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Abstract
We propose that a tree-like hierarchical structure represents a simple and effective way to model the emergent behaviour of financialmarkets, especially markets where there exists a pronounced intersection between social media influences and investor behaviour. Toexplore this hypothesis, we introduce an agent-based model of financial markets, where trading agents are embedded in a hierarchicalnetwork of communities, and communities influence the strategies and opinions of traders. Empirical analysis of the model shows thatits behaviour conforms to several stylized facts observed in real financial markets; and the model is able to realistically simulate theeffects that social media-driven phenomena, such as echo chambers and pump-and-dump schemes, have on financial markets.
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1. Introduction

In recent years, there has been a dramatic shift in the ac-cessibility of financial markets. New fintech applicationssuch as Robinhood and eToro have enabled retail investorsto trade directly on traditional markets, without the needfor expensive brokerage services; and the unprecedenteddisruption of new cryptocurrency assets, with their overallvaluation rising from zero to more than one trillion dol-lars in less than 15 years, has driven crypto-speculationby millions of novice investors. At the same time, socialmedia has become a ubiquitous presence in the lives ofbillions of people across the globe, which has influencedbehaviours for both good and bad.
This shift in financial market participants and net-works of influence has resulted in new causal drivers ofmarket dynamics, leading to previously rare events becom-ing relatively commonplace (e.g., GameStop short squeeze,

Klein (2022)). Additionally, the democratisation of mar-kets has dramatically increased the opportunities for ma-licious actors to take advantage of the naïve through illicitpractices such as pump-and-dump schemes (Li et al., 2021).
Contribution: In this paper, we introduce a new agent-based model of financial markets to capture this shift indynamics. In particular, we extend the well-establishedmodel of Lux-Marchesi (Lux and Marchesi, 1999) by em-bedding agents on a hierarchical network to form com-

munities of influence. These communities represent so-cial media influence on behaviours. We are able to showthat the model generates realistic behaviours under a va-riety of scenarios, and we are able to investigate the ef-fects of social media influence, the effects of echo cham-bers, and markets most likely to be susceptible to pump-and-dump schemes. All code is available open source:https://github.com/gonzalo-bo/Lux-Hierarchy.
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The rest of this paper is organised as follows. In Sec-tion 2, we present a detailed background, review relatedworks, and identify a research gap. In Section 3, we de-tail our model implementation and describe a set of met-rics that we use for evaluation. Section 4 presents modelresults, demonstrating realistic general behaviours (Sec-tion 4.1) and realistic responses to particular scenarios(Section 4.2). We then discuss findings and their signifi-cance (Section 5), and conclude by briefly illustrating lim-itations and opportunities for further work (Section 6).
2. State of the art

2.1. Social media and financial markets

Wang et al. (2022) established a causal link between socialmedia sentiment and same-day stock returns by analysingonline messages from stock investment forum EastMoney
Guba. This finding is supported by Müller et al. (2023),who discovered the sentiment expressed in X (formerly
Twitter) messages has a similar effect, and the influenceon returns is stronger for “risky, volatile” assets with amarket price that tends to deviate from the underlyingfundamental value.Sentiment expressed through social media has alsobeen shown to significantly impact market volatility, suchthat positive news on social platforms can lead to rapidprice increases, while negative news can cause sudden de-clines. For instance, Gilbert and Karahalios (2010) demon-strated a direct link between the sentiment on social mediaplatforms and subsequent movements in the stock mar-ket, suggesting that increases in subjective expressionsof anxiety could predict an increase in volatility for theS&P 500 index. Additionally, Jiao et al. (2020) found that,whilst influence from traditional news media predicts a de-crease in an asset’s volatility, influence from social mediahas the opposite effect. They present evidence suggestingthat this distinction can most accurately be explained byan “echo chamber” model, where traders in social mediaare disproportionately affected by information that getsrepeated (i.e., echoes) within the network.The Echo Chamber Effect refers to the idea that social me-dia platforms can create environments where investors areexposed predominantly to opinions and information thatreinforce their existing beliefs (Cinelli et al., 2021). Suchenvironments can lead to overconfidence and exacerbatemarket anomalies, as investors might ignore contrary evi-dence or broader market signals. Barber and Odean (2008)found that individual investors tend to trade more aggres-sively under the influence of overconfidence, which couldbe heightened by echo chambers in social media settings,leading to suboptimal trading decisions.Cookson et al. (2022) provide evidence for the existenceof the Echo Chamber Effect by analysing the data of morethan 400,000 users on social network StockTwits. Theyreveal that users of this forum have a strong tendency toselectively expose themselves to information that rein-forces their pre-existing beliefs, which leads to persistent

