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Abstract 
Using Parallel Objects and Structured Parallel Programming, the parallel representation of the Communication Pattern between 
Processes called Pipeline is shown, whose implementation is carried out through different models of Generic Parallel Algorithms 
within Heterogeneous Parallel Computing (HPC): As a Parallel Design Pattern or PDP, as High-Level Parallel Composition or 
HLPC and as Flow Graph Interfaces or FGI through programming with message passing. An original and effective development 
methodology for new programmers in parallelism is proposed for each of them. In these three proposals for Generic Parallel 
Algorithms, the same problem-example is solved as a case study, and a comparative analysis of their models and designs is 
carried out, as well as the performance obtained in the execution of said proposals and demonstrate their usefulness, 
programmability, and performance. The objective of this work is to provide the programmer and/or novice user with different 
multicore programming approaches so that without much effort they can develop their programs according to a sequential 
programming style, obtaining automatically, easily and the counterpart parallelization of your code with the help of a specific 
programming environment like the one proposed. 
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1. Introduction 

The present work proposes the design of algorithms 
that can be parallelized using Parallel Design Patterns 
(PDPs), High-Level Parallel Compositions (HLPCs), 
and Flow Graph Interfaces (FGI), as an original 
proposal for Heterogeneous Parallel Computing, whose 
definition is found in (Voss, et al., 2019) so that the 
transformation of existing sequential applications into 

parallel applications for multiprocessor environments 
is easy to carry out by the novice programmer when 
using the specific programming environment proposed 
here. The Intel OneApi Development Kit is used to 
program the PDPs and HLPCs using SYCL (Reinders-
Hames, et al., 2021), the Threading Building Blocks 
(TBB) library (Voss, et al., 2019) is used to program the 
FGIs, and the Intel DevCloud cluster (Bockhorst, 2021). 
It offers us access to CPUs and GPUs to develop, test and 
execute applications that are solved with the use of the 
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pipeline through the 3 proposals. We intend, through 
Structured Parallel Programming, Parallel Objects, and 
Object-Oriented Programming (McCool, Robison, and 
Reinders, 2012), to model, design, and implement 
specific PDPs, HLPCs, and FGIs. An original and 
effective development methodology for new 
programmers in parallelism is proposed for each of 
them. A Parallel Design Pattern or PDP is defined as a 
class of algorithms that solve different problems and 
that have the same control structure with which we 
represent the pipeline (Collins, 2011), while a High-
Level Parallel Composition or HLPC is the composition 
of a set of parallel objects of three types: A Manager 
object that controls the references of a set of objects (an 
object called Collector and several objects called Stage 
(Brinch Hansen, 1993). A Flow Graph Interface or FGI is 
a generic parallel algorithm that raises the level of 
programming abstraction allowing us to express 
parallelism without having to worry about every low-
level detail (Voss, et al., 2019). Finally, this work shows 
for each Generic Parallel Algorithm, a creation 
procedure for the definition of the pipeline, under the 
same way of solving them together with the 
performance analysis of each one separately and a 
comparison of their accelerations and execution times. 
This work is organized by 6 sections. The first section 
shows the introduction and summary. The second 
section talks about the background and the state of the 
art that shows the similarity of existing proposals with 
the one presented here. The third section talks about 
the theoretical framework: structured parallel 
programming, parallel objects, and message passing 
programming. In the fourth section we explain the 
design and development methodology of the PDP, 
HLPC and FGI. The fifth section shows the case study of 
parallel fractal generation using the pipeline pattern 
represented as a PDP, HLPC and CGI, and a comparison 
of the performance and acceleration in their 
executions. Finally, the sixth section shows the 
conclusions and future work of this proposal. 

2. Background and state of the art 

Transforming existing sequential applications into 
parallel applications for multiprocessor environments 
has been of great interest for decades. However, 
currently, there is no single solution for the 
parallelization of these applications, neither semi-
automatically, nor much less automatically since the 
proposed solution algorithms together with the 
different parallelization techniques used have a lot to 
do with it. In (Collins, 2011), the effectiveness and 
applicability of automatic techniques have been 
explored, for example:  

• On the other hand (Torquati, Aldinucci and 
Danelutto, 2014) proposes FastFlow as a 
framework used to accelerate calculations. 
FastFlow is a parallel programming proposal in 
C++ that attempts to provide the programmer with 
high-level parallel programming. 

• Currently, some projects develop frameworks and 
offer users constructs, templates, and 
parallel patterns of communication between 
processes that can help accelerate the execution of 
applications in heterogeneous parallel 
environments that use CPUs, GPUs, and FPGAs, 
such as the ParaPhrase project (Torquati, Aldinucci 
and Danelutto, 2014).  

