

© 2024 The Authors. This article is an open access article distributed under the terms and conditions of the Creative
Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

1

36th European Modeling & Simulation Symposium, 015
21th International Multidisciplinary Modeling & Simulation Multiconference

2724-0029 © 2024 The Authors.
doi: 10.46354/i3m.2024.emss.015

Pipeline Representation Using Generic Parallel
Algorithms in Heterogeneous Parallel Computing. A
comparative analysis

Mario Rossainz-López1,*, Bárbara Sánchez-Rinza1, Zuriel López-Sosa1 and
Manuel Capel-Tuñon2

1 Faculty of Computer Science, Autonomous University of Puebla, Av. San Claudio and 14 Sur Street, San Manuel,
Puebla, México, C.P. 72570
2Software Engineering Department, College of Informatics and Telecommunications ETSIIT, University of
Granada, Daniel Saucedo Aranda s/n, Granada 18071, Spain

*Corresponding author. Email address: mrossainzl@gmail.com

Abstract
Using Parallel Objects and Structured Parallel Programming, the parallel representation of the Communication Pattern between
Processes called Pipeline is shown, whose implementation is carried out through different models of Generic Parallel Algorithms
within Heterogeneous Parallel Computing (HPC): As a Parallel Design Pattern or PDP, as High-Level Parallel Composition or
HLPC and as Flow Graph Interfaces or FGI through programming with message passing. An original and effective development
methodology for new programmers in parallelism is proposed for each of them. In these three proposals for Generic Parallel
Algorithms, the same problem-example is solved as a case study, and a comparative analysis of their models and designs is
carried out, as well as the performance obtained in the execution of said proposals and demonstrate their usefulness,
programmability, and performance. The objective of this work is to provide the programmer and/or novice user with different
multicore programming approaches so that without much effort they can develop their programs according to a sequential
programming style, obtaining automatically, easily and the counterpart parallelization of your code with the help of a specific
programming environment like the one proposed.

Keywords: Parallel Objects, Structured Parallel Programming, Generic Parallel Algorithms, HPC, HLPC, PDP, FGI, Pipeline

1. Introduction

The present work proposes the design of algorithms
that can be parallelized using Parallel Design Patterns
(PDPs), High-Level Parallel Compositions (HLPCs),
and Flow Graph Interfaces (FGI), as an original
proposal for Heterogeneous Parallel Computing, whose
definition is found in (Voss, et al., 2019) so that the
transformation of existing sequential applications into

parallel applications for multiprocessor environments
is easy to carry out by the novice programmer when
using the specific programming environment proposed
here. The Intel OneApi Development Kit is used to
program the PDPs and HLPCs using SYCL (Reinders-
Hames, et al., 2021), the Threading Building Blocks
(TBB) library (Voss, et al., 2019) is used to program the
FGIs, and the Intel DevCloud cluster (Bockhorst, 2021).
It offers us access to CPUs and GPUs to develop, test and
execute applications that are solved with the use of the

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mrossainzl@gmail.com

2 | 36th European Modeling & Simulation Symposium, EMSS 2024

pipeline through the 3 proposals. We intend, through
Structured Parallel Programming, Parallel Objects, and
Object-Oriented Programming (McCool, Robison, and
Reinders, 2012), to model, design, and implement
specific PDPs, HLPCs, and FGIs. An original and
effective development methodology for new
programmers in parallelism is proposed for each of
them. A Parallel Design Pattern or PDP is defined as a
class of algorithms that solve different problems and
that have the same control structure with which we
represent the pipeline (Collins, 2011), while a High-
Level Parallel Composition or HLPC is the composition
of a set of parallel objects of three types: A Manager
object that controls the references of a set of objects (an
object called Collector and several objects called Stage
(Brinch Hansen, 1993). A Flow Graph Interface or FGI is
a generic parallel algorithm that raises the level of
programming abstraction allowing us to express
parallelism without having to worry about every low-
level detail (Voss, et al., 2019). Finally, this work shows
for each Generic Parallel Algorithm, a creation
procedure for the definition of the pipeline, under the
same way of solving them together with the
performance analysis of each one separately and a
comparison of their accelerations and execution times.
This work is organized by 6 sections. The first section
shows the introduction and summary. The second
section talks about the background and the state of the
art that shows the similarity of existing proposals with
the one presented here. The third section talks about
the theoretical framework: structured parallel
programming, parallel objects, and message passing
programming. In the fourth section we explain the
design and development methodology of the PDP,
HLPC and FGI. The fifth section shows the case study of
parallel fractal generation using the pipeline pattern
represented as a PDP, HLPC and CGI, and a comparison
of the performance and acceleration in their
executions. Finally, the sixth section shows the
conclusions and future work of this proposal.