disagreement within the forum and may help explain whyassets subject to social media chatter display more pricevolatility. Furthermore, studies such as Jiao et al. (2020)and Cookson et al. (2022) suggest that the Echo ChamberEffect is more prevalent for positive opinions than for neg-ative opinions; which leads to social media communitiesdisplaying disproportionately bullish tendencies (i.e., ex-pectations that future prices will increase) regarding theirmost frequently discussed assets or asset classes.Social media is also associated with the illicit practiceof pump-and-dump, which is described by Li et al. (2021)as the act of artificially inflating (i.e., “pump”) the price ofan asset through exaggerated or entirely fabricated state-ments. Then, once the asset has been bought by unsus-pecting buyers (drawn in by the hype), the schemers sell(i.e., “dump”) their holdings at the elevated price, causingexcess supply which precipitates a sudden collapse in mar-ket price and significant losses for the unwitting investorsleft holding the (essentially worthless) asset. Lund (2022)suggests that pump-and-dump schemes are often facili-tated by the reach and anonymity of social media, where itis easy to spread misleading information quickly to largeand geographically dislocated audiences.
2.2. Lux-Marchesi model of financial markets (LM99)

Lux-Marchesi—hereafter referred to as LM99—is a sem-inal agent-based model of financial markets (Lux andMarchesi, 1999). Despite being 25 years old, its remark-able simplicity and versatility results in LM99 frequentlybeing used as a foundation of contemporary agent-basedmodels of financial markets (e.g., Alfarano et al., 2011;Meine and Vvedensky, 2023).LM99 contains a single financial asset with a funda-mental value, pf , representing the “true” price of an as-set in an efficient market containing rational agents withperfect information. Two types of trading agent strategypopulate the model: fundamentalists and chartists. Funda-mentalists make trading decisions based on the differencebetween the current market price and the current funda-mental value, such that the asset is bought if market priceis below the fundamental (i.e., when the asset is under-priced) and sold if the market price is above the funda-mental (i.e., when the asset is over-priced). In this way,fundamentalists tend to drive the market price toward thefundamental value. In comparison, chartists make spec-ulative trading decisions based on sentiment. Chartistsfall into two categories: optimists, who are bullish and willalways buy on the assumption that the market price willrise; and pessimists, who are bearish and will always sellon the assumption that the market price will fall. In thisway, chartists tend to drive the market away from the fun-damental value.Importantly, agents in LM99 are adaptive and canswitch between chartist and fundamentalist trading strate-gies based on the success, or profitability, of their cur-rent approach. LM99 also incorporates a mechanism for
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the diffusion of opinions among chartists, such that pes-simists (optimists) are more likely to become optimists(pessimists) if lots of optimists (pessimists) are observedin the market. This simple mechanism enables the modelto capture the psychological aspects of trading and theimpact of collective sentiment. Together, these evolution-ary mechanisms, where agents adapt strategy over time,allow the relatively simple model of LM99 to generate com-plex dynamics that realistically reproduce key aspects ofreal-world financial markets. For full details, see Lux andMarchesi (1999, 2000).
2.3. Hierarchical models of social media networks

When attempting to model the interplay between socialnetworks and financial markets, hierarchies repeatedlyemerge as a simple yet effective way to represent severalinteresting phenomena. Modeling social network dynam-ics via hierarchies is a well-established practice that hasproven to be quite powerful through several studies (Wattset al., 2002; Clauset et al., 2008). Furthermore, papers suchas Zhang et al. (2017) and Dang et al. (2019) showcase thesubstantial improvements that hierarchical designs pro-vide when it comes to modeling social media networksspecifically.
2.4. Hierarchical ABMs of financial markets