• A more conventional approach is the well-known 
automatic parallel programming that provides 
application programmers with the possibility of 
obtaining loop parallelization and little else from 
sequential code with relatively little effort to 
perform (Danelutto and Torquati, 2014); However, 
this proposal can be somewhat limiting in 
obtaining good performance in the execution of 
said applications, which is complicated by the 
complexity of the algorithm that solves the 
problem.  

• The use of Threading Building Blocks or TBB, 
which was born more than 10 years ago as a 
solution for writing parallel programs in C++, 
which has become the most popular 
support. and extensive for parallel programming 
(Voss, et al., 2019). TBB has been the product of 
parallel programming experts at Intel and is part of 
the Intel oneAPI Base Toolkit, which is the other 
proposal that we use for the development of the 
Generic Parallel Algorithms that we work on. 

• OneAPI includes among its main development 
tools, C/C++ and Fortran compilers, application 
profiling tools, and optimized libraries. The Data 
Parallel C++ compiler (DPC++) stands out, 
providing all the features of the standard C++ 
compiler plus instructions for data parallelism and 
heterogeneous computing, which is the 
commercial implementation of the SYCL proposal 
that facilitates the portability of applications 
between architectures as diverse as CPUs, GPUs, 
FPGAs (Reinders-Hames, et al., 2021; Bockhorst, 
2021). 

3. Theoretical framework 

Our theoretical framework is composed of four 
fundamental definitions: Structured parallel 
programming, parallel objects, parallel programming 
with message passing, and Generic Parallel Algorithms. 

3.1. Structured Parallel Programming 

It is based on the use of predefined 
communication/interaction patterns between the 
processes of a user application such as the Pipeline 
(Danish and Farooqui, 2013). This approach is based on 
the abstraction of the interaction pattern that allows us 
to design applications capable of using it and 
particularizing it to the solution of a specific problem. 
The encapsulation of an inter-process communication 
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pattern must follow the principle of modularity and 
must provide a basis for obtaining effective reusability 
of the parallel behavior of the software entity that it 
implements. When this is achieved, a generic parallel 
pattern is created that provides a possible 
representation of the interaction between the 
processes which is independent of their functionality. 
The contribution of this type of programming is that, 
instead of programming a parallel application from the 
beginning, now it is enough to identify the 
communication pattern between processes appropriate 
for the parallelization of the problem.  

However, the identification and unambiguous 
definition of a complete set of communication patterns 
between processes of a parallel application is still far 
from being a solved problem, since there is no 
sufficiently general agreement that allows formally 
defining their semantics (Corradi and 
Zambonelli,1991). What this work proposes is the 
definition and use of a PDP, a HLPC and an FGI, as 
generic parallel algorithms adaptable through the 
mechanisms of inheritance, composition and/or 
aggregation of the Object Orientation paradigm, to the 
particular needs of a application. In this way, the user 
applications themselves are the ones that specify the 
semantics of these generic algorithms based on the 
requirements of the software that is intended to be 
developed. 

3.2. Parallel Objects 

Parallel Objects (PO) are objects with the ability to 
execute themselves. Applications that use PO can 
exploit both parallelism between objects (inter-object) 
and parallelism within them (intra-object) (Corradi 
and Leonardi, 1991). A PO has a structure similar to that 
of an object in C++, but it also includes an a priori 
scheduling policy that specifies how to synchronize one 
or more operations of the object class that can be 
invoked in parallel (Theelen, et al., 2007). 
Synchronization policies are expressed in terms of 
restrictions when parallel service requests occur in a PO 
so that they can manage several executions flows 
concurrently and at the same time guarantee the 
consistency of the data being processed. These 
restrictions are the following: 

MAXPAR – which is the maximum parallelism that 
indicates the maximum number of processes that can 
run at the same time within a component in the PO 
model being described. 

MUTEX - Performs a mutual exclusion between 
processes that want to access a shared object. It 
preserves critical sections of code to be executed by a 
single process at a time, as well as allowing it to gain 
exclusive access to resources. 

SYNC - Synchronization of the producer/consumer 
type, used to program the methods or functions of the 
POs so that the processes that use them are 
synchronized in the use of resources. 

In addition, every PO provides different types of 
communication: 

The synchronous mode that stops the client activity 
until the active server object gives it the response. 

The asynchronous mode that does not force waiting on 
the client activity. The client simply sends the request 
to the active server object and continues its execution. 

The asynchronous future mode that makes the client 
activity wait only when, within its code, the result of 
the method is needed to evaluate an expression, 
(Lavander and Kafura). 

All parallel objects derive from the definition of “class” 
plus the incorporation of the process planning policy. 
Objects of the same class share the same behavioral 
specification contained in it, from which they are 
instantiated. Parallel objects support multiple 
inheritance, which allows a completely new PO 
specification to be derived from one that already 
exists (Corradi and Leonardi L., 1991; Danelutto, 1999). 

