
© 2024 The Authors. This article is an open access article distributed under the terms and conditions of the
Creative Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

1

36th European Modeling & Simulation Symposium, 023
21th International Multidisciplinary Modeling & Simulation Multiconference

2724-0029 © 2024 Thomas Wiedemann and Michael Danzig
doi: 10.46354/i3m.2024.emss.023

SimLuxJS – an optimized JavaScript-simulator

Thomas Wiedemann1* and Michael Danzig1

1 University of Applied Science Dresden, F.-List-Platz 1, 01069 Dresden, Germany

*Corresponding author. Email address: wiedem@informatik.htw-dresden.de

Abstract
Today, JavaScript is very successful used in all environments – on web servers, in web-clients for building desktop like
applications and in multi-core applications. Older simulation systems with JavaScript use a very complicated code structure ´,
often called “callback-hell” and the first attempts of JavaScript based simulation were not very successful. In result of that
situation, the authors did a restart with new JavaScript methods like promises and async/await-structures in the actual
JavaScript versions The result is a JavaScript simulation system with an improved and better readable syntax. It is also very
similar to the well known SimPy and SLX syntax, which is often used in simulation. So SimPy and SLX users can use SimLuxJS as
a new option for discrete simulation without large migration efforts.

Keywords: JavaScript-based simulator, with improved syntax, SimPy, SLX

1. Introduction

With the improved V8 JavaScript-engine from Google
from 2010 (Daniel, 2012), JavaScript (JS) made a very
successful development. Now it is one of the most
often used programing languages in the world. Nearly
all web applications are built by using large and
complex JavaScript frameworks like react or VueJS. In
the last years JavaScript was extended with new syntax
elements like async and await for better writing
concurrent programming tasks. This paper extends an
older JavaScript simulation approach by using these
new syntax elements. The result is a JavaScript
simulation system with an improved and better
readable syntax. It is also very similar to the well
known SimPy and SLX syntax. So SimPy- and SLX-
users can use SimLuxJS as a new option for discrete
simulation without large migration efforts.

2. State of the art of JS-simulation systems

A first JavaScript based simulation system was
already presented by the first author at the EMSS

conference in 2016 (Wiedemann, 2016).

 The main structure of the simulation code consists
of nested callbacks (see fig. 1). Especially in complex
and large web-based applications such call back
structures are hard to write and maintain. Often, this
code is called “callback hell” and programmers try to
avoid such code structures.

Figure 1: A typical call-back structure in old JavaScript

// simulation with nested operation steps
var simdis = require('./simdis');//sim modul
// advance to start time of process
simdis.advance(simStartTime,
 function() // callback to next step
 { // do the job

 simdis.waituntil(simCond2(),
 function(err) // next callback
{ console.log(simprocID + ":Step3");

 // and so on …
} }); }); }); }); // end of nested function calls

https://creativecommons.org/licenses/by-nc-nd/4.0/

2 | 36th European Modeling & Simulation Symposium, EMSS 2024

A similar approach was presented by Varshney with
the SimJS-system (Varshney, 2011). Unfortunately,
this system was not maintained further during the last
five years. No other, real usable JS-discrete
simulation-systems were found in the web with a
normal web search by using Google.

Some other existing JS-simulators are also based on
forks of the SimJS-project and must also be
considered as inactive. All the projects used the old
and ineffective code syntax. In result of this situation,
the first author considered a restart with the state of
JavaScript in 2023 in a master course on “Discrete
simulation”. The presented project is based on the
final semester project of on master student in 2023.
 It could be seen also as a M&S teaching example.

3. New JavaScript-syntax options after 2017

The mentioned “callback-hell” was also acknow-
ledged by the JavaScript core developers, and they
offer now new methods like promises and
async/await-structures in the JavaScript versions
(ECMA, 2015) and (ECMA, 2017, Brandt, 2019).

Figure 2: The new async/await syntax (MSDN24)

The new syntax is a combination of a call with the
new option await inside a function, which is declared
with the new prefix async as asynchronous. This
syntax is more readable und avoids the nesting of
callbacks. The code structure is less complex and
allows a separation of the whole simulation code into a
fixed simulation kernel and an application specific
model description without complex algorithms.

This approach supports the well-known design
scheme “separation of concern” (see Gudabayev T.
(2021)). In the case of simulation models, it allows a
very strong separation of the simulation core and the
simulation model.

4. An optimized architecture and syntax for
JavaScript based simulation

4.1. Main program structure of SimLuxJS

Like already mentioned, the main advantage of the
new approach in JavaScript for asynchronous

programing with async/await is the separation of the
asynchronous program parts of the simulation kernel
and the application specific simulation model. In
result, a better structure of the whole simulation
program is possible (see fig. 3)

The SimLuxJS -Library concentrates all necessary
internal discrete simulation algorithms (for details
and backgrounds of discrete simulators please see
(Schriber, 2013)). In general, the source code of the
SimLuxJS -Library should not be changed by standard
modelers to avoid an inconsistent behavior of the
simulation system. Otherwise, the whole system is
available as an Open-source project at (GitHub, 2024)
and all simulation experts are invited in collaboration.