While the apparent usefulness of hierarchical structuresto model social networks is clear, there are very few pa-pers exploring their use as a way to model communica-tion between financial trading agents in an ABM. A sys-tematic Google Scholar search for “(abm OR “agent based
model”) AND “financial market” AND (intitle:hierarchy OR
intitle:hierarchical)” returns only ten unique results, andonly two of these are pertinent to the current study. Theseare: Alfarano et al. (2011), who show that an ABM witha hierarchical-like structure leads to increased volatilityin simulated markets; and Meine and Vvedensky (2023),who reveal that a hierarchical structure leads to agents insimulated markets displaying a high degree of speculativebehaviour. We therefore present the use of hierarchicalnetworks to model social media influence in agent-basedmodels of financial markets as a relatively underexploredgap in the research literature.The model introduced by Meine and Vvedensky (2023)—hereafter referred to as MV23—extends the model of LM99by embedding trading agents into a hierarchical networkstructure, such that each level in the network containscommunities of children traders with mutual connectionto a single parent. These communities represent tradersinteracting via online forums or social media groups, andthe opinions (i.e., optimism/pessimism) and behaviours(i.e., chartist/fundamentalist) of community members af-fect the opinions and behaviours of others. Adding thisnetwork community structure enables the model of MV23to demonstrate a greater variety of speculative herdingbehaviour than the underlying LM99 model, which it ex-

tends.
2.5. Research gap: social media-driven financial ABM

We have seen that social media networks have a significanteffect on the behaviour of financial markets (Section 2.1),and hierarchical network models can successfully modelaspects of social media dynamics (Section 2.3). Combined,the two aforementioned ideas highlight the potential ofapplying hierarchical structures to models of social mediacommunication between participants trading in a finan-cial market. While some models, such as MV23, explorehierarchical structures as a way to model communicationdynamics within financial markets (Section 2.4), we iden-tified no models in the literature that are explicitly tailoredto the context of social media. Therefore, we present hier-archical agent-based models of social-media influence onfinancial markets as a research gap in the literature.In this paper, we address this research gap by introduc-ing and exploring a hierarchical extension of LM99 (Sec-tion 2.2). We initially considered generalizing MV23 to ex-plore social media effects under different scenarios. How-ever, we found that the implementation details of MV23are difficult to interpret and the model’s parameter config-urations are not presented in Meine and Vvedensky (2023)(for detailed analysis, see Bohorquez, 2024). Therefore,while we acknowledge MV23 as a strong inspiration forthe present work, we present an alternative model.
3. Materials and methods

In this section, we introduce a new agent-based modelof financial markets, where trading agent opinions andbehaviours are influenced by a hierarchical network ofcommunities. We begin by detailing LM99, which formsthe base of the model (Section 3.1), before describing thecommunity network structure that we introduce as an ex-tension (Section 3.2). Finally, we define a series of metricsthat will be used to evaluate the model (Section 3.3).
3.1. Model core: LM99

The core of the agent-based model closely follows LM99,introduced in Lux and Marchesi (1999). We refer the readerto Table 1 for a description of model parameters and con-figuration values.As described in Section 2.2, LM99 contains two agenttypes: fundamentalists and chartists, with chartists takingone of two roles: optimist or pessimist. The model containsa single asset and agents can perform one of two actions:buy the asset; or sell the asset. Excess profit is used tomeasure the opportunity cost inherent to these two ac-tions; i.e., if an agent bought the asset, its excess profit ishow much it made from the purchase minus how muchit would have made from not buying the asset, and vice-versa for the excess profit if it decided to sell. We calculatethe excess profits for fundamentalists, EPf , excess profits



4 | 36th European Modeling & Simulation Symposium, EMSS 2024
Table 1. Parameter settings. Top: Values taken from Lux and Marchesi (2000, p.692). Bottom: Parameter settings of hierarchical influence network.