3.3. Parallel Programming with Message Passing 

In the general programming model with message 
passing, the fundamental elements that make it up are 
identified: a sender process, which is the one who sends 
the message by executing a send operation, a receiver 
process, which is the one who receives the message by 
executing a reception operation, a communication 
channel through which the message travels; and the 
message itself to be sent/received (Fujimoto, 2000). 

The types of communication between processes that 
are worked on are: 

• Direct Communication: The sender explicitly 
identifies the receiver of the message in the 
sending operation and vice versa. 

• Indirect Communication: The sender and receiver 
processes are not explicitly identified. 
Communication is carried out by depositing 
messages in an intermediate store (mailbox) that is 
assumed to be known by the processes interested in 
the communication. 

The types of synchronization between processes 
that are worked on are: 

• Asynchronous Communication. The sending 
process can carry out the sending operation 
without it being necessary for it to coincide in time 
with the reception operation by the receiving 
process. 

• Synchronous Communication. The sending and 
receiving operations must coincide (appointment 
or meeting) in time with the sending and receiving 
processes. 

The characteristics considered in the communication 
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channels are the following: 

• Data flow. The flow of data passing through a 
communication channel between two processes 
can be unidirectional or bidirectional. 

• Canal Capacity. The communication link may store 
the messages sent by the sending process when 
they are not immediately collected by the receiving 
process. 

• Message size. Messages can be of fixed or variable 
length. 

• Channels with type or without type. Some 
communication schemes require defining 
the type of data that will flow through the 
channel, therefore we can have typed or untyped 
channels. 

• Pass by copy or by reference. The information sent 
by the sending process to the receiving process 
through a channel is done by making an exact copy 
of the data (message) or simply sending and 
receiving the address in the address space where 
the message is located. 

3.4. The Pipeline 

It is a parallel processing technique applicable to a wide 
range of partially sequential problems, that is, with 
this scheme, we can solve a problem by decomposing it 
into a series of successive tasks so that the data flows in 
a certain direction and each task can be completed one 
after another (Robbins and Robbins, 1999). In 
a pipeline each task is executed by a processor or 
process as shown in Figure 1. Each process or processor 
that makes up a pipeline is usually called a "stage" 
(Roosta, 1999). 

 
Figure 1. Structure of a Pipeline 

Each stage of the pipeline contributes to the overall 
problem and passes necessary information to the next 
stage with which it is connected. This type of 
parallelism is seen as a form of "functional 
decomposition" or also called "segmented computing" 
since the problem is divided into separate functions 
that can be executed individually and independently 
(Robbins and Robbins, 1999; Roosta, 1999). An 
algorithm that solves a certain problem can be 
formulated as a pipeline if it can be divided into a series 
of functions that could be executed by the stages of the 
pipeline. Each stage of the pipeline must compute a set 
of items that, to be processed, require information 
previously prepared by the previous stage of the 
pipeline. Once the item has been processed, it has to be 
sent to the next stage of the pipeline. For simplicity, the 
algorithm assumes that each stage computes "m" 
items with the same execution time for each item 
within the corresponding stage. The exception is in the 

first stage of the pipeline who does not receive from any 
other stage and in the last stage who does not send to 
any other (Wilkinson and Allen, 1999). 

If a problem can be divided into a series of sequential 
tasks, the pipeline approach can provide increased 
execution speed in the following three types of 
calculations taken from (Wilkinson and Allen, 1999). 

 
Figure 2. Space-Time Diagram of a pipeline 

 

TYPE A: When more than one instance of the complete 
problem can be executed in parallel. Figure 2 shows a 
space-time diagram of the use of the pipeline in this 
type of calculation. The diagram assumes that all 
processes have the same execution time to complete 
their task. Each period is called “a pipeline cycle.” 
Therefore, each instance of the illustrated problem 
requires 6 sequential processes: P0 to P5, generating a 
ladder effect, which upon completion completes 
an instance of the problem in each “pipeline cycle”. 
With p-processes (stages) of the pipeline and m-
instances of the problem, the number of “pipeline 
cycles” to execute the m-instances is m+p-1 cycles. 

TYPE B: When a series of data can be processed and 
each of these is used in multiple operations: Appears in 
arithmetic calculations where a series of data is 
processed in sequence, such as, for example, 
multiplying elements of a matrix. In such a calculation, 
individual elements enter the pipeline as a sequential 
series of numbers. This type of calculations is 
illustrated in Figure 3, where, as an example, there are 
10 processes (stages) of the pipeline and 10 elements d0 
to d9 which are being processed. With p-processes and 
n-data elements, the overall execution time is again 
(p-1)+n pipeline cycles assuming that these are all 
equal. 

 
Figure 3. Pipeline for arithmetic calculations 

TYPE C: If the information required by the next process 
to start its calculation is passed before the current 
process has completed all its internal operations: This 
type of calculation is used in parallel programs where 
there is only one instance of the problem to be 
executed, but Each process (stage) can pass 
information to the next so that the latter can complete 
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its task. Figure 4 shows the space-time diagrams 
when information is passed from one process to 
another in the pipeline before the completion of the 
execution of a process. 