Figure 3: Main simulation program structure

The model data file(s) on the right side are optional,
if there are any external data sets like work plans or
order lists in a production model. The SimLuxJS -
kernel-lib uses in the current version one external
JavaScript module “async-mutex” for synchronizing
asynchronous operations (Mutex,2024).

4.2. The SimLuxJS kernel library

The SimLuxJS kernel consists of two public classes.

The class SimLuxJS is the main simulator class and
contains all simulation control data and methods. The
class has a constructor that requires either no
parameters or a Boolean flag for requesting debugging
information on the console. An object of that class
stands for one active simulation and schedules the
simulation processes.

The class SimEntity is a minimalistic base class for
simulated objects. They can be used by overriding
their run method. That method must be
asynchronous, to be executed in the correct order at
the right simulated time. The execution process inside
the SimEntity-class can be blocked by the waiting
statements advance(time), waitUntil(condition, time-
out) and waitForResource(resource). Especially the
syntax elements advance and waitUntil are very
similar statements like the counterparts in the well-
known SLX-simulation system (SLX, 2018).

// the new async / await-syntax
function resolveAfter2Seconds() {
 return new Promise((resolve) => {

 setTimeout(() => { resolve('resolved');
 }, 2000); });

}
async function asyncCall() {
 const result = await resolveAfter2Seconds();
 console.log(result);
}
asyncCall(); // execute it

Simulation model
o load libs
o init simulator
o model

behavior
description

o run control
o result reports

SimLuxJS-Library
o Sim classes
o Event schedul-

ing and control
o Debugging and

simulation
control

Model data Ext. JS-libs

Wiedemann and Danzig| 3

4.3. The SimLuxJS -Simulation control algorithms

The simulation control executes its main loop as
long, as the loop body notices any change within the
simulation or until an optionally given stop time is
reached.

The loop body performs the following checks and
always begins at the top again, after having found a
positive condition, thus ensuring that earlier positive
conditions have priority over later ones.

o Has a SimEntity recently reserved an awaited
resource, and can it continue its work? If yes,
then the simulation control continues with the
next SimEntity.

o In case that a value of a control variable has
recently changed, is there a waitUntil-
condition in some SimEntity code, with that
control variable inside? If yes, then check the
condition again and if true, let that SimEntity
resume operations!

o Have new SimEntities been added to the
simulation with addSimEntity recently? If yes,
then start their execution.

o Are there any other entries in the list of awaited
times. If yes, then extract the event time of the
SimEntity as the next simulated time. activate
the operations on those entries again.

It is also possible to set a stop time for the simulation.
If there was a change in the simulated time, then the
new time is compared to the stop time and the
simulation pauses, if the stop time is reached.

If there are no more SimEntities in the event list
and none of these conditions apply, then the
simulation ends.

4.4. An example SimLuxJS simulation model

The resulting model description in plain JavaScript-
syntax is shown at figure 4. The syntax is very similar
to well known Simply and SLX syntax.

At the first lines of source the SimLuxJS -kernel is
imported. Then global model definitions are set. In the
example there is a resource for a toll station created
and the toll waiting line queue values are defined.

The asynchronous function car(…) defines the
behavior of each car. In the beginning the car is parked
for a certain time, then it starts driving. When it
arrives at the toll station, it enters the toll queue line
and then tries to enter the toll station by calling the
SimLuxJS -waitForResource statement. If the toll
station is available, the car enters immediately,
otherwise it has to wait. After entering the toll station
the tool payment is modelled by some time delay
tolltime. After toll payment the car frees the toll
station by calling releaseToll() function and
continues driving.

Figure 4: An example model of a car toll station

Inside a for-loop a number of cars is instantiated and
put into the simulation model by using the SimLuxJS -
addSimEntity-method.

The shown source code elements await / advance are
standard JavaScript syntax elements. If needed and if
useful, the code could be packed into one single
advance() -function.

With the last line of code, the simulation is started and
executed until the given end time of 200 is reached.