II III IV Description

α2 0.25 0.25 0.2 How much chartists are influenced by changes in the asset price
α3 1 0.75 1 How much traders are influenced by a role’s profit
v1 4 0.5 2 How often pessimists try to become optimists & vice versa
v2 1 0.5 0.6 How often fundamentalists try to become chartists & vice versa
β 4 2 4 How often the market price changes
r 0.004 0.004 0.004 Dividends paid by the asset
R 0.0004 0.0004 0.0004 Returns from alternative investments
s 0.75 0.75 0.75 Factor by which a fundamentalist’s profit is reduced (i.e., discount factor)

pf 10 10 10 Fundamental value
σ 0 0 0 Magnitude of fundamental value fluctuations
µ 0.1 0.1 0.05 Noise when price changes due to excess demand/supply
γ 0.01 0.02 0.01 How strongly fundamentalists react to deviations from the fundamental price
tc 0.015 0.02 0.01 How much of the asset is bought or sold (by optimists or pessimists respectively)
δt 0.01 0.01 0.01 Time-step/interval. The simulation runs for 1

δt time-steps per unit time
δt′ 0.002 0.002 0.002 Compare the current price and the price from δt′ time-steps ago to determine how fast the price is changing

L 5 5 5 Number of levels in the hierarchy
k 5 5 5 Number of children per community
b 1.8 2.25 2.4 Strength of hierarchy (community) influence on optimist ↔ pessimist transition
ϕ 0.5 0.5 0.5 Efficiency of information diffusion within the hierarchy
ω 1 1 1 Optimist child’s influence on its parent
υ 1 1 1 Pessimist child’s influence on its parent

*Lux and Marchesi (2000, p.692) parameters N (number of traders) and α1 (influence of chartists on chartists) are replaced by network hierarchy; see equations (9) - (13).

for optimists, EP+, and excess profits for pessimists, EP–,as:
EPf = s

∣∣∣∣pf – p
p

∣∣∣∣ , EP+ = (
r + ṗ

v2
) /p – R,

EP– = R – (
r + ṗ

v2
) /p

(1)

where p is the current market price, pf is the current fun-damental price, and ṗ is the price trend, calculated by com-paring the current price with the price from δ′t time-stepsago:
ṗ = (

pt – pt–δ′
t

) /δ′t (2)
At any given time-step t, traders have a probabilityof switching from one role to another. This probabilitydepends on a set of transition pressures. As defined inequation (3), U21 represents the pressure exerted by the

optimist ↔ fundamentalist transition, with positive val-ues of U21 meaning optimists feel pressure to becomefundamentalists (vice-versa for negative values). Sim-ilarly, U22 and U1 represent the pressure exerted by the
pessimist ↔ fundamentalist and the optimist ↔ pessimisttransitions, respectively:

U21 = α3
(

EPf – EP+
) , U22 = α3

(
EPf – EP–

) ,
U1 = α1

(np – no
np + no

) + α2 ṗ
v1

(3)

where no and np represent the number of optimists and

pessimists in the network, respectively.Furthermore, as in real markets, the trader’s actionsaffect the market price of the asset being traded. At anygiven time-step, the probability that the price rises, π↑p, orfalls, π↓p, is determined by the total demand in the market:
π↑p = max[0,β(EDc + EDf + µ)]
π↓p = min[0, –β(EDc + EDf + µ)] (4)

EDc represents the total demand from chartists and isdetermined by the total number of optimists, no, and pes-simists, np. EDf represents the total demand exerted byfundamentalists and is determined by the number of fun-damentalists, nf , as well as whether fundamentalists arebuying or selling the asset. EDc and EDf are defined as:
EDc = (no – np) ∗ tc

EDf = nf ∗ γ ∗ (pf – p) (5)
Finally, equations (6), (7) and (8) outline the transitionprobabilities between trader states:
πo→p = v1 · nc

N · e–U1 · δt, πp→o = v1 · nc
N · eU1 · δt (6)

πo→f = v2 · no
N · e–U21 · δt, πf→o = v2 ·

nf
N · eU21 · δt (7)

πp→f = v2 ·
np
N · e–U22 · δt, πf→p = v2 ·

nf
N · eU22 · δt (8)

where πa→b represents the probability that a trader of type
a becomes a trader of type b at any given time-step, and
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nc represents the total number of chartists in the market.
3.2. Model extension: hierarchical network