 
Figure 4. Pipeline processing where the information passes from 
one stage to another before the completion of the execution of the 
stages 

4. Generic Parallel Algorithms 

A Generic Parallel algorithm is an execution 
pattern common to more than one problem that can be 
solved in the same way; often represented as function 
or class templates that capture many of the processing 
patterns that are the cornerstone of multithreaded 
programming. This proposal aims to apply them 
instead of writing our parallel implementations, 
focusing our effort on designing the sequential solution 
of the problem to be solved. There are many proposals 
for this type of pattern such as those proposed by 
(Mattson, et al., 2004) where it is said that 
programmers need to work through four spaces in the 
design of any Generic Parallel Algorithm: find 
concurrency, identify the algorithmic structure of the 
parallelism or pattern, identify support structures and 
define implementation mechanisms. The type of 
Generic Parallel Algorithm considered in this work is 
the one proposed by TBB, which starts from a single 
execution thread. When a thread encounters a parallel 
algorithm, it distributes the work associated with that 
algorithm among several threads. When all pieces of 
work are resolved, execution is merged back and 
continues again on the initial single thread. The 
generic algorithms available in TBB are grouped into 
the following categories: Functional Parallelism, 
Simple Loops, Complex Loops, Pipelines, and Sorting. 

4.1. Parallel Design Patterns 

A Parallel Design Pattern or PDP is defined as a class of 
algorithms that solve different problems and have the 
same control structure. Examples of this are the PDPs 
shown in Table 1. For each PDP, a Generic Algorithm is 
created that defines the common control structure for 
those problems that can be solved with the same 
algorithmic design technique. The Generic Algorithm is 
commonly called the Algorithmic Skeleton (Ernsting 
and Kuchen, 2012). Subsequently, from a general 
parallel algorithm, two or more Model Programs are 

derived that illustrate the use of the PDP to solve 
specific problems. A Generic Algorithm includes some 
data types that are not specified and procedures that 
vary from one application to another. A Model 
Program is obtained by replacing these data types and 
procedures with the corresponding data types 
and procedures of a sequential program that solves a 
specific problem. In other words, the essence of this 
proposal is that a model program has a parallel 
component that implements a PDP and a 
sequential component for a specific application (Figure 
5). 

Table 1. Parallel Paradigms and their communication patterns 
PDP Model Program Communication 

Pattern  

Total Pairs 1. Householder 
2. N-Body 

Process 
Pipeline 

Tuple 
Multiplication 

1. Matrix 
Multiplication 

2. Graphs 
Routes 

Process 
Pipeline 

Divide & 
conquer 

1. Sorting 
2. Search 

Process Tree 

Cellular 
Automata 

1. Laplace 
2. Simulation 

Process Matrix 

 

 
Figure 5. Abstract Model of a Parallel Design Pattern (PDP) 

PDP Development Methodology: 

1. Identify one, two, or more computational 
problems with the same control structure. 

2. For the identified problem(s), write a tutorial that 
explains your computational theory and includes a 
complete program. 

3. Write a parallel program for programming the 
PDP. 

4.  Test the parallel program on a sequential 
computer. 

5. Derive a parallel program for the particular 
problem(s) to be solved by substituting data types, 
variables, procedures, etc., and analyze the 
complexity of the programs. 

6. Rewrite the parallel programs in an 
implementation language and measure their 
performance on a multicomputer. 

7. Write clear descriptions of parallel programs. 
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8. Publish the programs and their descriptions in 
their entirety. 

4.2. High Level Parallel Compositions 

A HLPC is the composition of a set of parallel objects of 
three types: A Manager object that represents the HLPC 
itself and makes it an encapsulated abstraction that 
hides its internal structure. The Manager controls the 
references of a set of objects (an object called Collector 
and several objects called Stage), which represent the 
components of the HLPC and whose execution is 
carried out in parallel and must be coordinated by 
the manager (Rossainz, et al., 2014). The Stage objects 
are responsible for encapsulating a client-server type 
interface that is established between the Manager and 
the slave objects (passive objects that contain the 
sequential algorithm for solving a problem); and a 
Collector object, which is an object in charge of storing 
in parallel the results that arrive from the stage objects 
that it has connected. (see Figure 6). For 
implementation details see (Rossainz, et al., 2014).

 
Figure 6. Abstract Model of a HLPC 

 

HLPC Development Methodology: 

1. An instance of the manager class is created, that is, 
one that implements the required parallel behavior 
according to the following steps: 
a) Initialize the instance with the reference to the 

slave objects that will be controlled by each 
stage and the solution algorithm associated 
with the slave object. 

b) The internal stages are created, and each one is 
given an association “slave object-solution 
algorithm”, which will be executed by each 
stage. 

