contrastive learning is introduced toface the task of unsupervised image-to-image translation.Regarding the video counterpart, different methods areproposed to address the task of video-to-video synthe-sis, with the further aim of ensuring temporal consistencyamong consecutive frames (Saha and Zhang, 2024). Forinstance, (Bashkirova et al., 2018) treat the inputs and out-puts as three-dimensional tensors and propose a 3D GAN-based method to address the domain translation by exploit-ing also the information encoded in the temporal dimen-sion. In (Chen et al., 2019) and in (Park et al., 2019) previ-ously proposed image-to-image translation approachesare extended to deploy additional methods based on usingthe optical flow to ensure consistent motion translationamong consecutive frames. In (Rivoir et al., 2021), the aimof obtaining photorealistic videos is addressed by leverag-ing image translation strategies combined with methodsthat guarantee temporal consistency by exploiting textureand appearance information and enforcing view consis-tency.In EPE, the authors introduced a promising work to en-
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hance the photorealism of simulated images and videos.The EPE framework shows relevant results in obtainingsignificant photorealism enhancement in unsuperviseddomain translation and in eliminating possible scene ar-tifacts. The practical implementations described in thiscurrent work are based on the adaptation of the modelproposed in EPE. A significant strategy used in their workconsists of exploiting additional information related tothe geometry, materials, and lighting of the objects inthe scene, which is extracted from the rendering pipelineof the video game. This additional information is asso-ciated with each input simulated image and is concate-nated in a so-called G-buffers file. In the framework, theG-buffers are used in the network, managing them witha G-buffers encoder that, using masks derived from theground truth semantic label maps, processes this addi-tional information differently for different object classes.For example, sky regions contain only the extra informa-tion about lights, and not about geometry or material. Ad-ditionally, to reduce scene artifacts, typically encounteredwhen implementing previous image-to-image translationstrategies, the authors propose to analyze the distributionof objects in images from different datasets and to usespecific sampling techniques that take into account thesedifferences. To translate images from the simulated do-main to the real-world domain, a perceptual discriminatoris used during the training procedure to distinguish theenhanced images from the real-world ones. An additionalmetric is employed to penalize substantial structural dif-ferences between the simulated and enhanced images. Toenable the discriminator to evaluate the photorealism ofthe simulated images at a high level, the authors proposeconsidering not only a binary real vs. fake decision but alsoadding other classification objectives. The discriminatoris trained to evaluate multiple perceptual feature mapsand is integrated with semantic information, obtained byleveraging the pre-trained semantic segmentation net-work MSeg (Lambert et al., 2021).

3. Materials andMethods

The practical implementations presented in this work in-volved using the EPE framework to enhance the photore-alism of different simulated input data.Specifically, four different practical implementations wereconsidered. For each one of them, the framework wasfirst trained from scratch to learn the GANs model, andsubsequently, inferences were obtained using the weightsachieved during the training phase.The framework was trained using two input datasets: asimulated image dataset and a real-world image dataset.To create the simulated dataset, each simulated RGB im-age was associated with a ground truth semantic labelmap, a robust label map generated with the MSeg pre-trained model, and a set of G-buffers data. On the otherhand, the real-world image dataset was extracted fromthe Cityscapes dataset (Cordts et al., 2016). Each real-

world image in this dataset was associated with the cor-responding robust label map generated using the MSegpre-trained model.For each implementation, both the simulated and the tar-get datasets used to train the framework consist of approx-imately 20K samples with a resolution of 960x540.After training the model, inferences were obtained from aseparate simulated test dataset consisting of 975 consec-utive frames of a drive in the VTB. This dataset had thesame structure as the training simulated dataset.Among the four different simulated datasets used to trainthe model, the first one was created with simulated RGBimages extracted from the dataset "Playing for data:Ground truth from computer games" (Richter et al., 2016),which was created using the GTA V video game. The latterthree contained data generated with the physically accu-rate 3D simulator VEROSIM (VEROSIM GmbH). The detailsof the simulated datasets used in the implementations aresummarized in the following subsections. For each dataset,the code of the EPE framework was modified to adapt todifferent G-buffers information when considering themas input to the model.
3.1. Implementation with simulated images from GTA

