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Abstract
Efficient Global Optimization (EGO) is a very important black-box optimization framework for solving expensive optimization problems,which appear in high-fidelity simulation-based optimization. EGO operates by employing a Gaussian process model as an approximationto the computationally expensive black-box function. As we observe an increasing trend towards dynamic optimization problems thatincorporate live data, combined with the fact that EGO is designed to solve static optimization problems, a need for adaptation arises.This paper analyzes and compares five EGO extensions that should aid the algorithm in dealing with dynamic changes. Results indicatethat such dynamification is challenging and while successful for problem instances with the correct difficulty and change severity, itcan have adverse effects if older data is unrepresentative of new scenarios.
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1. Introduction

Dynamic/ongoing optimization is of increasing relevancefor practitioners that deal with Internet of Things (IoT),Industry 4.0 and/or digital twin applications (Silva et al.,2020). Specifically in areas where automated systemsinteract, like warehouse operations, logistics or cobot-assisted manufactoring (Zaatari et al., 2022; Granata et al.,2024) unforseen changes to the environment happen fre-quently and may impact the current plan. These scenariosare often inherently complex, time-critical and representsignificant financial investments. Therefore, optimizingthese systems directly as closed-form functions is oftennot feasible. Testing different configurations in realitymight also disrupt operations or might simply be too slow.The approach of simulation-based optimization remediesthis issue by employing metaheuristic black-box solversin combination with arbitrarily complex simulation mod-els (De Paula Ferreira et al., 2020).

These simulation-based optimization problems and ob-jective functions are often both computationally expensiveto evaluate and subject to significant changes over time ase.g. production scenarios progress, stochastic processesmaterialize or unforeseen changes occur.
In recent years, various real-world applications of dy-namic simulation-based optimization have been pub-lished. Application cases range from traditional dynamicproduction scheduling (Jiang et al., 2022b), crane schedul-ing (Li et al., 2020), to much more ad-hoc applicationssuch as water distribution in emergency situations (Zhanget al., 2020) or niche use cases like the fine calibration ofparticle accelerators (Kuklev et al., 2023). The shear broad-ness of different application scenarios highlights the needfor transferable black-box optimization methods that arenot inherently tied to a specific optimization problem.
Especially in the case of simulation-based optimization,exact optimization can be prohibitively expensive and sur-rogate models that approximate the simulation behavior
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need to be used to guide metaheuristic search algorithms.The Efficient Global Optimization (EGO) framework is oneof the most used surrogate-assisted optimization algo-rithm schemes in such scenarios. Like most metaheuristicsolvers, however, it is mainly geared towards optimizationof static problems that do not change over time.In this paper we investigate different approaches foradapting EGO to dynamic optimization. The main chal-lenge is how data points obtained from previous problemstates (epochs) can be incorporated into the surrogatemodel that tries to approximate the current state.The following content is structured as follows. Section 2gives an overview of dynamic optimization, focusing onsurrogate-assisted methods and describes the EGO work-flow. Section 3 explains different methods of utilizing pastinformation within EGO. The experimental setup and ob-tained results are shown and discussed in Section 4. Thepaper concludes with Section 5.
2. Related Literature

Scientific literature of dynamic optimization problems(DOPs) is certainly less prevalent for their static counter-parts, but in recent years the rise of digitalization and theadvent of streaming data a number of methods for a widerarray of DOPs and application cases have been created. Thetwo-part survey by Yazdani et al. (Yazdani et al., 2021b,c)captures many different optimization strategies, bench-mark problems and generators as well as analysis methods.The use of predictive models for dynamic optimizationin the summarized methods is usually in the context ofchange prediction and not geared towards computation-ally expensive DOPs. The survey by Jiang et al. (2022a)focuses specifically on multi-objective optimization.Concerning specifically the use of surrogate-assisteddynamic optimization for expensive problems, a smallernumber of ideas was put forward. Gao and Bai (2022) uti-lize a spatio-temporal kernel with the EGO framework tooptimize various test functions. Kuklev et al. (2023) focuson a specific problem with increased drift and counteractthis via kernel-switching. Fan et al. (2020) utilize a transferlearning approach to reattain information from previousepochs and can avoid starting their data collection “fromscratch” every time the problem changes.The work by Fan et al. (2020) presents a surrogate-assisted differential evolution approach for a multi-stageoptimization problem where new decision variables areintroduced over timeIn general, the Efficient Global Optimization algorithmand various of its adaptations often summarily calledBayesian Optimization, comprises the following steps (de-picted in Figure 1):
1. Initial sampling of data points: This step is usuallyperformed by using a space-filling design like a Latin Hy-percube pattern as to cover as much of the search space aspossible without waiting too many expensive evaluations.