2. The user asks the manager to start a calculation by 
executing the HLPC, which is carried out as follows: 

a) The collector object referring to the request is 
created. 

b) The input data (without type checking) and the 

reference to the collector are passed to the 
stages. 

c) The results are obtained from the collector 
object. 

d) The collector returns the results to the outside, 
again without type checking. 

3. With this, a manager object has been created and 
initialized that represents the HLPC 
itself and execution requests can be dispatched in 
parallel. 

4.3. Flow Graph Interfaces o FGI 

A Flow Graph Interface or FGI is a generic parallel 
algorithm that raises the level of programming 
abstraction allowing us to express parallelism 
without having to worry about every low-level detail. It 
represents an interface between the sequential 
algorithm that you want to parallelize and its parallel 
execution once the required communication 
pattern is represented as an FGI. It is made 
up of parallel objects called nodes, with two 
parameters: the information to be processed and the 
calculation to be performed, which communicate 
through linking channels called edges (see Figure 7). 
The most common patterns represented by an FGI are 
transmission graphs, data flow graphs, and 
dependency graphs. 

 

 
Figure 7. Abstract Model of an FGI 

 

FGI Development Methodology: 

1. 1. A graph object, g, is constructed. 
2. The nodes that represent the calculations in our 

Flow Graph are built. 
a) Nodes receive data and process it to send the 

result to other nodes. 
b) Data processing is carried out through the 

procedure or operation (algorithm) associated 
with the node. 

3. Once the nodes are created, we connect them using 
“edges”. 
c) The edges represent the dependencies or 
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communication channels between nodes. 
4. Once we complete the construction of the FGI 

structure, we start its execution through the initial 
node and wait until the execution of all FGI nodes is 
completed. 

5. Fractals. A case study for PDP, HLPC AND 
FGI 

The following case study was obtained from (Voss, et 
al., 2019) and involves applying a gamma correction 
and tint to each image (fractal) in an image vector, 
writing each result to a file. 

A fractal according to (Fernandez, 2018) is a geometric 
object characterized by presenting a structure that 
repeats at different scales. In this work, the generic 
algorithms PDP, HLPC, and FGI were applied to the 
generation of fractals because they are considered 
powerful tools that are used in the study of phenomena 
that occur, for example, in communications, robotics, 
musical composition, physics, chemistry, geology and 
even in areas such as economics, mathematics and 
computing (in image compression), among others 
(Fernandez, 2018). 

In this case study, the elements of a vector are 
processed by running the corresponding functions to 
apply gamma correction and tinting, as well as the 
function to write the resulting image to a file. The first 
two functions traverse the rows of the image and the 
elements in each row. The new pixel values are 
calculated and assigned to the output image. Figure 8 
shows the results obtained whose images were 
generated with the information from (Voss, et al., 
2019) in an initially serial loop with repetitions of scales 
from 2000 to 20000000 on the image vector and then 
in their parallel versions using the proposed generic 
parallel algorithms. 

5.1. The fractal pipeline and its representation as 
PDP, HLPC and FGI 

The case study in the previous section can be 
parallelized using the Pipeline pattern that transmits 
images through a set of stages as shown in Figure 1. The 
pipeline would be made up of four stages: The one that 
generates the images, then the one that applies gamma 
correction, a third stage that applies tint to the image, 
and one more that writes the resulting image to a file. 
The graphic models of the design of this 
pipeline such as Parallel Design Pattern, High-Level 
Parallel Composition, and Flow Graph Interface are 
shown in Figure 9, Figure 10, and Figure 11 respectively. 

Figure 9 shows the graphic model of the Parallel Design 
Pattern (PDP) that is developed to implement the Pair-
Total design technique through a 
pipeline and that represents the parallel component 
used to solve the fractal processing problem. (see 
Figure 8). The Pipeline in its PDP version is made up of 
a first stage (stage) that provides the images to be 

processed so that in the next stage the sequential 
component is executed, which is the fractal correction 
operation through the pair-total: problem (initial 
image) and its solution (corrected image). The next 
stage of the pipeline will execute the next sequential 
component, which is the fractal tinting operation, 
again using the par-total: problem (corrected image) 
and its solution (tinted image). Finally, the last stage of 
the pipeline will write the resulting fractal to a file. 

 
Figure 8. Fractals obtained from (Voss, et al., 2019) after having 
been applied a gamma correction and tinted with a blue dye, 
generated by the generic parallel algorithms PDP, HLPC and FGI 

 
Figure 9. Pair-Total PDP Model for Fractal Processing (correction 
and tinting) 

The type of elements and procedures for dividing the 
problem in a pipeline is part of the parallel algorithm 
that depends on the nature of the specific program or 
model program (see Figure 5 and Figure 9.) This is the 
main characteristic that makes the 
PDP simply solve specific problems in parallel; Well, 
you only have to add to the PDP the sequential problem 
that is intended to be solved using this technique, in 
addition to the types of data and procedures referring 
to said sequential problem associated with the stages of 
the pipeline (Robbins and Robbins, 
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1999). The usefulness of the proposal presented here is 
that different sequential problems, such as the one 
presented in this work (section 8) and the creation of 
3D stereoscopic images (Voss, et al., 2019) to name a 
few that have to do with image processing, are 
solved. using the same parallel component, that is, the 
par-total pipeline designed as PDP. 