V videogame

The purpose of this initial implementation was to utilizesimulated images similar to those used in the EPE refer-ence paper, to achieve comparable photorealism enhance-ment results. Similar to EPE, the simulated images andground truth label maps were extracted from the datasetintroduced in (Richter et al., 2016), which is generatedfrom the GTA V videogame. However, differently fromEPE, the G-buffers data were created with the pre-trainedAI model Omnidata (Eftekhar et al., 2021), since accessto the rendering engine of the GTA V videogame was re-stricted, impeding the extraction of ground truth data. Dueto this limitation, in this implementation only G-buffersencoding the information on the structure and geometryof the objects in the scene were employed. Namely, thedepth map and the surface normals map were associatedwith the input simulated images. Thus, the primary differ-ence between this practical implementation and the onedescribed in EPE was related to the G-buffers data used. InFigure 1, an example of the starting simulated RGB image,with the corresponding G-buffers data is shown.In this implementation, the information in the G-buffersfile was equally assigned to all objects in the scene, with-out distinguishing among the different semantic classes.In this case, the code of the framework EPE was modifiedto take as input G-buffers with 6 channels associated witheach pixel of the corresponding simulated image.
3.2. Implementation with simulated images generated

with VEROSIM

In the three different implementations presented in thissubsection, the framework was trained using different
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Figure 1. Simulated RGB image extracted from the dataset (Richter et al.,2016) (top), depth map generated with the model (Eftekhar et al., 2021)(left), surface normals map generated with the model (Eftekhar et al., 2021)(right).

simulated data extracted from simulation videos of ur-ban street scenarios generated within a VTB in VEROSIM.The simulation data contained objects such as cars, build-ings, road signs, traffic lights, and vegetation that simu-late realistic street views. However, it was observed thatthe dataset generated with VEROSIM had a lower varietyof street scenes compared to the dataset extracted fromthe images generated with the video game GTA V.In all three datasets used to train the framework, the simu-lated RGB images employed were ray-tracing color images.The differences between the various simulated datasetswere determined by the different G-buffers informationutilized. The data collected in the G-buffers files, whichwere used as input to the framework, contained the fol-lowing characteristics for each one of the three implemen-tations that were considered:
1. The G-buffers file contained the ground truth depthmap and surface normals map generated with VEROSIM,as shown in Figure 2. A key difference in this implemen-tation compared to the previous one is how the surfacenormals were oriented. Previously, the surface normalswere aligned with the frame of the sensor attached to theego-vehicle; however, in this implementation, they weredefined and oriented with respect to the world frame ofthe simulation environment. As a result, when the ego-vehicle changes its orientation with respect to the worldframe, the color codes associated with the x, y, and znormal vectors change accordingly. Therefore the colorcode used for the surface normal maps was not consistentamong the different frames of the training dataset.2. The G-buffers file contained the ground truth depthmap generated with VEROSIM and the surface normalsmap generated using the pre-trained AI model Omnidata,as can be seen in Figure 3. Therefore the only differencewith respect to the dataset generated for the previous im-plementation is related to the surface normals information.In this case, the surface normals maps were defined withrespect to the reference frame of the sensor attached tothe ego-vehicle, as in the implementation with GTA data.3. The G-buffers file contained the ground truth depth

Figure 2. Ray-tracing simulated color image (left), corresponding groundtruth depth map (middle) and ground truth surface normals map (right),all generated with the VTB in VEROSIM.

Figure 3. Ray-tracing simulated color image (left), and correspond-ing ground truth depth map (middle), both generated with the VTB inVEROSIM, and surface normals map generated with the AI model (Eftekharet al., 2021).

map, the ground truth surface normals map, and theground truth albedo map, all generated by employingVEROSIM, as shown in Figure 4. In this simulated dataset,the surface normals maps were defined with respect to thereference frame of the sensor attached to the ego-vehicle.This allowed a consistent color code used for the surfacenormals maps throughout all the frames in the dataset.
In the first two implementations using simulated datagenerated with VEROSIM, the G-buffers information wasequally assigned to all objects of the scene, without differ-entiating between the various semantic classes. Instead,in the third implementation with VEROSIM simulated im-ages, the albedo maps were also used and they were theonly data associated with the sky semantic class. There-fore, for this class only the information related to the color,contained in the albedo G-buffers, was considered, whilethe information related to the structure and the geome-try, not relevant for the sky region, is completely excludedfrom this semantic class. The aim of this implementa-tion choice was to address the presence of some artifactsencountered in the sky regions in the previous implemen-tations.