2. Background and state of the art

Transforming existing sequential applications into
parallel applications for multiprocessor environments
has been of great interest for decades. However,
currently, there is no single solution for the
parallelization of these applications, neither semi-
automatically, nor much less automatically since the
proposed solution algorithms together with the
different parallelization techniques used have a lot to
do with it. In (Collins, 2011), the effectiveness and
applicability of automatic techniques have been
explored, for example:

• On the other hand (Torquati, Aldinucci and
Danelutto, 2014) proposes FastFlow as a
framework used to accelerate calculations.
FastFlow is a parallel programming proposal in
C++ that attempts to provide the programmer with
high-level parallel programming.

• Currently, some projects develop frameworks and
offer users constructs, templates, and
parallel patterns of communication between
processes that can help accelerate the execution of
applications in heterogeneous parallel
environments that use CPUs, GPUs, and FPGAs,
such as the ParaPhrase project (Torquati, Aldinucci
and Danelutto, 2014).

• A more conventional approach is the well-known
automatic parallel programming that provides
application programmers with the possibility of
obtaining loop parallelization and little else from
sequential code with relatively little effort to
perform (Danelutto and Torquati, 2014); However,
this proposal can be somewhat limiting in
obtaining good performance in the execution of
said applications, which is complicated by the
complexity of the algorithm that solves the
problem.

• The use of Threading Building Blocks or TBB,
which was born more than 10 years ago as a
solution for writing parallel programs in C++,
which has become the most popular
support. and extensive for parallel programming
(Voss, et al., 2019). TBB has been the product of
parallel programming experts at Intel and is part of
the Intel oneAPI Base Toolkit, which is the other
proposal that we use for the development of the
Generic Parallel Algorithms that we work on.

• OneAPI includes among its main development
tools, C/C++ and Fortran compilers, application
profiling tools, and optimized libraries. The Data
Parallel C++ compiler (DPC++) stands out,
providing all the features of the standard C++
compiler plus instructions for data parallelism and
heterogeneous computing, which is the
commercial implementation of the SYCL proposal
that facilitates the portability of applications
between architectures as diverse as CPUs, GPUs,
FPGAs (Reinders-Hames, et al., 2021; Bockhorst,
2021).

3. Theoretical framework

Our theoretical framework is composed of four
fundamental definitions: Structured parallel
programming, parallel objects, parallel programming
with message passing, and Generic Parallel Algorithms.

3.1. Structured Parallel Programming

It is based on the use of predefined
communication/interaction patterns between the
processes of a user application such as the Pipeline
(Danish and Farooqui, 2013). This approach is based on
the abstraction of the interaction pattern that allows us
to design applications capable of using it and
particularizing it to the solution of a specific problem.
The encapsulation of an inter-process communication

 Rossainz-López et al. | 3

pattern must follow the principle of modularity and
must provide a basis for obtaining effective reusability
of the parallel behavior of the software entity that it
implements. When this is achieved, a generic parallel
pattern is created that provides a possible
representation of the interaction between the
processes which is independent of their functionality.
The contribution of this type of programming is that,
instead of programming a parallel application from the
beginning, now it is enough to identify the
communication pattern between processes appropriate
for the parallelization of the problem.

However, the identification and unambiguous
definition of a complete set of communication patterns
between processes of a parallel application is still far
from being a solved problem, since there is no
sufficiently general agreement that allows formally
defining their semantics (Corradi and
Zambonelli,1991). What this work proposes is the
definition and use of a PDP, a HLPC and an FGI, as
generic parallel algorithms adaptable through the
mechanisms of inheritance, composition and/or
aggregation of the Object Orientation paradigm, to the
particular needs of a application. In this way, the user
applications themselves are the ones that specify the
semantics of these generic algorithms based on the
requirements of the software that is intended to be
developed.

3.2. Parallel Objects

Parallel Objects (PO) are objects with the ability to
execute themselves. Applications that use PO can
exploit both parallelism between objects (inter-object)
and parallelism within them (intra-object) (Corradi
and Leonardi, 1991). A PO has a structure similar to that
of an object in C++, but it also includes an a priori
scheduling policy that specifies how to synchronize one
or more operations of the object class that can be
invoked in parallel (Theelen, et al., 2007).
Synchronization policies are expressed in terms of
restrictions when parallel service requests occur in a PO
so that they can manage several executions flows
concurrently and at the same time guarantee the
consistency of the data being processed. These
restrictions are the following:

MAXPAR – which is the maximum parallelism that
indicates the maximum number of processes that can
run at the same time within a component in the PO
model being described.

MUTEX - Performs a mutual exclusion between
processes that want to access a shared object. It
preserves critical sections of code to be executed by a
single process at a time, as well as allowing it to gain
exclusive access to resources.

SYNC - Synchronization of the producer/consumer
type, used to program the methods or functions of the
POs so that the processes that use them are
synchronized in the use of resources.