 
Figure 10. HLPC Pipeline Model for Fractal Processing 

Figure 10 shows the graphic model of the parallel 
processing pipeline technique as a High-Level Parallel 
Composition applicable to the resolution of the fractal 
problem already mentioned, in such a way that the 
HLPC Pipe guarantees the parallelization of the 
algorithm codes. sequential (creation, correction, 
tinting, and writing of the fractals) using the Pipeline 
pattern (Rossainz, et al., 2014). In this HLPC model, the 
parallel Manager object receives from the user the 
number of fractals to create, this information is sent to 
the first stage of the pipeline which executes the 
algorithm for creating the associated Fractal as a slave 
object. Once the fractal is created, it is sent to the next 
stage of the pipeline which executes the associated 
image correction code as its slave object. The corrected 
image is sent to the third stage of the 
pipeline which executes the associated image tinting 
algorithm as a slave object and once the image has been 
tinted, it is sent to the fourth and final stage which has 
the algorithm for writing the image to a file. As the 
fractals are created, the stages of the pipeline are 
executed in superposition and once the fractal files 
have been received by the Collector object, it sends 
them to the Manager to deliver them to the user. As 
already mentioned, the execution of the Manager, 
Pipeline Stages, and Collector objects are carried out in 
parallel (inter-object parallelism) but internally each 
of these objects has internal parallelism of its 
components (intra-object parallelism). 

 

 
Figure 11. FGI Pipeline Model for Fractal Processing 

Finally, Figure 11 shows the graphic model of the 
pipeline process communication pattern for solving 
the problem of creating fractals. As in the previous 
models, in this proposal, we can also superimpose the 
execution of different stages (nodes) of the process as 
they are applied to different images. For example, 
when a first image, img0, is completed on the node that 
corrects the image, the result is passed to the tinting 
node, while a new image img2 is created on the first 
node and passed to the correction node. Similarly, 
when the next step is performed, img0, which has now 
passed through the fix and tint nodes, is sent to the 
writer node. Meanwhile, img1 is sent to the tinting 
node and a new image, img2, begins to be created at the 
initial node and is sent for processing at the correction 
node. In each step, the executions of the nodes are 
independent of each other, so these calculations can be 
distributed among different cores or threads, just like 
the previous proposals. Finally, highlights the 
importance of expressing fractal processing in its 
creation, correction, tinting, and writing operations 
through a pipeline represented as a PDP, an HLPC, and 
an FGI to show how with these models it is possible to 
use parallelism driven by message passing. 

5.2. Comparison of the performance of the PDP, 
HLPC and FGI 

For the analysis of performance concerning execution 
times and acceleration or speedup of the PDP, HLPC, 
and FGI proposed in the generation of the fractals in 
Figure 8, the implementations of the serial and parallel 
pipeline of (Voss, et al., 2019) and their executions were 
carried out in Intel's DevCloud cluster using an 8-core 
Intel Xeon CPU and up to four NVIDIA GPUs with 5760 
cores each with 128GB RAM. 

In these three proposals for Generic Parallel 
Algorithms, the generation of the pipeline follows the 
same model taken from (Voss, et al., 2019). On the host 
side (CPU), the scale repetitions are defined that will 
define the number of fractals to be generated, and 
the 4 stages of the pipeline are created that will be sent 
first to a device (GPU), then to two GPUs, then to 3 GPUs 
and finally to 4 GPUs; having at the end a pipeline stage 
for each device: creation stage, correction stage, tinting 
stage and writing stage to the output file. In Host 
programming, the stages are connected through 
communication channels that express message-driven 
parallelism (see Figure 9, Figure 10, and Figure 11). 
Sending the pipeline stages to the devices (GPU) 
guarantees the overlapping execution of the different 
stages of the process as they are 
applied to different images; That is, in each step of 
using the pipeline, the execution of its stages is 
independent of each other, which makes it possible to 
distribute it among the cores of a GPU and the GPUs 
used. The graph in Figure 12 shows the sequential and 
parallel execution times of the PDP-Pipeline, HLPC-
Pipeline, and FGI-Pipeline algorithms on the CPU and 
the GPUs used respectively. In it, we observe that the 
generic parallel algorithm of the PDP-Pipeline is the 
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one that takes the longest execution time, unlike the 
generic parallel algorithm of the FGI-Pipeline which is 
the one that takes the least execution time to generate 
the fractals, remaining in the middle part the generic 
parallel algorithm of the HLPC-Pipeline. This trend 
remains the same both in the sequential execution of 
the proposals and in their corresponding parallel 
executions with one, two, three, and four 
GPUs respectively. The graph in Figure 12 also shows a 
clear trend of decreasing the execution time of the 
proposals as the GPUs are used for their executions (see 
Table 2). 