Figure 4. Ray-tracing simulated color image (top-left), correspondingground truth depth map (top-right), ground truth surface normals map(bottom-left), and ground truth albedo map (bottom-right), all generatedwith the VTB in VEROSIM.
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For the first two implementations described in this sec-tion, the code of the EPE framework was modified to take6-channel G-buffers as input for each pixel of the sim-ulated image. In the third implementation, 9-channelG-buffers were used.
4. Results and Discussion

This section presents the details of the training procedureand the resulting inferences obtained implementing theframework with the datasets described in subsections 3.1and 3.2.As indicated in the EPE paper, both the generator andthe discriminator were trained with an L2 loss, the Adamoptimizer was employed in training both networks withweights decay 0.0001 and parameters β1 = 0.9 and β2 =0.999. The learning rate used was 0.0001, halved every100K iterations and the batch size was set to 1. The NVIDIAGeForce RTX 3090 GPU was used for training the modeland obtaining inference in all the implementations con-sidered.In each implementation, the framework was trained for1M iterations. Inferences were obtained considering theframework fully trained. In some cases, inferences werealso obtained by considering the model learned after alower number of iterations. In each implementation, in-ferences were obtained by using a test dataset that corre-sponds, in the way it is generated, to the datasets usedduring the training phase of the framework. Additionally,some cross-inferences were obtained. Moreover, the cor-responding video data were generated from the inferencesobtained in each implementation.All the inferences obtained were intended to replicate thereal-world images from the Cityscapes dataset (Cordtset al., 2016). Initially, the inferences are evaluated quali-tatively, checking the overall photorealism of the scene,the presence of any artifacts and the preservation of objectstructures for each set of resulting inferences. Further-more, the temporal continuity of generated videos fromthe inference frames is considered.Finally, results that show potential for improvementin either simulation time or photorealism are processedusing the real-time capable object detector YOLOv3(Redmon and Farhadi, 2018) employing the standardweights provided by its authors. The evaluation is doneusing the standard metrics: Average Precision (AP) andmean Average Precision (mAP) (Everingham et al., 2010).

4.1. Inferences from themodel trained on GTA V simu-
lated images

The inferences presented in this section were obtainedemploying the simulated dataset described in subsection3.1.In Figure 5, an example of the inferences obtained by themodel trained for 1M iterations is shown and compared

Figure 5. Starting simulated image from GTA V (left) compared to thecorresponding resulting inference obtained with the model trained for 1Miterations (right).

to the corresponding starting simulated image. The re-sulting inferences are significantly more photorealisticwhen compared to the images extracted from the startingdataset of GTA V frames (Richter et al., 2016). Specifically,the resulting enhanced images reveal smooth and morerealistic asphalt, similar to one of the streets shown in theCityscapes dataset. The vegetation is also far more volu-minous and photorealistic and gloss has been added tothe vehicles to resemble the vehicles of real-world images.No significant artifacts are encountered in the obtainedinferences.
4.2. Inferences from the model trained on simulated

images generated with VEROSIM

This subsection presents the inferences obtained from themodel trained with the datasets described in subsection3.2. Therefore, the objective of using the framework isto evaluate the photorealism enhancement in simulatedimages generated with the VTB in VEROSIM. The infer-ences obtained for each one of the three simulated datasetsintroduced in subsection 3.2 were evaluated in the sameorder:
1. Firstly, the inferences obtained with the frameworkimplemented with the first VEROSIM simulated datasetare considered. As can be observed in Figure 6, in the re-sulting inference obtained with the weights of the modeltrained for 1M iterations, all the structures of the objectsare preserved and the photorealism of the single objectsis enhanced in terms of visual style. This can be seen forexample from the asphalt of the street that is smoother,from the vegetation that is more voluminous, and fromthe majority of objects in the scene, that are rendered insuch a way to resemble the ones of the Cityscapes dataset.However, the artifacts encountered, especially on the ego-vehicle and on the sidewalk, decrease significantly theoverall photorealism of the scene. In Figure 6, the corre-sponding inference obtained with the model trained for900K iterations, it can be seen that, even if some artifactsare encountered, they are significantly less evident thanthe ones observed in the inference obtained with the modeltrained for 1M iterations. Comparing the visual style, theinference obtained with the model trained for 900K itera-tions is characterized by colors slightly less similar to theones of the Cityscapes dataset than the ones obtained withthe model trained for 1M iterations, but, thanks to the sig-



