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Abstract

Despite the positive sustainability prospects of drones, their flight range is compromised due to their limited battery capacity and thepayload of delivered parcels. An alternative to address this challenge is the placement of charging stations where drone batteries arerecharged to expand their flying range. The aim of this work is determining the number and location of drone charging stations fortopology-dependent scenarios: rural areas and densely populated urban areas. To the best of the researchers’ knowledge, there iscurrently no existing study in the literature that specifically investigates the impacts of topology on drone-assisted delivery. This studyfocuses on designing drone assignment strategies through optimization-simulation, aiming at minimizing charging stationinstallation costs and operational costs and as a novelty, drone battery consumption is considered in the model design. Drone deliveryorder instances with different sizes and spatial distributions are generated to simulate realistic scenarios of demand and evaluate theoptimization model to allocate the customer demands to stations and dimensioning drones fleet. Results show that considering parcelweight and flight distance has a significant impact on the performance of drone allocation to stations and highlight the effects oftopology in the implementation of a drone-assisted delivery network.
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1. Introduction

The ongoing advancement in technology have expandedthe mobility options of unmanned aerial vehicles (UAV),capturing the interest of the researchers worldwide. Evenif last-mile delivery of goods made by drones is consideredto be in its experimental phase, drones represent one ofthe most promising technologies with successful trials ofinternational enterprises such as Amazon, that announcedtheir newest Prime Air drones will deliver to customersby the end of 2024, in three U.S. locations as well as citiesin Italy and the UK (Amazon, 2023). As Zou et al. (2023)highlight in their work, compared with conventional deliv-ery vehicles, drone delivery offers higher delivery speeds,avoiding traffic jam problems, flexible throughput capac-ity by adjusting fleet sizes and lower operating costs thancourier delivery systems.
Drones often represent the unique option to reach dis-

tant areas and, thus, drones have an increasing poten-tial to be used from surveillance and monitoring to trans-portation applications to widen the accessibility to ruraland isolated areas. As Sham et al. (2022) mention in theirresearch, accessibility is a fundamental prerequisite forsustainable development and people living in rural areasface major challenges due to long distances between thecommunity and the nearest facility. Logistic processesbecome complicated in these areas and as a consequence,these areas suffer from inadequate access to basic services,transport and facilities, resulting in territorial and socioe-conomic marginalisation.Thus, having in mind the previous considerations, theaim of this work is to design a simulation-optimizationmodel which finds the optimal number of drone hubs fortwo scenarios: (i) densely populated urban areas and (ii)sparse rural areas. The problem considers the followingdrone delivery system aspects: (a) limited battery and pay-
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load capacity of drones, (b) limited flight endurance andrange and (c) volatile delivery order scenarios. Therefore,the novelty of this research is that our model considers bat-tery energy consumption during UAV movement. More-over, we identify the location and size of the stations, di-mensioning the drone fleet needed to attend the demand ofthe customers assigned to each station. To the best of ourknowledge, there is currently no existing study in the liter-ature that specifically investigates the impacts of topologyon drone-assisted delivery.Next section presents a review of relevant literatureabout UAV technology, and optimization and simulationapproaches. Section 3 describes the proposed methodologyand displays the computational experiments and Section4 reveals the obtained results. Finally, Section 5 highlightsthe main findings, and concludes the analysis.
2. State of the art
Drone applications extend over a wide range, from moni-toring such as in previously published researches (Praschland Schedl, 2023; Farina et al., 2021), or humanitarianlogistics as in Ghelichi et al. (2022), to urban transporta-tion and delivery, as regards to this study. The primarychallenge faced by UAVs is related to battery limitations.As showcase in the existing literature, this limitation canbe mitigated through at least three methods: Firstly, thedrone-truck collaboration (Gonzalez-R et al., 2024); sec-ondly, the dynamic landing zones, which employ pub-lic transportation vehicles, such as roof-top of buses, fordrone assistance (Moadab et al., 2022). For instance, Denget al. (2023) propose a novel routing and scheduling al-gorithm for drone delivery considering the fixed sched-ules of public vehicles. As proposed in this paper, the lastapproach is the placement of charging stations (CSs) orservice centers where drone batteries can be replenished.Given a large amount of customers that has to be served ina large area, a battery charging need will show up. Charg-ing stations guarantee longer flying time and are utilizedas platforms where drones land and have their batterieschanged or recharged Raivi et al. (2023).In the literature, a great range of works tackles the last-mile delivery problem with drones addressing vehicle rout-ing problems for small sized and uniform drone fleets.Nevertheless, in practice, delivery companies assemblefleets of drones considering heterogeneous configurationsand characteristics (speed, endurance and energy supplytechnique) to satisfy various customer package demandsas Wang et al. (2023) presents. Thus, this study aims toin-depth research on how to deliver packages via dronesefficiently through charging station (CS) deployment tak-ing into account the varying flight endurance and load.Similarly, Bruni et al. (2023) introduce the Drone LatencyLocation Routing Problem, which combines Logistic Ful-fillment Center selection and drone routing consideringload-dependent drone energy requirements.