 
Figure 12. Execution times (in seconds) sequential-CPU and parallel-
GPUs of the PDP-Pipeline, HLPC-Pipeline and FGI-Pipeline in the 
generation of fractals 

TABLE 2. Sequential and parallel Execution Times in seconds of the 
proposed generic parallel algorithms 

 SEQ 
(segs) 

GPU1 
(segs) 

GPU2 
(segs) 

GPU3 
(segs) 

GPU4 
(segs) 

Run time 
PDP-
Pipeline 

28.4 6.88 4.1 3.01 1.5 

Run Time 
HLPC-
Pipeline 

19.33 4.92 2.87 1.67 0.88 

Run Time 
FGI-
Pipeline 

16.6 3.11 1.68 1.01 0.56 

On the other hand, the result of the speedup of the 
proposed generic parallel algorithms using 1 to 4 GPUs 
is shown in the graph in Figure 13. 

 
Figure 13. Comparison of the scalability of the speedup or acceleration 
of the generic parallel algorithms PDP-Pipeline, HLPC-Pipeline and 
FGI-Pipeline in the generation of fractals with 1,2,3 and 4 GPUs 

In it, we observe that the proposal that has the best 
acceleration and scalability is the FGI-

Pipeline which goes from a speedup value of 5.34 with 
one GPU to 29.64 with four GPUs. In contrast, the 
proposal that shows the least acceleration as the GPUs 
scale is the PDP-Pipeline with an initial speedup of 4.13 
with one GPU and up to 18.93 with four GPUs. The 
middle part in terms of acceleration is the HLPC-
Pipeline with a speedup factor of 3.93 with one GPU and 
up to 21.97 with four GPUs. Table 3 shows the rest of the 
accelerations found. 

Table 3. Acceleration of Generic Parallel Algorithms in the generation 
of fractals 

 GPU1  GPU2  GPU3  GPU4  

Speedup PDP-
Pipeline 

4.13 6.93 9.44 18.93 

Speedup HLPC-
Pipeline 

3.93 6.74 11.57 21.97 

Speedup FGI-
Pipeline 5.34 9.88 16.44 29.64 

6. Conclusions 

Three proposals for Generic Parallel Algorithms 
have been presented that represent the communication 
pattern between processes called Pipeline: The PDP-
Pipeline Parallel Design Pattern, the HLPC-Pipeline 
High Level Parallel Composition, and the FGI-Pipeline 
Flow Graph Interface; whose implementations were 
carried out through SYCL programming of Intel's 
OneApi and the use of Threading Building Blocks or 
TBB for programming with message passing. These 
three proposals were used in the case study explained 
in section 8 where, using a four-stage pipeline, four 
fractals were created, a gamma correction was 
applied to them, a dye was applied to 
them, and they were written to a file. 

The objective was to show the usefulness of these three 
structured parallel programming proposals and have a 
comparative reference regarding their execution times, 
accelerations, and scalability in multicore 
programming for the generation of fractals which are 
powerful tools that are used in the study of phenomena 
that occur in different areas of knowledge for problem-
solving. This is intended to show how, simply, the 
novice programmer can make use of these generic 
parallel algorithms and adapt them to the problem they 
intend to solve, focusing their efforts solely on 
the problem and its domain since parallelization is 
provided by the PDP, HLPC, and FGI that are 
proposed in this writing. The analysis of the 
performance of these proposals was carried 
out through a comparison in both execution times and 
acceleration and the results are shown in Figure 12, 
Figure 13, Table 2, and Table 
3, respectively which illustrate the similarity in 
behavior between these three implementations even 
though they were designed and developed with 
different models in the design and coding of their 
algorithms. The performances are 
considered good given the input and output conditions 
for the generation of the fractals through the pipeline 
communication model. 
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Until now, with the publication of this work, three 
generic parallel algorithms have been implemented: 
The Parallel Design Pattern (PDP-Pipeline), the High-
Level Parallel Composition (HLPC Pipeline) and the 
Flow Graph Interface (FGI-Pipeline) that can be used to 
adapt them to specific problems that can be parallelized 
with the communication pattern between pipeline-
type processes. As future work, we will work on 
developing, testing and executing applications that 
process images in bioinformatics to identify DNA 
patterns and genomes that help find treatments that 
improve the health of patients with hepatitis and its 
different derived types. We will use Fractal Geometry 
techniques so that from Fractals in parallel with the 
proposed generic algorithms we can model patterns 
and processes of chain sequences in the identification 
of DNA and GNOMAS through a pipeline-type 
architecture. 