In addition, every PO provides different types of
communication:

The synchronous mode that stops the client activity
until the active server object gives it the response.

The asynchronous mode that does not force waiting on
the client activity. The client simply sends the request
to the active server object and continues its execution.

The asynchronous future mode that makes the client
activity wait only when, within its code, the result of
the method is needed to evaluate an expression,
(Lavander and Kafura).

All parallel objects derive from the definition of “class”
plus the incorporation of the process planning policy.
Objects of the same class share the same behavioral
specification contained in it, from which they are
instantiated. Parallel objects support multiple
inheritance, which allows a completely new PO
specification to be derived from one that already
exists (Corradi and Leonardi L., 1991; Danelutto, 1999).

3.3. Parallel Programming with Message Passing

In the general programming model with message
passing, the fundamental elements that make it up are
identified: a sender process, which is the one who sends
the message by executing a send operation, a receiver
process, which is the one who receives the message by
executing a reception operation, a communication
channel through which the message travels; and the
message itself to be sent/received (Fujimoto, 2000).

The types of communication between processes that
are worked on are:

• Direct Communication: The sender explicitly
identifies the receiver of the message in the
sending operation and vice versa.

• Indirect Communication: The sender and receiver
processes are not explicitly identified.
Communication is carried out by depositing
messages in an intermediate store (mailbox) that is
assumed to be known by the processes interested in
the communication.

The types of synchronization between processes
that are worked on are:

• Asynchronous Communication. The sending
process can carry out the sending operation
without it being necessary for it to coincide in time
with the reception operation by the receiving
process.

• Synchronous Communication. The sending and
receiving operations must coincide (appointment
or meeting) in time with the sending and receiving
processes.

The characteristics considered in the communication

4 | 36th European Modeling & Simulation Symposium, EMSS 2024

channels are the following:

• Data flow. The flow of data passing through a
communication channel between two processes
can be unidirectional or bidirectional.

• Canal Capacity. The communication link may store
the messages sent by the sending process when
they are not immediately collected by the receiving
process.

• Message size. Messages can be of fixed or variable
length.

• Channels with type or without type. Some
communication schemes require defining
the type of data that will flow through the
channel, therefore we can have typed or untyped
channels.

• Pass by copy or by reference. The information sent
by the sending process to the receiving process
through a channel is done by making an exact copy
of the data (message) or simply sending and
receiving the address in the address space where
the message is located.

3.4. The Pipeline

It is a parallel processing technique applicable to a wide
range of partially sequential problems, that is, with
this scheme, we can solve a problem by decomposing it
into a series of successive tasks so that the data flows in
a certain direction and each task can be completed one
after another (Robbins and Robbins, 1999). In
a pipeline each task is executed by a processor or
process as shown in Figure 1. Each process or processor
that makes up a pipeline is usually called a "stage"
(Roosta, 1999).

Figure 1. Structure of a Pipeline

Each stage of the pipeline contributes to the overall
problem and passes necessary information to the next
stage with which it is connected. This type of
parallelism is seen as a form of "functional
decomposition" or also called "segmented computing"
since the problem is divided into separate functions
that can be executed individually and independently
(Robbins and Robbins, 1999; Roosta, 1999). An
algorithm that solves a certain problem can be
formulated as a pipeline if it can be divided into a series
of functions that could be executed by the stages of the
pipeline. Each stage of the pipeline must compute a set
of items that, to be processed, require information
previously prepared by the previous stage of the
pipeline. Once the item has been processed, it has to be
sent to the next stage of the pipeline. For simplicity, the
algorithm assumes that each stage computes "m"
items with the same execution time for each item
within the corresponding stage. The exception is in the

first stage of the pipeline who does not receive from any
other stage and in the last stage who does not send to
any other (Wilkinson and Allen, 1999).

If a problem can be divided into a series of sequential
tasks, the pipeline approach can provide increased
execution speed in the following three types of
calculations taken from (Wilkinson and Allen, 1999).

Figure 2. Space-Time Diagram of a pipeline

TYPE A: When more than one instance of the complete
problem can be executed in parallel. Figure 2 shows a
space-time diagram of the use of the pipeline in this
type of calculation. The diagram assumes that all
processes have the same execution time to complete
their task. Each period is called “a pipeline cycle.”
Therefore, each instance of the illustrated problem
requires 6 sequential processes: P0 to P5, generating a
ladder effect, which upon completion completes
an instance of the problem in each “pipeline cycle”.
With p-processes (stages) of the pipeline and m-
instances of the problem, the number of “pipeline
cycles” to execute the m-instances is m+p-1 cycles.