We extend LM99 by embedding agents within a hierarchi-cal network structure, which allows us to model a tradingagent’s opinions and behaviours being influenced by othermembers of their local community and wider community-of-communities. The network contains two types of node:
community and trading agent. Trading agents exist withinthe bottom level (leaf nodes) of the hierarchy, while allhigher-level nodes are designated as communities.We assume that the network hierarchy has L levels andevery non-leaf node has exactly k children. Then the totalnumber of trading agents, Nt, is equal to the number ofleaf nodes, and the total number of communities, Nc, isequal to the number of non-leaf nodes, i.e.:

Nt = kL–1, Nc = kL – 1
L – 1 – Nt (9)

Unlike the base model of LM99, where agents have per-fect knowledge of the distribution of opinions across thewhole market, in our extended model, chartists only haveaccess to information that is transmitted through the net-work structure. As such, the optimist ↔ pessimist transi-tion equation (3) is replaced by equation (10):
U1 = b

(Co – Cp
Co + Cp

) + α2 ṗ
v1 (10)

where b represents hierarchy Strength, and Co, Cp representthe proportion of optimists and pessimists in the localcommunity, respectively.Community nodes do not store a discrete state butrather a vector: [o, p, f], where o, p, and f are positive,continuous variables representing the optimist, pessimist,and fundamentalist states respectively.Additionally, by letting traders behave like a homoge-neous community (i.e., a community only populated byone child type), equation (11) simplifies modelling the in-teraction between communities and traders:
Optimist = [ω, 0, 0]

Pessimist = [0,υ, 0]
Fundamentalist = [0, 0, 1]

(11)

where ω and υ represent the influence of optimist andpessimist children, respectively.Community nodes update their state in two distinctphases:
1. Backward pass: for each child, u, a community’s stateis updated according to equation (12). In other words, eachcommunity state, C, is determined by the average of its kchildren’s states:

C[o, p, f] = 1
k
∑

u[o, p, f] (12)

2. Forward pass: following equation (13), each commu-nity state, C, is updated to account for the state of theirrespective parent community, Q:
C′[o, p, f] = 12 C[o, p, f] + ϕ · Q[o, p, f] (13)

where ϕ represents the network efficiency of information
diffusion. As ϕ → ∞, each trader is equally affected by theaveraged opinions of all other traders in the network, whilelower values of ϕ imply that traders are more strongly af-fected by opinions in the local community, andϕ = 0 repre-sents insular traders that are not affected by the opinionsof any other trader, regardless of network distance.At each time-step, the backward pass is followed by theforward pass, which is then followed by traders switchingtheir state according to the model’s transition pressures.Finally, following the LM99 paradigm defined in equation(4), the market price is updated through the interaction oftrading agents buying and selling.The full set of model parameters and their descriptionsare listed in Table 1. For the base LM99 parameters, wefollow the three standard parameter sets presented in Luxand Marchesi (2000, p.692). Note that number of traders,
N, is replaced by Nt from equation (9) and influence ofchartists, α1, is replaced by b as described in equation (10).Network parameters are presented at the bottom of Ta-ble 1. We fix hierarchy levels L = 5 and children per com-munity k = 5, giving Nt = 625 trading agents in total as perequation (9). To preserve model symmetry, the influenceof optimists ω = 1 and pessimists υ = 1 are fixed. Efficiencyof information diffusion ϕ = 0.5 is fixed to balance the rela-tive strength of influence of child and parent communitiesin equation (13). Finally, b controls the strength of hier-archy influence on the optimist ↔ pessimist transition, asdefined in equation (10).Note that, while there is no toggle to quickly reducethe hierarchical model into the base LM99 model, somespecific parameter arrangements will achieve this purpose,e.g., setting b = 0 in equation (10) is equivalent to LM99with α1 = 0, and as ϕ → ∞ in equation (13) the modelapproaches LM99 with α1 = b.
3.3. Model evaluation: stylized facts