1. Create Initial Samples

2. Build Surrogate Model

3. Optimize Infill Criterion

4. Expensive Evaluation

5. Update Samples

6. Terminate?
no

yes

Return Best Solution

Figure 1. EGO steps

2. Building the surrogate model: While variations in thechoice of model exist, the most common choice of modelis a Gaussian process (GP) regression model that directlypredicts the objective value that would be obtained fromthe expensive optimization problem. This step is some-times itself quite arduous as Gaussian process models canhave a number of hyperparameters that need to be tunedevery time a model is built and the building process of themodel involves the inversion of an n ∗ n-matrix which candampen performance if many training data points haveto be included in the model. The advantages of this typeof model are that Gaussian processes are fast to evaluate,provide a measure of their own uncertainty and gradientsfor both hyperparameters and predictions.3. Choosing the next sample: The next solution candi-date that is to be evaluated is chosen by optimizing anacquisition function (infill criterion) such as expected im-provement (EI), probability of improvement (PI) or upperconfidence bound (UCB) (Wang et al., 2017). Choosingnew samples according to their EI enables exploration andexploitation of the search space. The expected improve-ment of a point correlates with the quality and availabilityof nearby points. EI is defined as
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)
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(1)

, where fmin is the objective function value of the best sam-ple observed so far, ŷ and s are the objective value of x aspredicted by the surrogate model and the uncertainty ofthis prediction, respectively, and Φ and ϕ the standardnormal density and distribution functions.4. Evaluate the chosen sample using the original objec-tive function, which is usually an expensive task.5. Update the sample set by adding the expensively eval-uated sample.6. Terminate according to termination criterion: Usu-ally, EGO stops after a specified number of iterations. Ifa termination criterion is met, the best solution that wassampled is returned. If no termination criterion is met,continue with step 2 and rebuild the surrogate model usingthe updated sample set.
3. Methodology: Extending EGO for Dynamic Op-

timization

In its simplest form, EGO is implemented to execute thesteps mentioned in Section 2. One of the fundamentalsof EGO is to maintain a data set of evaluated inputs andrespectively observed outputs, and EGO assumes that thisdata does not change. When dealing with dynamic prob-lems, such assumptions cannot be made. Dynamic prob-lem updates can have different effects on previously ob-served data: objective values can change and observedinputs can even be rendered invalid, as they become in-compatible with the current problem state.Figure 2 shows an intermediate state of a restartingEGO implementation, where old data points (shown inred) are discarded at epoch change. The black line showsthe ground truth, i.e. the current configuration of the mov-ing peaks (maximization) problem. The blue and greenlines show the predictions and uncertainty of the learnedGP model, respectively. The model considers only pointsof the current epoch for training (shown in orange). Inthe lower subfigure, the acquisition function is visualized.Ideally, EGO samples the next data point where the acqui-sition value is maximal.Because the peaks have shifted, old data points do notperfectly match the ground truth anymore. An argumentcan be made that the old data points still contain some use-ful information for the model. The current GP model un-derestimates the variance of the ground truth and is there-fore too conservative in its uncertainties. Furthermore,while the old data points do not match the new peaks, theycan still be considered to be “near” the new peaks, whichcould guide EGO into promising regions. We therefore in-vestigate different ways in which EGO can be applied toproblems that exhibit such dynamicity.
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Figure 2. Reinitialized GP after epoch change.

3.1. Limited Memory (LM)

The simplest way to include outdated data points in amodel is to ignore the fact that the results of reevaluat-ing them in the current epoch might differ slightly fromthe information obtained in a previous epoch.If the dynamic changes to the problem are small andgradual in nature, the impact of this error can be negligi-ble compared to the information loss that not includingthe older data points can incur. For open-ended optimiza-tion the number of old data points to include must be lim-ited, since in many cases the out-of-date-error can beassumed to increase over time and usually the trainingspeed of Gaussian processes scales poorly with the num-ber of data points. This limit can be implemented on aper-epoch or (if changes are numerous and small or noteasily detectable) on a per-evaluation basis. Since for manysimulation-optimization scenarios changes can be easilydetected by monitoring the event queues that inform thesimulation we opt to use a per-epoch cutoff in this work.One such example is Llorente and Djurić (2024) that usesuch a method to continuously solve a localization problemin a two-dimensional wireless sensor network.
3.2. Increased Uncertainty (IU)

When allowing EGO to reuse data points from previousiterations and previous epochs, the fact that the poten-tially outdated information is not as certain as informa-tion obtained in the current epoch should be accountedfor. The most direct method is to deliberately introduce
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uncertainty/noise in the kernel of the Gaussian process.However, this has to be done with great care as manualintroduction of noise can interfere with hyperparametertuning and leaves open the question of how much noiseshould be added to each data point. In this paper, we optto force the Gaussian process model to introduce noise onits own by duplicating old data points. The original datapoints keep their old objective values, why the duplicatesare set to their mean objective value of all points of thecurrent epoch, which is updated every iteration.
3.3. Transfer Learning (TL)