TYPE B: When a series of data can be processed and
each of these is used in multiple operations: Appears in
arithmetic calculations where a series of data is
processed in sequence, such as, for example,
multiplying elements of a matrix. In such a calculation,
individual elements enter the pipeline as a sequential
series of numbers. This type of calculations is
illustrated in Figure 3, where, as an example, there are
10 processes (stages) of the pipeline and 10 elements d0
to d9 which are being processed. With p-processes and
n-data elements, the overall execution time is again
(p-1)+n pipeline cycles assuming that these are all
equal.

Figure 3. Pipeline for arithmetic calculations

TYPE C: If the information required by the next process
to start its calculation is passed before the current
process has completed all its internal operations: This
type of calculation is used in parallel programs where
there is only one instance of the problem to be
executed, but Each process (stage) can pass
information to the next so that the latter can complete

 Rossainz-López et al. | 5

its task. Figure 4 shows the space-time diagrams
when information is passed from one process to
another in the pipeline before the completion of the
execution of a process.

Figure 4. Pipeline processing where the information passes from
one stage to another before the completion of the execution of the
stages

4. Generic Parallel Algorithms

A Generic Parallel algorithm is an execution
pattern common to more than one problem that can be
solved in the same way; often represented as function
or class templates that capture many of the processing
patterns that are the cornerstone of multithreaded
programming. This proposal aims to apply them
instead of writing our parallel implementations,
focusing our effort on designing the sequential solution
of the problem to be solved. There are many proposals
for this type of pattern such as those proposed by
(Mattson, et al., 2004) where it is said that
programmers need to work through four spaces in the
design of any Generic Parallel Algorithm: find
concurrency, identify the algorithmic structure of the
parallelism or pattern, identify support structures and
define implementation mechanisms. The type of
Generic Parallel Algorithm considered in this work is
the one proposed by TBB, which starts from a single
execution thread. When a thread encounters a parallel
algorithm, it distributes the work associated with that
algorithm among several threads. When all pieces of
work are resolved, execution is merged back and
continues again on the initial single thread. The
generic algorithms available in TBB are grouped into
the following categories: Functional Parallelism,
Simple Loops, Complex Loops, Pipelines, and Sorting.

4.1. Parallel Design Patterns

A Parallel Design Pattern or PDP is defined as a class of
algorithms that solve different problems and have the
same control structure. Examples of this are the PDPs
shown in Table 1. For each PDP, a Generic Algorithm is
created that defines the common control structure for
those problems that can be solved with the same
algorithmic design technique. The Generic Algorithm is
commonly called the Algorithmic Skeleton (Ernsting
and Kuchen, 2012). Subsequently, from a general
parallel algorithm, two or more Model Programs are

derived that illustrate the use of the PDP to solve
specific problems. A Generic Algorithm includes some
data types that are not specified and procedures that
vary from one application to another. A Model
Program is obtained by replacing these data types and
procedures with the corresponding data types
and procedures of a sequential program that solves a
specific problem. In other words, the essence of this
proposal is that a model program has a parallel
component that implements a PDP and a
sequential component for a specific application (Figure
5).

Table 1. Parallel Paradigms and their communication patterns
PDP Model Program Communication

Pattern

Total Pairs 1. Householder
2. N-Body

Process
Pipeline

Tuple
Multiplication

1. Matrix
Multiplication

2. Graphs
Routes

Process
Pipeline

Divide &
conquer

1. Sorting
2. Search

Process Tree

Cellular
Automata

1. Laplace
2. Simulation

Process Matrix

Figure 5. Abstract Model of a Parallel Design Pattern (PDP)

PDP Development Methodology:

1. Identify one, two, or more computational
problems with the same control structure.

2. For the identified problem(s), write a tutorial that
explains your computational theory and includes a
complete program.

3. Write a parallel program for programming the
PDP.

4. Test the parallel program on a sequential
computer.

5. Derive a parallel program for the particular
problem(s) to be solved by substituting data types,
variables, procedures, etc., and analyze the
complexity of the programs.

6. Rewrite the parallel programs in an
implementation language and measure their
performance on a multicomputer.

7. Write clear descriptions of parallel programs.

6 | 36th European Modeling & Simulation Symposium, EMSS 2024

8. Publish the programs and their descriptions in
their entirety.

4.2. High Level Parallel Compositions

A HLPC is the composition of a set of parallel objects of
three types: A Manager object that represents the HLPC
itself and makes it an encapsulated abstraction that
hides its internal structure. The Manager controls the
references of a set of objects (an object called Collector
and several objects called Stage), which represent the
components of the HLPC and whose execution is
carried out in parallel and must be coordinated by
the manager (Rossainz, et al., 2014). The Stage objects
are responsible for encapsulating a client-server type
interface that is established between the Manager and
the slave objects (passive objects that contain the
sequential algorithm for solving a problem); and a
Collector object, which is an object in charge of storing
in parallel the results that arrive from the stage objects
that it has connected. (see Figure 6). For
implementation details see (Rossainz, et al., 2014).