3. Materials andMethods

3.1. Problem formulation

This section presents the integer problem (IP) to deter-mine the configuration of the drone hubs, determiningtheir location, the allocation of customer demand to sta-tions and the fleet of drones in each CS. We extend theclassic Coverage Facility Location Problem (CFLP) by op-timally deploying the drone hubs in a parcel distributionsystem with a fleet of drones operating with different pay-loads and maximum flight ranges.This model is defined over the set of nodes i ∈ I and
j ∈ J representing the potential locations for drone CSinfrastructures and the potential customer demand pointshaving demand wj (measured in kg), respectively. Thenotation, variables, and parameters are described in Ta-ble 1 whereas the mathematical model is contained in theEquations (1) - (6).
Table 1. Model variables and model parameters.

Variable Description
yi Binary variable valued 1 if CS i ∈ I is open, 0 otherwise
xij Binary variable valued 1 if customer j ∈ J is assigned andserved by station i ∈ I, 0 otherwise
uij Binary variable valued 1 if customer j ∈ J is unattended andnot assigned to station i ∈ I, 0 otherwiseParameter Description
sci Set up cost of a charging station i ∈ I
M Penalty for unattended demand
pe Price of electricity in euro per kwh
rj Flight range of drone for demand of customer j ∈ J
wj Weight of demand of customer j ∈ J measured in kg
euj Energy consumption per km traveled in Wh/km
dij Distance from customer j ∈ J to a CS i ∈ I in km
cij 1 if distance di,j from customer node j ∈ J to a chargingstation i ∈ I is smaller than rj, and 0 otherwise
NDi Maximum number of drones that a CS i ∈ I can host

Min
∑
i∈I

sci · yi + ∑
i∈I
j∈J

M · uij + ∑
i∈I
j∈J

pe · euj · dij · xij (1)

subject to∑
i∈I

(cij · xij + uij) = 1, ∀j ∈ J (2)
cij · xij ≤ yi, ∀i ∈ I, ∀j ∈ J (3)∑

j∈J
cij · xij ≤ NDi · yi, ∀i ∈ I (4)

∑
i∈I

wj · cij · xij ≤ p, ∀j ∈ J (5)
xij, uij, yi ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J (6)

The objective function (1) defines the minimization in-stallation and operational costs together with minimizing
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unattended demand, that is, maximizing demand cover-age. Restrictions considered in the optimization problemsum up to station capacity (4), drone payload capacity (5)and assignment (2, 3) constraints. Expressions (6) definethe decision variable ranges.The power consumed by a drone in a delivery actionfrom facility i ∈ I to demand point j ∈ J is estimated withstatistical methods as described in Equation (7), adaptedfrom Figliozzi (2017), where the relevant parameters areexplained in the Table 1:

euj = (wj + mt) · g
2 · ld · η

+ mt · g2 · ld · η
(7)

Note that the binary parameter ci,j is used to force theCFLP to only assign potential CS nodes to client nodesthat are within the range of a drone rd, since this is themaximum distance the drone can travel depending on thecarried package load (wj) and the battery capacity (bc) suchthat:

rj = bc · V
euj

(8)
In order to avoid unfeasibility, a penalty function isadded to the objective function consisting of a penaltycoefficient M (sufficiently large number) multiplied byan artificial variable ui,j, that stands for the unattendeddeliveries. The travel distances of drones is consideredEuclidean. This assumption is employed to estimate theenergy consumption of each round trip done by a drone,which is used to calculate the last term of the objectivefunction taking into account the electricity price pe. Theprice of electricity is fixed to one of the values obtained inMarch 17th 2024 of e0.1228 per kWh consumed in Spain.The number of drones a station can host is limited to 10for experimentation for all the stations (NDi = 10).Finally, the drone-assisted delivery system has the fol-lowing features:

• If a drone is launched from a node i ∈ I, it must returnto the same point i ∈ I after the order delivery.• A drone can only carry one order per flight, thus it canonly go to a customer j ∈ J and return back to its homestation i ∈ I without visiting other customer.• Drones fly at a constant speed and energy consumptionattributed to take off and landing for order preparationand serving are neglected.
3.2. Computational Experiments

In this section, we generate the instances to simulatedrone-assisted delivery scenarios under different condi-tions of demand spatial distribution. All experiments areconducted on a Windows 11 desktop with Intel Core i7-10750H CPU 2.60GHz, and 16 GB of RAM and are solved

using IBM®ILOG CPLEX 12.6.2 API for the Java Environ-ment solver in the Anylogic simulation software.
3.2.1. Simulation of Topology CasesTo study the effect of demand dispersion in a drone-assisted delivery system, we simulate various instancesof customer orders that will differ in spatial distribution.Two settings will be considered. On the one hand, ru-ral area instances are simulated, considering three cases:small, medium sized, and high populated rural areas. Onthe other hand, instances simulating urban demand willbe created, distinguishing between low-, medium-, andhigh-density urban areas.Following the methodology proposed by Tao et al.(2022), the instances of demand nodes and potential loca-tions for drone hubs will be defined as instance (n, m, s, d)and will be generated in a grid 2dx2d around a central point,being 2d the edge length of the squared grid. The parame-ter n corresponds to the number of CSs generated in theinstance. Stations coordinates will follow a uniform dis-tribution U(–d, d). These locations will be taken as focalpoints to generate the customer nodes, where m is thenumber of customer nodes generated around each station.Customer coordinates follow a normal distribution cen-tered on the focal point and with a standard deviation s.
3.2.2. Parameter SettingPayload is one of the key factors affecting the flight du-ration and, therefore, it should be considered in dronescheduling as it impacts on the battery endurance. Notethat there will be m orders to be attended. Thus, there are
m payloads to be delivered, which are randomly generatedfrom a continuous normal distribution with mean 1 kg andstandard deviation 0.4 kg -N (µ = 1,σ = 0.4). Similarly,the set up cost values for each of the n facilities are alsorandomly generated, considering a uniform distribution
U[500, 1000].Drones considered for experimentation are multi-rotortype, which are predominant for delivery purposes. In thisparticular study, Wing delivery company’s (Wing, 2022)commercial drone specifications are applied to the model.Parameters characterizing the drone are shown in the Ta-ble 2. Gravity is taken as g = 9.81 m/s2 for experimentalcalculation.To simulate the scenarios of demand, we set theparameters n, m, sandd according to the situation.For rural scenarios, three instances are presented:small -(50, 1, 1.5, 30), medium -(35, 2, 2, 30), and large-(21, 5, 3, 30). The first instance corresponds to the most
Table 2. Wing drone parameters considered for experiments.

Parameter Description Wing
ld Lift to drag ratio 3.5
η Power transfer efficency 0.67
mt Tare weight of a drone without load in kg 3.8 kg
bc Battery capacity from datasheet in mAh 17000 mAh
V Voltage of battery from datasheet in V 22.2 V
p Maximum payload of a drone in kg 1.2 kg
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Figure 1. Drone-assisted rural delivery network for a singles run of a) instance (50, 1, 1.5, 30), b) instance (35, 2, 2, 30) and c) instance (21, 5, 3, 30).

sparse scenario, with dispersed towns with little demand,while the third instance corresponds to a scenario wheredemand is concentrated in towns. The area of thedrone-assisted system generated is of 3600 km2. In otherhand, the three instances of urban scenarios are: small-(10, 5, 2, 4), medium -(10, 7, 2, 4), and large -(15, 7, 2, 4).In all cases a 16 km2 area urban area is considered, andthe number of customers and potential CSs is increased ineach case, making each instance more populated.

Figure 2. Coverage (a) and cost (b) boxplot for 50 runs of the rural instances

4. Results and Discussion

In this section instances are generated and run 50 timessuch that, for each demand scenario 50 demand and facil-ity settings are generated and 50 solutions are reported.This section presents the statistics of the solutions ob-tained from running the model. In all cases, results showthe optimal configuration of drone CSs for a given demandof parcels.
4.1. Rural Area Scenarios