A new idea showcased by Liu et al. (2023) is to treat the in-clusion of old data points as a transfer learning problem andutilize existing transfer learning techniques like TransferComponent Analysis (TCA) (Pan et al., 2010) to adapt olderpoints to the current epoch. This approach essentially cre-ates a transfer model that predicts adapted x and y values,which are then treated as training points for the actualsurrogate model. A potential danger of this setup is thepropagation of errors between the two models, where poortransfer performance can mislead the surrogate model,which in turn influences the solution candidates that willbe evaluated in the current epoch and the data points to beincluded in the next update of the transfer model. The abil-ity of the transfer model to adequately capture the changebetween epochs from a very limited set of samples heavilyinfluences the performance of the overall algorithm. Inthe presented experimental study, a Support Vector Ma-chine (SVM) (Platt et al., 1999) built on 5 ∗ d data points isused as a transfer model.
3.4. Spatio-Temporal Modelling (STM)

Another relatively intuitive approach is to extend the fea-ture vector of each data point with the epoch number atwhich the point was generated. The search for the optimalvalue of the acquisition function is subsequently restrictedto the hyper plane of the current epoch. Special care mustbe taken concerning the scaling of this new time variable,since many classically used kernel functions for Gaussianprocesses assume isotropic behavior (that all decision vari-ables are scaled to roughly the same scale). A solution tothis is the combination of a spatial kernel that deals withdistances in the actual search space and a temporal ker-nel that implements the “forgetfulness” of the Gaussianprocess (Nyikosa et al., 2018).Figure 3 provides visual examples for the describedstrategies. Each plot shows the ground truth, i.e. a specificsection of the well-known Rastrigin test function, beforeand after an epoch change. This change results in a shiftin both axes between the gray dotted old epoch and theblack solid new epoch. Samples obtained in the old epochare marked in gray and current ones are marked in black,respectively. Data points used for training are plotted asfilled circles (), unused data points are plotted as crosses ().The blue area designates the Gaussian process model and
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Figure 3. Restarting, LM, IU and TL strategies.

its uncertainties. Figure 4 shows the same example forthe spatio-temporal model, where the inclusion of timeas a dimension implies that the model now needs to ap-proximate a surface rather than a line. The upper subplotdisplays the ground truth while the lower subplot showsthe model’s approximation.The restarting plot shows a GP that does not use old datapoints for training and therefore loses some information.The second subplot shows a GP that uses the LM strategyand interprets old data as fully valid, which leads to a rea-sonable result on the rightmost region of the search space,but introduces significant error for the leftmost region. Anapplication of the IU strategy can be seen in subplot three.The additional red data points force the GP to assume acertain level of noise. Note that all red data points share thesame f(x) value, which is equal to the mean f(x) value ofall current data points. The last subplot shows the GP thatis built with points generated by transferring outdatedsamples, shown in red.
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Figure 4. STM example.

4. Experiments & Results

The following results will use the well-known MovingPeaks benchmark generator by Branke (1999). Whilemore modern generalized versions of this generator ex-ist (Yazdani et al., 2021a) they are geared towards gen-erating highly complex, irregular, asymmetric problemswith higher degrees of decision variable interaction. Whilethese types of problems can certainly appear in practice,they are usually poorly suited to surrogate-assisted opti-mization and the presented experiments should captureand compare the effects of different memory strategiesrather than particularities of specific difficult landscapes.
The Moving Peaks problem defines a number of peakswith hi, wi and pi, j being the height, width parameterand position in the j-th dimension of the i-th peak. Thetotal objective value of this maximization problem is thendefined as the maximum contribution of any peak for allsolution candidates as seen in Equation 2. All parameters

Table 1. Problem and algorithm parameter setting
Parameter Value/Range
Dimension d 1 .. 5Decision variable range 0 .. 100Epochs maxe 10Epoch length 10 ∗ dNumber of peaks 5Peak heights 30 .. 70Peak widths 0.1 .. 2.5Shift strength 1
Initial sample size s 5 ∗ dKernel Anisotropic RBF + White NoiseAcquisition function optimizer L-BFGS-B (10 restarts)Hyper-parameter optimizer L-BFGS-B
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Figure 5. Timeline of two epochs.

of a peak undergo slight variations whenever an epochchanges.

q(x, t) = max
i

hi(t)
1 + wi(t) ∗∑d

j (xj – pj,i(t))2 (2)
Since the moving peaks benchmark displays no globaltrend in large parts of the search space, dynamicallyshifted variations of the Rastrigin (Rastrigin, 1974) func-tion are tested.Table 1 lists the problem and algorithm parameters thatare considered fixed over all comparisons.The evaluated algorithm, including all of its memorystrategies, have been implemented in Python. Gaussianprocesses are provided by “scikit-learn” (Pedregosa et al.,2011). To have a baseline for comparison, the Python pack-age “bayesian-optimization” (Nogueira, 2014) is used,and identified by the term “Control” in all experiments.Figure 5 displays a typical timeline of two epochs ofa restarting EGO on a two-dimensional problem. Theachieved quality increases as time progresses but resetsdrastically after the epoch change. The drop of the bluecurve at the end of the second epoch is indicative of explo-ration behavior. The green line shows the best objectivefunction value that can be achieved.
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Figure 6. Timeline of a single Control run.
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Figure 7. Timeline of a single Restarting run.