Figure 6. Abstract Model of a HLPC

HLPC Development Methodology:

1. An instance of the manager class is created, that is,
one that implements the required parallel behavior
according to the following steps:
a) Initialize the instance with the reference to the

slave objects that will be controlled by each
stage and the solution algorithm associated
with the slave object.

b) The internal stages are created, and each one is
given an association “slave object-solution
algorithm”, which will be executed by each
stage.

2. The user asks the manager to start a calculation by
executing the HLPC, which is carried out as follows:

a) The collector object referring to the request is
created.

b) The input data (without type checking) and the

reference to the collector are passed to the
stages.

c) The results are obtained from the collector
object.

d) The collector returns the results to the outside,
again without type checking.

3. With this, a manager object has been created and
initialized that represents the HLPC
itself and execution requests can be dispatched in
parallel.

4.3. Flow Graph Interfaces o FGI

A Flow Graph Interface or FGI is a generic parallel
algorithm that raises the level of programming
abstraction allowing us to express parallelism
without having to worry about every low-level detail. It
represents an interface between the sequential
algorithm that you want to parallelize and its parallel
execution once the required communication
pattern is represented as an FGI. It is made
up of parallel objects called nodes, with two
parameters: the information to be processed and the
calculation to be performed, which communicate
through linking channels called edges (see Figure 7).
The most common patterns represented by an FGI are
transmission graphs, data flow graphs, and
dependency graphs.

Figure 7. Abstract Model of an FGI

FGI Development Methodology:

1. 1. A graph object, g, is constructed.
2. The nodes that represent the calculations in our

Flow Graph are built.
a) Nodes receive data and process it to send the

result to other nodes.
b) Data processing is carried out through the

procedure or operation (algorithm) associated
with the node.

3. Once the nodes are created, we connect them using
“edges”.
c) The edges represent the dependencies or

 Rossainz-López et al. | 7

communication channels between nodes.
4. Once we complete the construction of the FGI

structure, we start its execution through the initial
node and wait until the execution of all FGI nodes is
completed.

5. Fractals. A case study for PDP, HLPC AND
FGI

The following case study was obtained from (Voss, et
al., 2019) and involves applying a gamma correction
and tint to each image (fractal) in an image vector,
writing each result to a file.

A fractal according to (Fernandez, 2018) is a geometric
object characterized by presenting a structure that
repeats at different scales. In this work, the generic
algorithms PDP, HLPC, and FGI were applied to the
generation of fractals because they are considered
powerful tools that are used in the study of phenomena
that occur, for example, in communications, robotics,
musical composition, physics, chemistry, geology and
even in areas such as economics, mathematics and
computing (in image compression), among others
(Fernandez, 2018).

In this case study, the elements of a vector are
processed by running the corresponding functions to
apply gamma correction and tinting, as well as the
function to write the resulting image to a file. The first
two functions traverse the rows of the image and the
elements in each row. The new pixel values are
calculated and assigned to the output image. Figure 8
shows the results obtained whose images were
generated with the information from (Voss, et al.,
2019) in an initially serial loop with repetitions of scales
from 2000 to 20000000 on the image vector and then
in their parallel versions using the proposed generic
parallel algorithms.

5.1. The fractal pipeline and its representation as
PDP, HLPC and FGI

The case study in the previous section can be
parallelized using the Pipeline pattern that transmits
images through a set of stages as shown in Figure 1. The
pipeline would be made up of four stages: The one that
generates the images, then the one that applies gamma
correction, a third stage that applies tint to the image,
and one more that writes the resulting image to a file.
The graphic models of the design of this
pipeline such as Parallel Design Pattern, High-Level
Parallel Composition, and Flow Graph Interface are
shown in Figure 9, Figure 10, and Figure 11 respectively.

Figure 9 shows the graphic model of the Parallel Design
Pattern (PDP) that is developed to implement the Pair-
Total design technique through a
pipeline and that represents the parallel component
used to solve the fractal processing problem. (see
Figure 8). The Pipeline in its PDP version is made up of
a first stage (stage) that provides the images to be

processed so that in the next stage the sequential
component is executed, which is the fractal correction
operation through the pair-total: problem (initial
image) and its solution (corrected image). The next
stage of the pipeline will execute the next sequential
component, which is the fractal tinting operation,
again using the par-total: problem (corrected image)
and its solution (tinted image). Finally, the last stage of
the pipeline will write the resulting fractal to a file.