For the first instance a sparsely distributed rural demandis considered. This scenario is run for 50 samples to assessthe effect of randomness in the input setting. The samemethodology has been followed for the other rural sce-narios, leading to the results displayed in Figure 2. In allcases, coverage lies around 65% and 75%, being the high-est case the one with more concentrated demand nodes(21, 5, 3, 30) and the lowest the one with the most scatteredframework. Note that in most cases the reason to leavea client unattended has to do with the payload limitation.Since the simulation of the weight of orders follows thedistribution (W ∼ N [µ = 1,σ = 0.4]), the probability togenerate a weight below the considered drone’s payload(p = 1.2kg) is of 69.14%, that is, P(W < 1.2) = 0.6914.Therefore, the coverage is constrained due to the payloadcapacity.Similar trend can be seen in the computed cost of thedelivery system, as the higher the population and concen-tration of demand, the more expensive the cost. Noticethat the actual cost of the framework is computed fromsubtracting the unattended penalty cost from the objectivefunction. These results agree with the number of facili-ties selected after solving the CFLP, which are featured inTable 3. For the first rural instance 50 runs, the mean ofopened stations lies between 3 and 5. This means that out
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Figure 3. Drone-assisted urban delivery network for a singles run of a) instance (10, 5, 2, 4), b) instance (10, 7, 2, 4) and c) instance (15, 7, 2, 4).

of 50 potential CSs, these are enough to attend around 70%of the demand of the system. Similarly, for the instance(21, 5, 3, 30) the mean of opened felicities is 5, and for theinstance (15, 7, 2, 4) that mean up to 8.
After the CFLP is solved, the model, developed in Any-logic simulatin software, generates a GIS map with theobtained framework of demand nodes and opened facili-ties. Figure 1 displays one sample of each of the rural areainstances, depicting the potential locations for stationswith bigger dots than the demand nodes. Once the CFLPis solved, the selected stations show up in dark blue andthe ones not selected stay uncoloured. When a customer isgoing to be served by a station, its node turns blue, whilewhen it is unattended the node shows up in red. The set-ting of the parameters n, m, s and d for generation of thetopology of customers and CSs gives as a result the mapsin Figure 1. It can be seen how the topology changes froma more sparse, low populated and more potential stationssetting that corresponds to instance (50, 1, 1.5, 30), to aless stations and more concentrated situation for instance(21, 5, 3, 30). In particular, if we pay attention to this in-stance, we can see that there are 21 potential facilities, outof which 8 are opened and there are 5 customer nodes cen-tered around each of these facilities.

4.2. Urban area Scenarios

For urban scenarios, the area of delivery considered is re-duced to 16 km2. In this case, the number of customersconsidered in each instance mimics the number consid-ered in the rural instances, such that for the first rural andurban instances 50 clients are considered, for the second70 and, for the third, 105. As seen in Figure 4, the cov-erage results obtained from running 50 samples of eachurban instance follow a similar trend to the ones obtainedfor rural areas. For most of the runs, coverage results areranged from 65% to less than 75% and it increases as the

population and concentration of the considered demandincreases. It should be pointed out that for the urban case,coverage for the small and medium instances has almostthe same value and varies across the same range. Whereas,compared with the rural case, the coverage range changessignificantly from the small to the medium instance. Notethat the demand coverage corresponds to the percentageof attended customers and that depending on the instancethe amount of customers to be attended is different andcan be either 50, 70 or 105.

Figure 4. Coverage (a) and cost (b) boxplot for 50 runs of the urban in-stances
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Table 3. Instances mean values

Instance Time (s) Cost (e) Demand Coverage Open CSs(50, 1, 1.5, 30) 0.5 7586.52 69.06 % 4(35, 2, 2, 30) 0.5 10071.51 69.07 % 5(21, 5, 3, 30) 0.5 15547 70.29 % 8(10, 5, 2, 4) 0.5 3543 68.72 % 4(10, 7, 2, 4) 0.5 4761 68.74 % 5(15, 7, 2, 4) 0.5 7101 70.02 % 8

When it comes to costs and number of selected facili-ties, it can be appreciated that despite following a similartrend, cost as significantly lower than the ones obtainedfrom rural cases. While for the small urban instance thesystem cost ranges from e2,000 to e4,000 for small ruralinstances it lies betweene5,000 ande10,000. For mediuminstances, in urban samples varies from e3,000 to e6,000and in rural samples lies between e6,000 to e14,000 andfinally, for large cases, ranges betweene6,000 ande8,000in urban and e11,000 and e20,000 in rural.Figure 3 gathers three examples of the obtained CS andcustomer network from solving the CFLP for the urbaninstances. Instance (10, 5, 2, 4) corresponds to the lesspopulated city example, with 50 customer demands and10 potential sitting locations for drone hubs. The solutionpresented opens 4 stations to serve 37 customers, leaving13 orders unattended. Instance (10, 7, 2, 4) serves 55 ordersout of 70 customers with 6 operative stations. Finally, forthe most densely populated instance the solution of theoptimization problem leads to 8 open facilities to attend76 out of 105 customers.
4.3. Analysis of Energy Consumption