Figure 10 reports the mean Mean Pre-Shift Error (MPSE)for all runs started in the outlined experiments. For eachsingle run, all epochs are analyzed. The pre-shift errorwithin an epoch corresponds to the minimal distance be-tween the best found and best possible objective valueduring that period. As every algorithmic setup is exe-cuted with three repetitions and for dimensions 1 – 5, allcomputed pre-shift errors are then averaged, resultingin MPSEs, grouped by dimension and plotted for everyalgorithm extension.
• The first and foremost trend is the curse of dimension-

altiy which states that the performance of model-basedoptimization techniques decreases with the number ofdecision variables of the underlying problem. The over-all performance of all algortihms for five-dimensionalproblems displays no notable difference anymore.• In all Rastrigin-based experiments, the performanceseems to be independent of the actual shift strength.Furthermore, no strategy distinguishes itself as a clearwinner. Since the inclusion of old data seems to be ofneither benefit not detriment, a possible explanationis that all EGO variations can exploit the strong global
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structure of the problem.• In all Moving Peaks-based experiments, IU and TL areperforming worst in most cases. This can potentially beattributed to the nature of the peak shifts. The resultingtransfer function obtained from subtracting two shiftedpeaks is non-linear and can be even more complex thanthe original objective function, possibly requiring morepoints to adequately model the transfer than are neededto solve the original optimization problem.• The Restarting and Control strategies are effectivelystatic optimization approaches, and therefore unaf-fected by shift. As suggested by Alza et al. (2023),there are cases in which simply restarting an optimizermight be preferable to many conventional dynamic ap-proaches.• Looking at the results obtained in low-shifting MovingPeaks problems, LM and Tai are competitive with thestatic strategies and in some cases even outperformthem.
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• Most strategies perform similarly well on the one-dimensional Moving Peaks problems, indicating it be-ing a rather easy to solve problem.
A note has to be made on the performance differencesbetween the control an the restarting algorithm. Whileboth versions follow the same idea of forgetting all olddata points, reevaluating the initial set and operating fromthere with only new information, the setting of hyper-parameters and exploration of the acquisition functionspace differ. Figures6 and 7 provide examples of the qualitycurves obtained by singular runs of control and restartingrespectively on the one-dimensional Moving Peaks prob-lem. The control strategy was “luckier” in its initial set(the first 5 samples in each epoch), but very little progress

is made after initialization. The restarting strategy seem-ingly jumps to quite superior qualities after initializationis done. An explanation of this behavior can be obtainedby looking at the corresponding sample distributions ofboth algorithms (where in the search-space the algorithmdecides to sample) in Figures 8 and 9 for these runs. Thecontrol strategy most likely suffers from either improperhyper-parameters for their GP models or fails to searchthe regionally very flat acquisition function, causing thealgorithm to be “stuck” very close to the currently best ini-tial sample point. Since both strategies lose all informationas soon as the epoch changes, the apparent upwards trendin quality for the control strategy is not indicative of thealgorithm recovering from this state, rather than simplysome peaks moving closer to the initial sample points.
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5. Conclusions & Outlook

In this work we presented, compared and evaluated mul-tiple approaches how EGO can be extended to dynamicoptimization problems. The five different EGO extensionsinclude limited memory, creation of noise, restarts, spatio-
temporal modeling and transfer learning. Although thesemethods differ significantly on how they incorporate pastinformation and complexity, their overall impact on theachieved qualities is mostly limited to lower dimensionaluse cases which is consistent with previous reports on theeffect of dimensionality on surrogate-based optimizationtechniques. It also highlights the need for more tailoredapproaches with the capacity to create longer memoriesin the algorithm in the hopes of obtaining the increasedamount of information need to cover higher-dimensionalsearch spaces. Lastly, this study only covers a limited set oftest functions, with very uniform changes. Real-world sit-uations where changes can appear in wide varieties and of-ten display trends or regimes will necessitate case-specificselection and tuning of memory schemes and the EGO vari-ation working on the resulting models. Also, evaluatingEGO using other models instead of Gaussian processescould be interesting, for example, long short-term mem-ory recurrent neural networks (Hochreiter and Schmid-huber, 1997) might be especially suited for dynamic sur-rogate modeling.
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