Figure 8. Fractals obtained from (Voss, et al., 2019) after having
been applied a gamma correction and tinted with a blue dye,
generated by the generic parallel algorithms PDP, HLPC and FGI

Figure 9. Pair-Total PDP Model for Fractal Processing (correction
and tinting)

The type of elements and procedures for dividing the
problem in a pipeline is part of the parallel algorithm
that depends on the nature of the specific program or
model program (see Figure 5 and Figure 9.) This is the
main characteristic that makes the
PDP simply solve specific problems in parallel; Well,
you only have to add to the PDP the sequential problem
that is intended to be solved using this technique, in
addition to the types of data and procedures referring
to said sequential problem associated with the stages of
the pipeline (Robbins and Robbins,

8 | 36th European Modeling & Simulation Symposium, EMSS 2024

1999). The usefulness of the proposal presented here is
that different sequential problems, such as the one
presented in this work (section 8) and the creation of
3D stereoscopic images (Voss, et al., 2019) to name a
few that have to do with image processing, are
solved. using the same parallel component, that is, the
par-total pipeline designed as PDP.

Figure 10. HLPC Pipeline Model for Fractal Processing

Figure 10 shows the graphic model of the parallel
processing pipeline technique as a High-Level Parallel
Composition applicable to the resolution of the fractal
problem already mentioned, in such a way that the
HLPC Pipe guarantees the parallelization of the
algorithm codes. sequential (creation, correction,
tinting, and writing of the fractals) using the Pipeline
pattern (Rossainz, et al., 2014). In this HLPC model, the
parallel Manager object receives from the user the
number of fractals to create, this information is sent to
the first stage of the pipeline which executes the
algorithm for creating the associated Fractal as a slave
object. Once the fractal is created, it is sent to the next
stage of the pipeline which executes the associated
image correction code as its slave object. The corrected
image is sent to the third stage of the
pipeline which executes the associated image tinting
algorithm as a slave object and once the image has been
tinted, it is sent to the fourth and final stage which has
the algorithm for writing the image to a file. As the
fractals are created, the stages of the pipeline are
executed in superposition and once the fractal files
have been received by the Collector object, it sends
them to the Manager to deliver them to the user. As
already mentioned, the execution of the Manager,
Pipeline Stages, and Collector objects are carried out in
parallel (inter-object parallelism) but internally each
of these objects has internal parallelism of its
components (intra-object parallelism).

Figure 11. FGI Pipeline Model for Fractal Processing

Finally, Figure 11 shows the graphic model of the
pipeline process communication pattern for solving
the problem of creating fractals. As in the previous
models, in this proposal, we can also superimpose the
execution of different stages (nodes) of the process as
they are applied to different images. For example,
when a first image, img0, is completed on the node that
corrects the image, the result is passed to the tinting
node, while a new image img2 is created on the first
node and passed to the correction node. Similarly,
when the next step is performed, img0, which has now
passed through the fix and tint nodes, is sent to the
writer node. Meanwhile, img1 is sent to the tinting
node and a new image, img2, begins to be created at the
initial node and is sent for processing at the correction
node. In each step, the executions of the nodes are
independent of each other, so these calculations can be
distributed among different cores or threads, just like
the previous proposals. Finally, highlights the
importance of expressing fractal processing in its
creation, correction, tinting, and writing operations
through a pipeline represented as a PDP, an HLPC, and
an FGI to show how with these models it is possible to
use parallelism driven by message passing.

5.2. Comparison of the performance of the PDP,
HLPC and FGI

For the analysis of performance concerning execution
times and acceleration or speedup of the PDP, HLPC,
and FGI proposed in the generation of the fractals in
Figure 8, the implementations of the serial and parallel
pipeline of (Voss, et al., 2019) and their executions were
carried out in Intel's DevCloud cluster using an 8-core
Intel Xeon CPU and up to four NVIDIA GPUs with 5760
cores each with 128GB RAM.

In these three proposals for Generic Parallel
Algorithms, the generation of the pipeline follows the
same model taken from (Voss, et al., 2019). On the host
side (CPU), the scale repetitions are defined that will
define the number of fractals to be generated, and
the 4 stages of the pipeline are created that will be sent
first to a device (GPU), then to two GPUs, then to 3 GPUs
and finally to 4 GPUs; having at the end a pipeline stage
for each device: creation stage, correction stage, tinting
stage and writing stage to the output file. In Host
programming, the stages are connected through
communication channels that express message-driven
parallelism (see Figure 9, Figure 10, and Figure 11).
Sending the pipeline stages to the devices (GPU)
guarantees the overlapping execution of the different
stages of the process as they are
applied to different images; That is, in each step of
using the pipeline, the execution of its stages is
independent of each other, which makes it possible to
distribute it among the cores of a GPU and the GPUs
used. The graph in Figure 12 shows the sequential and
parallel execution times of the PDP-Pipeline, HLPC-
Pipeline, and FGI-Pipeline algorithms on the CPU and
the GPUs used respectively. In it, we observe that the
generic parallel algorithm of the PDP-Pipeline is the

 Rossainz-López et al. | 9

one that takes the longest execution time, unlike the
generic parallel algorithm of the FGI-Pipeline which is
the one that takes the least execution time to generate
the fractals, remaining in the middle part the generic
parallel algorithm of the HLPC-Pipeline. This trend
remains the same both in the sequential execution of
the proposals and in their corresponding parallel
executions with one, two, three, and four
GPUs respectively. The graph in Figure 12 also shows a
clear trend of decreasing the execution time of the
proposals as the GPUs are used for their executions (see
Table 2).