To validate the realism of financial market simulations, itis common to compare the behaviour of the simulationmodel with the behaviour of real financial markets. Al-though real financial markets exhibit complex dynamics,there are broad patterns that consistently emerge. Theseso-called stylized facts can be used as a benchmark to vali-date simulation models, i.e., if the simulation reproducesthe stylized facts of real markets, then we can consider thatthe simulation behaves in a somewhat realistic fashion.In this work, we consider four stylized facts of financialmarkets, and we describe a metric for detecting financialbubbles.
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3.3.1. Fat tails of returnsThe fat tails phenomenon is a stylized fact observed for anasset’s (logarithmic) returns, indicating that large devi-ations from the mean are more common than would beexpected under a normal distribution. Fat tails are usuallyrepresented through leptokurtic distributions; however,as explained in Lux and Marchesi (2000), kurtosis is asomewhat ambiguous concept, and it is not entirely clearhow to compare the kurtosis statistics obtained for vari-ous time series. For this reason, rather than measuringkurtosis, it is standard practice to measure fat-tailednessby assuming that the tails of the returns decay accordingto a Pareto distribution: 1 – ax–α.Equation (14) details how to estimate α for a tail of size
m out of a total of n observations (Hill, 1975):

αH = 11
m

∑m
i=1 [ln(Rn–i–1) – ln(Rn–m)] (14)

Following standard practice, we will present values for the2.5%, 5%, and 10% right-tails of the absolute returns.
Fact: The absolute returns of most financial assets present
a tail decay such that 2 ≤ α ≤ 6, with lower values of α
representing fatter tails (Cont, 2001).
3.3.2. Volatility clustering
The volatility of an asset, σ, is generally measured as thestandard deviation of market price, defined as:

σ =
√∑(pi – µ)2

N (15)
where µ is mean market price and pi is market price attime-step i.In simulation, but not in real markets, we can also cal-culate the deviation of market price from the fundamentalvalue, Fσ, defined as:

Fσ =
√∑(pi – fi)2

N –
√∑(pi – µ)2

N (16)
where fi is the fundamental value at time-step i.

Volatility clustering is the observation that assetreturns have a tendency to cluster based on their mag-nitude/significance. That is, large changes tend to befollowed by large changes; while small changes tendto be followed by small changes. To evaluate volatilityclustering, we measure the auto-correlation function(ACF) for the absolute and squared returns when τ = 10and T = 70. We compute ACF by importing the acffunction from statsmodels.api.tsf.
Fact: We expect ACF value to be larger than 0, indicat-
ing that, for all time-steps, there is a correlation between the
current returns and returns from 10 time-steps ago.

Table 2. SADF and GSADF critical values at significance levels 90-100%.
Asymptotic SADF Finite-sample GSADF*

T 90% 95% 100% 90% 95% 100%

100 1.10 1.37 1.88 1.65 2.00 2.57
200 1.12 1.41 2.03 1.84 2.08 2.70
400 1.20 1.49 2.07 1.92 2.20 2.80
800 1.21 1.51 2.06 2.10 2.34 2.79
1600 1.23 1.51 2.06 2.19 2.41 2.87

*GSADF (T, r0) values: (100,0.190), (200,0.137), (400,0.100), (800,0.074), (1600,0.055).

3.3.3. Return to gaussianityThe return to gaussianity or aggregational gaussianity phe-nomenon refers to the expectation that the distribution ofthe asset’s (logarithmic) returns should resemble a nor-mal distribution for large values of T. To evaluate this, wemeasure the kurtosis of returns with T = 1, T = 10, and
T = 50.To compute the excess kurtosis of the returns, weuse the norm.pdf function from scipy.stats to fit thereturns to a normal distribution, after which we usethe pandas.kurt function to compute the distribution’skurtosis.
Fact: We expect excess kurtosis to be large when T = 0,
and approach zero as T becomes large.

3.3.4. Slow decay of autocorrelationThis stylized fact is related to the observation that theautocorrelation in the absolute returns of an asset tends todecay slowly, following a power law such that f(x) = at–β.To evaluate the slow decay of the ACF, we measure thedecay of absolute returns with T = 70 as a function of τ.This value is calculated by using the curve_fit functionof scipy.optimize library to fit an exponential decayfunction f(x) = at–β to the ACF of the absolute returns.
Fact: When calculated through GARCH-type models,
real markets exhibit β ∈ [0.2, 0.4] (Cont, 2001). However,
using our methodology, we expect values of β ∈ [0.6, 1].