The drone adopted for the study is the Wing delivery com-pany’s commercial model. The results obtained from run-ning the proposed experiments give that the average en-ergy consumed per km travelled is around 18 km, calcu-lated from equation 7. Similarly, considering the batterycapacity of these commercial drones, with equation 8 itcan be drawn that the maximum flight range is on average21 km for these drones, which coincide with the specifi-cations from commercial drone specifications shared byWing. In this context, Wing announced the introductionof a new prototype to their drone fleet catalogue by the endof 2024 (Wing, 2024). The motivation for designing thisnew aircraft was that 70% of all US orders can be deliveredby one Wing aircraft, while 30% are delivered by two. Tooptimize their business, they have doubled the capacity oftheir drone from 1.2 kg to 2.2 kg. This brings new possi-bilities for future analysis and research, as existing fleetscould be complemented with different drone capacities todevelop heterogeneous fleet models.This study considers the optimization of parcel deliveryby drones with the integration of charging stations. Byformulating an optimization problem aimed at minimiz-ing costs associated with the system setup, operationalenergy, and customer order fulfillment, we design a cost-effective network of drone hubs. Our model accounted

for the limited battery and payload capacities of drones,flight range constraints, and different delivery scenarios,incorporating the selection of optimal charging stationlocations and demand allocation. Major players in the de-livery sector, including Amazon, Google, UPS, and DHL,are heavily investing in advancing their UAV technologiesfor everyday operations. Our research aims to supportthese efforts by providing insights into establishing oper-ational frameworks conducive to widespread adoption ofdrone-powered delivery solutions. Thus, we introduce anoptimization model designed to support decision-makingprocesses in crafting distribution strategies leveragingexisting drone technologies.
5. Conclusions

In this study, a Facility Location Problem has been posedto address the design of a drone charging stations networkaccording to the requested parcel demand. There are twomajor conclusions to be drawn from our work. Firstly, interms of results, we have found that considering parcelweight and flight distance has a significant impact on theperformance of drone allocation to stations, as it has adirect effect on the battery consumption and therefore,the flight range. These findings highlight the importanceof adjusting operational parameters based on drone pay-load and range to optimize the delivery system. Secondly,our research highlights the effects of topology in the im-plementation of a drone-assisted delivery network. Twodifferent settings have been considered, with the aim to an-alyze the effect of the demand and facility topology in thedelivery system performance. While the majority of exist-ing studies focus on minimizing completion time or totaltravel distance, considering demand into models presentsa significant advantage. Apart from demand dispersion,our model also includes parcel demand estimation, em-ulating the uncertainty in demand. Lastly, as renewableenergy continues to develop towards a low-carbon profile,alternative sustainable transport emerges as a potential so-lution to this environmental transition. The proliferationof electric vehicles in all their ways (road or air) is leadingto a challenge for charging infrastructures and creates theneed for expansion to meet the future charging demandsof these vehicles.
While our model proved effective in optimizing delivery,certain limitations must be acknowledged. Data limita-tions, potential inaccuracies, and omitted factors like cli-mate impact and traffic circumstances may have affectedour analysis. Future research should focus on overcomingthese limitations by acquiring primary data sources andconducting in-field surveys to enhance the accuracy andreliability of models. It must be noted that parameter val-ues selected for our experiments could be easily adjustedaccording to other scenarios that could be posed in futureworks. As Dukkanci et al. (2023) emphasize, consideringuncertainty generally increases computational difficulty,as in related delivery and location problems. Neverthe-
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less, our model is able to obtain a real-time solution. Asdrone-assisted deliveries are already being implemented,drone hub facility location considerations are necessarynot only for economic purposes, but also for social interest,since drone deliveries play a crucial role in medical suppliesand humanitarian relief supply. These deliveries are oftentime-sensitive and may be affected by uncertain weatherconditions and any uncertainty related to delivery logis-tics. For that, future work will focus on creating a model onwhich time is also included. In particular, the uncertaintyof daily demand will be considered through a simulationframework that estimates the demanded packages thatmust be delivered in the urban area during a given periodof time, such that the number and location of CSs are opti-mally established to maximize coverage according to theoptimization results.
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