// Import of SimLuxJS-kernel

const SimLuxJS =

require('./simLuxJS.js').simLuxJS;

const simEntity =

require('./simLuxJS.js').SimEntity;

const simLuxJS = new SimLuxJS();

// global model definitions

// of the car -model

const toll = simLuxJS.createResource(1);

let tollqueue =0, tollqueueMax = -1;

async function car(simid, carid,

parktime,drivetime1,tolltime,drivetime2)

{ await simLuxJS.advance(parktime);

 await simLuxJS.advance(drivetime1);

 tollqueue++;

 let releaseToll = await

 simLuxJS.waitForResource(toll);

 tollqueue--; // Charge now toll fee

 await simLuxJS.advance(tolltime);

 releaseToll();

 // continue after toll station

 await simLuxJS.advance(drivetime2);

… // generate SimLuxJs-object (e.g. cars)

for (carid =1; i< number_of_Cars; i++)

{ // set other car model values and times

simLuxJS.addSimEntity(new simEntity(SimEntity =>

car(exp, carid, parktime, drivetime1, tolltime

,drivetime2)));

};

// Execute simulation(s)

async function DoSimulationExperiments ()

{ await simLuxJS.run(until=200); }

4 | 36th European Modeling & Simulation Symposium, EMSS 2024

4.5. Specific SimLuxJS kernel algorithms

4.5.1. Prevention of race conditions

SimLuxJS currently only uses single threading for
its actual base functionality. The asynchronous
functions of the SimEntities are handled by
JavaScript’s event queue. Because the order of events
is clearly defined, no race conditions can occur.

If SimEntities are blocked by waiting statements,
then JavaScript’s event queue does nothing on them.

4.5.2. Internal implementation of waiting functions

The simulation uses semaphores and mutexes from
the node.js package async-mutex for switching
between the execution of the control algorithm in the
SimLuxJS class and the end-user defined code in the
SimEntity class (for details see (Mutex (2024))).

First simulation control is started. Whenever it
starts or resumes SimEntities in its main loop, then it
counts them and creates a locked semaphore (a
resource without free capacity) and waits until that
semaphore can be locked again with a weight that
corresponds to the number of running SimEntities
(until the resource has so much free capacity as there
are running SimEntities).

Each SimEntity which calls a waiting statement or
finishes its work unlocks the simulation control’s
semaphore by one (releases one capacity of the
resource). When the waiting finishes, the SimEntity
locks the semaphore by one again (reserves one
capacity of the resource again). The simulation control
only resumes execution when all SimEntities are
waiting or finished.

In addition to the semaphore handling, a SimEntity,
that calls a waiting statement, also triggers the
creation of one waiting list entry with the parameters
resource, duration/timeout and conditions. In result,
the simulation control can check if and when waiting
SimEntities can be resumed. These waiting list entries
are grouped by equal awaited times and by identical
conditions. The waiting itself is done by creating a
locked mutex (a resource with capacity=1, that works
like a red traffic light) for each group of waiting
SimEntities. The group is then waiting for that mutex
to unlock (until the traffic light switches to green).
The unlocking is done by the simulation control, when
it notices, that an awaited event occurred in its main
loop.

4.5.3. Multicore executions

In general JavaScript can be executed in parallel 0n
a multicore processor. The algorithms are already
existing in the NodeJs-environment and can be reused
also for simulation purposes.

An open question is the effective synchronization of
the multicore instances, because there is no direct
control available by a main processor, but the software

must synchronize itself over the shared memory. But
in overall, this way can help in lowering the run times
of complex simulations, if any of the cores is executing
the same model but with other random number
sequences.

5. Distribution and performance measures

5.1. SimLuxJS-licensing and distribution

The main goal of the SimLuxJS-project is an open
community project for discrete simulation at an
innovative level of current JavaScript-technology.

In order to allow both commercial and free usage of
the package, it is distributed under the MIT license
model in the Github environment (see repo at
https://github.com/htwddwiedem/SimLuxJS)

The SimLuxJS package is free for all users and
especially universities and small and medium sized
companies. Otherwise, the software can be included in
commercial and paid simulation projects. The authors
invite all interested colleagues in a further joint
development of the SimLuxJS -project.

5.2. Discussion of actual performance issues

The performance of the developed JavaScript based
simulator was compared to a very similar simulation
model in SimPy. For getting a very similar semantic
model, the model was first developed in SimLuxJS.
Then the source code was copied to the Python
environment Thonny and each line of JavaScript code
was converted 1:1 to the Python or SimPy code.

First the performance was tested under debugging
conditions with a large amount of log outputs. Under
this condition the SimLuxJS model was 20 to 30 times
faster than the SimPy model.

After switching off the log outputs, the SimLuxJS -
model execution was between 10 to 20 times slower
than the SimPy model.

In general, there was a larger variance of the run
times of the SimLuxJS-models – sometime the
difference between the mean and the minimal values
was 50%, thus some executions were two times faster
than all the others. Possible reasons could be the
multitasking Windows environment with stochas-
tically running background processes.