3.3.5. Financial bubbles & explosive behaviour
Explosive behaviour in an asset price describes a rapid andanomalous increase. A related concept is a bubble, whichalso describes a rapid and anomalous increase in marketprice. However, to be classified as a bubble, it is necessaryfor the price increase to be driven by speculation ratherthan an increase in fundamental value; whereas explosivebehaviour covers both scenarios.To detect financial market bubbles, we use the simpleand well-documented GSADF test (Phillips et al., 2015).For the GSADF method with finite samples, we derive oursignificance level and minimum window size, r0, valuesfrom Phillips et al. (2011); see Table 2. We also use the PWYprocedure to detect explosive periods (Phillips et al., 2015),and follow the methodology of Phillips et al. (2012) to iden-tify significant bubbles through the asymptotic SADF crit-ical values (see Table 2).
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(a) b = 0 (b) b = 1 (c) b = 2
Figure 1. Sample runs showing how price volatility and fundamental deviation increases with hierarchy strength, b.

4. Results
In this section we first show that the model produces real-istic dynamics (Section 4.1). We then use the model to ex-plore real-world scenarios of social media influence, echochambers, and pump-and-dump schemes (Section 4.2).
4.1. Reproducing stylized facts of financial markets

Fig. 1 shows sample runs with fixed fundamental value,
pf = 10, under increasing values of b (refer to equation(10)). We see that price movements increase in magni-tude as the hierarchy’s effect becomes more pronounced,with the market price displaying sustained and significantdeviation from the fundamental price when b is large.As shown Table 3, more rigorous analysis reveals that:for all parameter sets, an increase in b is associated witha significant increase in price volatility and a significantincrease in the likelihood of explosive periods.Furthermore, by looking at individual runs (e.g., seeFig. 2), we can see that instances of explosive behaviour areoften sustained in time or occur in clustered bursts. Thissuggests that bubbles are driven by endogenous forcesrather than occurring by random chance. Indeed, asshown in Fig. 3, we see that the model leads to herding
behaviour of chartists, such that traders collectively swingfrom optimists to pessimists and back again over time.This behaviour is not present in the core model of LM99and results directly from the hierarchical influence net-work.Finally, Table 4 shows that all metrics fall within ex-pected bounds, demonstrating that the simulation modelis capable of reproducing all stylized facts of real marketsintroduced in Section 3.3.
4.2. Scenario testing

In the previous section, we validated the model by show-ing that it produces realistic financial market dynamics.In this section, we scenario test the model to see how itbehaves under specific situations of interest.
4.2.1. Socialmedia effect on volatility and bubblesProbably the most salient distinction between social medianetworks and their traditional counterparts is the speed

Table 3. Mean volatility and proportion of runs with explosive periods,showing both measures tend to increase with hierarchy strength, b.
Volatility Explosive Periods

b Set II Set III Set IV Set II Set III Set IV

0.0 4.7 1.6 3.9 0% 4% 0%
0.1 5.9 1.7 3.6 2% 4% 0%
0.25 5.5 2.2 4.0 6% 8% 6%
0.5 5.6 2.1 4.5 4% 12% 6%
1.0 6.7 2.8 5.7 2% 14% 15%
2.0 9.1 4.4 8.9 44% 34% 22%

*Cells show mean value of 50 i.i.d. simulation trials, with 8 ∗ 104 time-steps.*Volatility values are scaled by a factor of 10–2 .*Explosive behaviour is determined via the GSADF test at the 90% significance level.

Figure 2. PWY procedure on hierarchical model identifies explosive periods(shaded yellow) that are prolonged (left), and clustered in time (right).

and efficiency with which information can be distributedacross the former medium. Here, we note that higher val-ues of ϕ in equation (13) represent less network decay,equivalent to higher network efficiency. Thus, we takelarger values of ϕ to represent social media, while smallervalues of ϕ represent slower, more conventional modes ofinformation diffusion.
Fig. 4 plots volatility and percentage of runs displayingexplosive behaviour for different values of ϕ. Clearly, thereis a trend towards higher volatility and likelihood of explo-sive behaviour as ϕ increases. In other words, as the net-work becomes more efficient, the market becomes morevolatile and prone to bubble formation. This result matchesobservations of real-world markets, where social media
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Figure 3. Opinion distributions within the chartist population revealsstrong herding tendencies (at T=175-300; 450-700; 1175-1350).