Figure 12. Execution times (in seconds) sequential-CPU and parallel-
GPUs of the PDP-Pipeline, HLPC-Pipeline and FGI-Pipeline in the
generation of fractals

TABLE 2. Sequential and parallel Execution Times in seconds of the
proposed generic parallel algorithms

 SEQ
(segs)

GPU1
(segs)

GPU2
(segs)

GPU3
(segs)

GPU4
(segs)

Run time
PDP-
Pipeline

28.4 6.88 4.1 3.01 1.5

Run Time
HLPC-
Pipeline

19.33 4.92 2.87 1.67 0.88

Run Time
FGI-
Pipeline

16.6 3.11 1.68 1.01 0.56

On the other hand, the result of the speedup of the
proposed generic parallel algorithms using 1 to 4 GPUs
is shown in the graph in Figure 13.

Figure 13. Comparison of the scalability of the speedup or acceleration
of the generic parallel algorithms PDP-Pipeline, HLPC-Pipeline and
FGI-Pipeline in the generation of fractals with 1,2,3 and 4 GPUs

In it, we observe that the proposal that has the best
acceleration and scalability is the FGI-

Pipeline which goes from a speedup value of 5.34 with
one GPU to 29.64 with four GPUs. In contrast, the
proposal that shows the least acceleration as the GPUs
scale is the PDP-Pipeline with an initial speedup of 4.13
with one GPU and up to 18.93 with four GPUs. The
middle part in terms of acceleration is the HLPC-
Pipeline with a speedup factor of 3.93 with one GPU and
up to 21.97 with four GPUs. Table 3 shows the rest of the
accelerations found.

Table 3. Acceleration of Generic Parallel Algorithms in the generation
of fractals

 GPU1 GPU2 GPU3 GPU4

Speedup PDP-
Pipeline

4.13 6.93 9.44 18.93

Speedup HLPC-
Pipeline

3.93 6.74 11.57 21.97

Speedup FGI-
Pipeline 5.34 9.88 16.44 29.64

6. Conclusions

Three proposals for Generic Parallel Algorithms
have been presented that represent the communication
pattern between processes called Pipeline: The PDP-
Pipeline Parallel Design Pattern, the HLPC-Pipeline
High Level Parallel Composition, and the FGI-Pipeline
Flow Graph Interface; whose implementations were
carried out through SYCL programming of Intel's
OneApi and the use of Threading Building Blocks or
TBB for programming with message passing. These
three proposals were used in the case study explained
in section 8 where, using a four-stage pipeline, four
fractals were created, a gamma correction was
applied to them, a dye was applied to
them, and they were written to a file.

The objective was to show the usefulness of these three
structured parallel programming proposals and have a
comparative reference regarding their execution times,
accelerations, and scalability in multicore
programming for the generation of fractals which are
powerful tools that are used in the study of phenomena
that occur in different areas of knowledge for problem-
solving. This is intended to show how, simply, the
novice programmer can make use of these generic
parallel algorithms and adapt them to the problem they
intend to solve, focusing their efforts solely on
the problem and its domain since parallelization is
provided by the PDP, HLPC, and FGI that are
proposed in this writing. The analysis of the
performance of these proposals was carried
out through a comparison in both execution times and
acceleration and the results are shown in Figure 12,
Figure 13, Table 2, and Table
3, respectively which illustrate the similarity in
behavior between these three implementations even
though they were designed and developed with
different models in the design and coding of their
algorithms. The performances are
considered good given the input and output conditions
for the generation of the fractals through the pipeline
communication model.

10 | 36th European Modeling & Simulation Symposium, EMSS 2024

Until now, with the publication of this work, three
generic parallel algorithms have been implemented:
The Parallel Design Pattern (PDP-Pipeline), the High-
Level Parallel Composition (HLPC Pipeline) and the
Flow Graph Interface (FGI-Pipeline) that can be used to
adapt them to specific problems that can be parallelized
with the communication pattern between pipeline-
type processes. As future work, we will work on
developing, testing and executing applications that
process images in bioinformatics to identify DNA
patterns and genomes that help find treatments that
improve the health of patients with hepatitis and its
different derived types. We will use Fractal Geometry
techniques so that from Fractals in parallel with the
proposed generic algorithms we can model patterns
and processes of chain sequences in the identification
of DNA and GNOMAS through a pipeline-type
architecture.