6 | 36th EuropeanModeling& Simulation Symposium, EMSS 2024

nificant fewer artifacts, the inferences obtained with themodel trained for 900K iterations, have more overall real-istic features. Considering the resulting videos obtainedwith the corresponding inferences, they show a discretetemporal consistency in most of the scene but some tem-poral flickering artifacts are encountered mainly on thesidewalks and ego-vehicle.2. In this case, the inferences were obtained by imple-menting the framework with the second VEROSIM datasetpresented in the previous section. Both the inferences ob-tained with the model trained for 900K iterations and 1Miterations are shown in Figure 7. As in the previous casebetter overall photorealism can be observed by evaluatingthe inferences obtained with the model trained for 900Kiterations. Specifically, in the inference obtained with themodel trained for 900K iterations, it can be seen that thegeneral photorealism of the scene is enhanced with re-spect to the starting simulated image and all the elementsof the scene show a visual style more similar to the one ofthe reference Cityscapes images (Cordts et al., 2016). Inthe inferences obtained with the model trained for 900Kiterations, only small artifacts are encountered especiallyin the ego-vehicle, while more evident artifacts are visiblein the sample inference obtained with the model trainedfor 1M iterations. Also in this case, the videos generatedfrom the corresponding inferences show quite good tem-poral stability, and only small artifacts can be observed inthe sidewalks.3. Finally, the inferences obtained implementing theframework with the third VEROSIM dataset are presented.In the inference obtained with the model trained for 1Miterations shown in Figure 8, an enhanced photorealismof all the objects of the scene can be observed, addition-ally, the visual style is noticeably more similar to that ofthe real-world reference images. Though there are somesmall artifacts present for example in the sidewalk and inthe lower part of the ego-vehicle, they are much less visi-ble than the ones in the inferences of the previous imple-mentations with simulated data generated with VEROSIM.Moreover, the video generated with the correspondinginferences shows good temporal continuity and only in-significant temporal artifacts are observed.
In all the inferences obtained, all the structures of the ob-jects of the scene are well preserved.In addition, some sets of cross inferences were obtained.These inferences were obtained from a simulated testdataset that was from a different domain as that of theof the simulated dataset used to train the model. Thefirst set of cross-inferences used the weights from themodel trained for 1M iterations which yielded the best re-sults (third implementation with the VEROSIM dataset).The inferences were obtained starting from a simulatedtest dataset of raster images, which were generated withVEROSIM. Raster images are generated with a raster cam-era sensor and are lower-quality images with respect tothe ray-tracing images previously considered. The result-ing inference obtained from the simulated raster image

Figure 6. First implementation with VEROSIM data: starting ray-tracingsimulated image (top) compared to the corresponding resulting inferencesobtained with the model trained for 900K iterations (bottom-left) and 1Miterations(bottom-right).

Figure 7. Second implementation with VEROSIM data: resulting inferencesobtained with the model trained for 900K iterations (left) and 1M iterations(right).

can be seen in Figure 9.For the second set of cross-inferences, the weights fromthe model trained for 1M iterations using the GTA V simu-lated dataset were employed, while the same test datasetused to test the best VEROSIM implementation, presentedin subsection 3.2, was used. Due to the difference betweenthe weights of the trained models, the albedo maps werenot used in this case. Figure 10 shows the resulting infer-ence obtained from the second set of cross-inferences.As can be observed, in both cases the resulting cross-inference shows more photorealistic features with respectto the starting simulated images, in particular in termsof rendered vegetation, buildings and vehicles. However,the photorealism enhancement in the output images isless evident compared to that of the inferences processedwithout any cross-inference, as expected. This can bejustified by the fact that when running cross-inferences, itis necessary to generalize to objects in the scene that differa lot, in terms of colors and visual style, from the onesof the training dataset. This exposes the difficulties thatthis framework has to change domains without additionalfine-tuning or Transfer Learning approaches.
4.3. Object detection

Using the standard metric AP with intersection over union(IoU) thresholds of 50% (AP@0.5) and 75% (AP@0.75), wecalculated the mAP to evaluate the expected performanceof the object detector YOLOv3 across both the base andenhanced test datasets. Despite the detector’s relatively
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Figure 8. Third implementation with VEROSIM data: starting ray-tracing simulated image (left) compared to the corresponding resulting inferenceobtained with the model trained for 1M iterations(right).