As a first conclusion about performance, we can
state, that the overall comparison of the speed
depends very heavily on the amount of text outputs
during simulation. It seems, that the text visualization
of Python is very ineffective and slow, compared to the
speed of numeric calculations. Otherwise SimPy seems
very fast in executing the model synchronization. A
possible reason could be the compilation of the
SimPy-environment to native code of the processor.

https://github.com/htwddwiedem/SimLuxJS

Wiedemann and Danzig | 5

SimLuxJS depends on the execution of JavaScript-
code inside Googles V8-engine and this will be slower
in general than native code on the processor.

The performance behavior of both systems will be
analyzed in the future in more detail and the authors
will try to avoid ineffective JavaScript data structures
by implementing optimized ones for handling large
amount of active simulation objects.

6. Conclusions and outlook

In result of the new JavaScript options for
asynchronous programming a new and optimized
simulation system SimLuxJS was developed. The new
syntax is very similar to the well known SimPy and
SLX syntax, which are often used in simulation.
Models, built with the new SimLuxJS -command set,
are very readable like SimPy or SLX-models.

So experienced SimPy, SLX or Sim#.Net-users can
use SimLuxJs as a new option of the same or very
similar simulation semantics.

The performance behavior of SimLuxJS has to be
analyzed in more detail, because the results depend
very heavily on the amount text output during
simulation in the log windows.

The future development of the SimLuxJS-package will
continue in the following directions:

1. Optimization of the simulation kernel in terms of
performance and memory usage

2. Adding an optional graphical user interface (GUI)
for simplicity of usage also by non-computer
scientists.

3. Adding an an optional animation module for 2D-
and 3D-visualizations and animations by using
existing JavaScript-based libraries.

The 2nd and 3rd development are already started by
bachelor and diploma thesis of students and will
continue to the end of the year 2024. First working
examples will be shown at the conference.

Acknowledgements and Funding

The SimLuxJS -project was initiated by the first
author based on an older version of a JavaScript based
simulation (Wiedemann, 2016). The new SimLuxJS -
simulation-kernel was developed by the second
author of this paper in the context of the teaching
module “Discrete simulation” at the University of
Applied science Dresden. All performance measures
were done and double checked by both authors.

The authors invite all interested colleagues in a
further joint development of the SimLuxJS -project.

SimLuxJS uses the node.js library async-mutex
which can be found at npmjs.com and in DirtyHairy’s
Github repository at (Mutex,2024).

The project did not receive any specific grant from
funding agencies in the public, commercial, or not-
for-profit sectors.

References

Brandt, C., (2019) The History (and Future) of
Asynchronous JavaScript
https://developer.okta.com/blog/2019/01/16/histor
y-and-future-of-async-javascript

ECMA, (2015) ECMAScript® 2015 Language
Specification (ECMA-262 6th Edition / June
2015) https://262.ecma-international.org/6.0/

ECMA, (2017) ECMAScript® 2017 Language
Specification (ECMA-262, 8th edition, June
2017) https://262.ecma-international.org/8.0/

MSDNASYNC (2024) MDN Web Docs (formerly
Mozilla Developer Network)
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Statements/as
ync_function

Mutex (2024)
https://www.npmjs.com/package/async-mutex
https://github.com/DirtyHairy/async-mutex

Daniel C., (2012). Breaking the JavaScript Speed limit
with V8 http://v8-io12.appspot.com/#2 2012

Gudabayev T. (2021). Separation of Concerns The
Simple Way
https://dev.to/tamerlang/separation-of-
concerns-the-simple-way-4jp2

SimLuxJS-GitHub-Repo (2024).
https://github.com/htwddwiedem/SimLuxJS

Schriber T.,Brunner D., Smith J., (2013). Inside
Discrete Event Simulation Software: How It Works
and Why It Matters. Proceedings of the 2013 Winter
Simulation Conference, Pages 424-438

SLX, (2018) Homepage of the SLX-simulation
language
www.wolverinesoftware.com/SLXOverview.html

Varshney, M. (2011) . Sim.js-Homepage
simjs.z5.web.core.windows.net/download.html

 Wiedemann, T. (2016) Using the JavaScript ENGINE
NodeJS for discrete simulation in a web-based
environment. Proceedings of the 2016 European
Modeling & Simulation Symposium, Pages 334-
337

https://262.ecma-international.org/6.0/
https://262.ecma-international.org/8.0/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://www.npmjs.com/package/async-mutex
https://github.com/DirtyHairy/async-mutex
http://v8-io12.appspot.com/#2
https://dev.to/tamerlang/separation-of-concerns-the-simple-way-4jp2
https://dev.to/tamerlang/separation-of-concerns-the-simple-way-4jp2
https://github.com/htwddwiedem/SimLuxJS
http://www.wolverinesoftware.com/SLXOverview.html
https://simjs.z5.web.core.windows.net/download.html