References

Brinch Hansen (1993). Model Programs for
Computational Science: A programming
methodology for multicomputers. Concurrency:
Practice and Experience. Volume 5, Number 5.

Bockhorst H. (2021). Intel DevCloud for oneApi. Intel
Corporation. USA. Recovered from:
https://doku.lrz.de/files/17826165/16942048/1/168
5941020677/Intel_Devcloud_LRZ.pdf

Collins A.J. (2011). Automatically Optimizing Parallel
Skeletons, MSc thesis in Computer Science, School
of Informatics University of Edinburgh, UK.

Corradi A., Zambonelli I. (1995). Experiences toward an
Object-Oriented Approach to Structured Parallel
Programming. DEIS technical report no. DEIS-LIA-
95-007.

Corradi A., Leonardi L. (1991). PO Constraints as tools to
synchronize active objects. Journal Object Oriented
Programming 10, pp. 42-53.

Danelutto, M.; Orlando, S; et al. (1999). Parallel
Programming Models Based on Restricted Com-
putation Structure Approach. Technical Report-
Dpt. Informatica. Universitá de Pisa.

Danelutto M and Torquati M. (2014). Loop parallelism:
a new skeleton perspective on data parallel patterns.
Parallel Distributed and Network-based Processing,
Torino, Italy.

Danish S.A., Farooqui Z. (2013). Approximate multiple
pattern string matching using bit parallelism: a
review, International Journal of Computer
Applications, Vol. 74, No. 19, pp.47–51.

Ernsting S. and Kuchen H. (2012). Algorithmic
skeletons for multi-core, multi-GPU systems and
clusters, Int. J. of High-Performance Computing
and Networking, Vol. 7, No. 2, pp.129–138.

Fernandez-Lara E. (2018). Fractales: bellos y sin
embargo útiles. Universidad de Sevilla, España.
Recovered from:
https://institucional.us.es/blogimus/2018/10/fract
ales-bellos-y-sin-embargo-utiles/

Fujimoto (2000). Parallel and Distributed Simulation
Systems: Wiley-Interscience: USA.

Lavander G.R., Kafura D.G., A Polymorphic Future and
First-class Function Type for Concurrent Object-
Oriented Programming. Journal of Object-Oriented
Systems. Recovered from:
http://www.cs.utewxas.edu-users/lavender/papers

Mattson T., Sanders B., and Massingill B. (2004).
Patterns for Parallel Programming (First ed.).
Addison-Wesley Professional. USA.

McCool M., Robison A.D., and Reinders J. (2012).
Structured Parallel Programming. Patterns for
Efficient Computation. Morgan Kaufmann
Publishers Elsevier. USA.

Reinders Hames, et-al. Data Parallel C++ (2021).
Mastering DPC++ for Programming of
Heterogeneous System using C++ and SYCL. Apress
Open. USA.

Robbins, K. A., Robbins S. (1999). UNIX Programación
Práctica. Guía para la concurrencia, la comunicación
y los multihilos. Prentice Hall.

Roosta, Séller (1999). Parallel Processing and Parallel
Algorithms. Theory and Computation. Springer.

Rossainz M., Pineda I., Dominguez P. (2014). Análisis y
Definición del Modelo de las Composiciones
Paralelas de Alto Nivel llamadas CPANs. Modelos
Matemáticos y TIC: Teoría y Aplicaciones. Dirección
de Fomento Editorial. ISBN 987-607-487-834-9.
Pp. 1-19. México.

Theelen B.D., Florescu O., Geilen M.C.W., Huang J.,
Vander Putten and Voeten J.P.M. (2007).
Software/Hardware Engineering with the Parallel
Object-Oriented Specification Language. IEEE/ACM
International Conference on Formal Methods and
Models for Codesign. Pp. 139-148, doi:
10.1109/MEMCOD.2007.371231. Nice, France.

Torquati, M., Aldinucci, M. and Danelutto, M. (2014).
FastFlow documentation, Parallel programming in
FastFlow, Computer Science Department,
University of Pisa, Italy. Recovered from:
http://calvados.di.unipi.it/storage/refman/doc/ht
ml/index.html

Voss M., Asenjo R., Reinders J. (2019). Pro TBB. C++
Parallel Programming with Threading Building
Blocks. Apress Open. USA.

Wilkinson B., Allen M (1999). Parallel Programming.
Techniques and Applications Using Net-worked
Workstations and Parallel Computers”. Prentice-
Hall. U.S.A.

http://www.cs.utewxas.edu-users/lavender/papers/
http://calvados.di.unipi.it/storage/refman/doc/html/index.html
http://calvados.di.unipi.it/storage/refman/doc/html/index.html