Figure 9. Cross-inferences obtained from the raster dataset: starting simu-lated raster image (left) compared to the corresponding resulting inferenceobtained with the model trained for 1M iterations (right).

Figure 10. Cross-inferences obtained with the model trained with GTA Vdataset: starting simulated image (left) compared to the corresponding re-sulting inference obtained with the model trained for 1M iterations (right).

low performance of the detector, which can be attributedto the challenging nature of the dataset (pixel-accurateground truth labels given by VEROSIM, regardless of ob-ject size) and the discrepancy between the training andevaluation domains of YOLO, this metric is valuable forcomparing our results and identifying potential issues forfuture research.
As shown in Figure 11, the base ray tracing dataset ex-hibits the best performance. The enhanced datasets showlower performance, with the cross-inference using themodel trained with GTA V data to enhance the VTB beingthe best among them. As expected, performance gener-ally decreases at the AP@0.75 threshold, especially in theraster and cross inference of the raster datasets. This indi-cates that improving the quality of the dataset (ray tracingvs raster) increases performance in more challenging de-tection tasks. However, the evaluation also shows thatenhanced visual realism does not necessarily translate toimproved object detection performance. This suggeststhat the artifacts introduced by the enhancements sig-

Figure 11. Average Precision (AP) and mean AP (mAP) for car detectionsusing the object detector YOLOv3 for five selected datasets: two base simu-lated ones and three enhanced ones, two of which are the cross-inferencedatasets. Intersection over Union (IoU) of 50% and 75%.

Figure 12. Car detection examples for the five evaluated datasets. Fromtop to bottom and left to right in each row: ray tracing, raster, third imple-mentation with the VTB in VEROSIM, cross-inference obtained with themodel trained with GTA V, and cross-inference starting from simulatedraster images datasets.

nificantly impact real AI tasks, and enhancement effortsshould focus not only on visual improvement but also onpreserving the structural integrity of the objects in thescene.
Figure 12 displays the first frame from the five selecteddatasets showing the car detections. It can be observedthat both the enhanced and low-quality datasets strugglemore with detecting smaller objects.
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5. Conclusions

The primary goal of this research was to adapt and applythe framework introduced in "Enhancing PhotorealismEnhancement" (EPE) to generate photorealistic simulatedsensor data from simulation data obtained from a VirtualTestbed (VTB) available in the physically accurate 3D simu-lator VEROSIM. Our work demonstrated several implemen-tations of the framework, each tailored to different fea-tures of simulated data. Initially, we achieved results com-parable to those presented in the original EPE research,using a reduced amount of G-buffers information. Subse-quently, in the first two implementations with VEROSIMdata, the inferences obtained show enhanced photoreal-ism in their visual style, with respect to the correspondingstarting simulated images, but some artifacts visible in thescene affect the realism of the represented subjects. No-tably, in the last implementation with VEROSIM data, theinferences obtained showed enhanced photorealism whilefurther decreasing the amount of artifacts encountered.Additionally, our cross-inference tests revealed limi-tations in domain generalization, underscoring the needfor potentially incorporating transfer learning or furtherfine-tuning to enhance model robustness across variedinputs. Object detection tests further illustrated that whileenhanced datasets could mimic real-world textures andlighting better, they did not necessarily translate to im-proved detection performance, particularly under stricterintersection over union (IoU) thresholds.
6. Further works

Our results suggest future research should focus on en-hancing visual quality while simultaneously minimizingthe introduction of artifacts and improving the general-ization capabilities of photorealism enhancement frame-works. It will be crucial to enhance the structural integrityand consistency across various simulation environments,especially for real-world AI applications where accuracyand reliability gain significant importance.Further research could also explore the inclusion of rastersimulated sensor images during the training phase to po-tentially decrease the computational demands of the VTB.Given that better results were achieved with increased G-buffers information, it stands to reason that expandingthe G-buffers data associated with simulated images couldyield further improvements. Specifically, integrating ad-ditional scene lightning information might enhance theoverall results.
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