References 

Brinch Hansen (1993). Model Programs for 
Computational Science: A programming 
methodology for multicomputers. Concurrency: 
Practice and Experience. Volume 5, Number 5. 

Bockhorst H. (2021). Intel DevCloud for oneApi. Intel 
Corporation. USA. Recovered from: 
https://doku.lrz.de/files/17826165/16942048/1/168
5941020677/Intel_Devcloud_LRZ.pdf 

Collins A.J. (2011). Automatically Optimizing Parallel 
Skeletons, MSc thesis in Computer Science, School 
of Informatics University of Edinburgh, UK. 

Corradi A., Zambonelli I. (1995). Experiences toward an 
Object-Oriented Approach to Structured Parallel 
Programming. DEIS technical report no. DEIS-LIA-
95-007. 

Corradi A., Leonardi L. (1991). PO Constraints as tools to 
synchronize active objects. Journal Object Oriented 
Programming 10, pp. 42-53. 

Danelutto, M.; Orlando, S; et al. (1999). Parallel 
Programming Models Based on Restricted Com-
putation Structure Approach. Technical Report-
Dpt. Informatica. Universitá de Pisa. 

Danelutto M and Torquati M. (2014). Loop parallelism: 
a new skeleton perspective on data parallel patterns. 
Parallel Distributed and Network-based Processing, 
Torino, Italy. 

Danish S.A., Farooqui Z. (2013). Approximate multiple 
pattern string matching using bit parallelism: a 
review, International Journal of Computer 
Applications, Vol. 74, No. 19, pp.47–51. 

Ernsting S. and Kuchen H. (2012). Algorithmic 
skeletons for multi-core, multi-GPU systems and 
clusters, Int. J. of High-Performance Computing 
and Networking, Vol. 7, No. 2, pp.129–138. 

 

Fernandez-Lara E. (2018). Fractales: bellos y sin 
embargo útiles. Universidad de Sevilla, España. 
Recovered from: 
https://institucional.us.es/blogimus/2018/10/fract
ales-bellos-y-sin-embargo-utiles/ 

Fujimoto (2000). Parallel and Distributed Simulation 
Systems: Wiley-Interscience: USA. 

Lavander G.R., Kafura D.G., A Polymorphic Future and 
First-class Function Type for Concurrent Object-
Oriented Programming. Journal of Object-Oriented 
Systems. Recovered from: 
http://www.cs.utewxas.edu-users/lavender/papers 

Mattson T., Sanders B., and Massingill B. (2004). 
Patterns for Parallel Programming (First ed.). 
Addison-Wesley Professional. USA. 

McCool M., Robison A.D., and Reinders J. (2012). 
Structured Parallel Programming. Patterns for 
Efficient Computation. Morgan Kaufmann 
Publishers Elsevier. USA. 

Reinders Hames, et-al. Data Parallel C++ (2021). 
Mastering DPC++ for Programming of 
Heterogeneous System using C++ and SYCL. Apress 
Open. USA.  

Robbins, K. A., Robbins S. (1999). UNIX Programación 
Práctica. Guía para la concurrencia, la comunicación 
y los multihilos. Prentice Hall. 

Roosta, Séller (1999). Parallel Processing and Parallel 
Algorithms. Theory and Computation. Springer.  

Rossainz M., Pineda I., Dominguez P. (2014). Análisis y 
Definición del Modelo de las Composiciones 
Paralelas de Alto Nivel llamadas CPANs. Modelos 
Matemáticos y TIC: Teoría y Aplicaciones. Dirección 
de Fomento Editorial. ISBN 987-607-487-834-9. 
Pp. 1-19. México. 

Theelen B.D., Florescu O., Geilen M.C.W., Huang J., 
Vander Putten and Voeten J.P.M. (2007). 
Software/Hardware Engineering with the Parallel 
Object-Oriented Specification Language. IEEE/ACM 
International Conference on Formal Methods and 
Models for Codesign. Pp. 139-148, doi: 
10.1109/MEMCOD.2007.371231. Nice, France. 

Torquati, M., Aldinucci, M. and Danelutto, M. (2014). 
FastFlow documentation, Parallel programming in 
FastFlow, Computer Science Department, 
University of Pisa, Italy. Recovered from:  
http://calvados.di.unipi.it/storage/refman/doc/ht
ml/index.html 

Voss M., Asenjo R., Reinders J. (2019). Pro TBB. C++ 
Parallel Programming with Threading Building 
Blocks. Apress Open. USA. 

Wilkinson B., Allen M (1999). Parallel Programming. 
Techniques and Applications Using Net-worked 
Workstations and Parallel Computers”. Prentice-
Hall. U.S.A.  

http://www.cs.utewxas.edu-users/lavender/papers/
http://calvados.di.unipi.it/storage/refman/doc/html/index.html
http://calvados.di.unipi.it/storage/refman/doc/html/index.html