Table 4. Stylized facts reproduced by the model.
Set II Set III Set IV

Fat tails of (log) returns (2 ≤ x ≤ 6)

Tail Decay (2.5%) 4.72 5.22 5.16
Tail Decay (5%) 3.48 4.21 3.82
Tail Decay (10%) 2.72 3.24 2.83
Return to Gaussianity (limT→∞ x = 0)

Excess Kurtosis (T = 1) 1.79 1.15 1.35
Excess Kurtosis (T = 10) 1.72 1.12 1.22
Excess Kurtosis (T = 50) 0.37 0.02 0.16
Volatility clustering of returns (x > 0)

Log Autocorrelation (τ = 10,T = 70) 0.29 0.52 0.45
Squared Autocorrelation (τ = 10,T = 70) 0.4 0.49 0.40
Slow decay of returns autocorrelation (x < 1)

Absolute Autocorrelation Decay 0.77 0.68 0.67
*Cells show mean value of 50 i.i.d. simulation trials, with 4 ∗ 104 time-steps.

can drive explosive behaviours of unprecedented scale inso-called meme stocks (e.g., see Klein, 2022). The resultis also consistent with previous findings in the literature,which suggest that social media (i.e., an efficient network)is correlated with higher volatility, whilst traditional newsmedia (i.e., a comparatively inefficient network) is relatedto reduced volatility levels (Jiao et al., 2020).
4.2.2. Echo chamber effect
As described in Section 2.1, social media can act as an echo
chamber, which can lead to a strengthening of pre-existingopinions. We can simulate this effect by modifying ω and
υ in equation (11) via a third variable E, such that the influ-ence of a trader’s opinion is multiplied by E if the trader’sopinion conforms to the majority opinion within its parentcommunity. We consider two distinct scenarios:
• Asymmetric Model: Where only optimists are affectedby E, such that:

ω =
{
E if optimists > pessimists
1 otherwise (17)

Figure 4. Parameter set IV. Volatility and explosive behaviour both increasewith network efficiency, ϕ.

Figure 5. Sample run of the asymmetric echo chamber scenario, showinga volatile asset price that remains consistently above the fundamental.

• Symmetric Model: Where all chartists are affected by E,such that, in addition to the effect from equation (17):
υ =

{
E if pessimists > optimists
1 otherwise (18)

For small (but non-zero) values of b, increasing E inboth the symmetric and asymmetric echo chamber sce-narios has a similar effect to that of simply increasing thehierarchy strength. However, for large values of b, thesetwo scenarios differ significantly. Namely, whilst the sym-metric scenario’s effect on market behaviour becomes neg-ligible, the asymmetric scenario is associated with largeand persistent deviations between the asset’s market priceand its fundamental value (see Figs. 5 and 6). This resultis consistent with the finding that echo chambers lead tohigher levels of speculation, and this effect is exacerbatedwhen it is asymmetric in the positive direction (Cooksonet al., 2022).
4.2.3. Pump-and-dump
We model pump-and-dump schemes through the processof a community becoming “corrupted”: such that betweentime-steps T0 and T1, a corrupted community’s (forwardpass) signal conveys a deceptively high proportion of op-timists to its children. Hence, if a community is subject
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Figure 6. Symmetric vs asymmetric echo chambers. Note that the asym-metric model exhibits a strong correlation between hierarchy strength andfundamental deviation, a relation not present for the symmetric model.

Figure 7. Sample run for a successful pump-and-dump scheme where acommunity becoming corrupted (shaded red) results in a very pronouncedpeak in the asset price. Notice that the peak (T=550) occurs after the com-munity ceases to be corrupted (T=450).

to becoming corrupted and the current time-step t is be-tween T0 and T1, its forward pass equation (13) is replacedby equation (19):
C′[o, p, f] = 12 C[o, p, f] + ϕ · Q[S∗(o+p+f), p, f] (19)

where S represents the signal strength and S ∗ (o + p + f)is the magnitude of the signal emitted by the corruptedcommunity.
We define a pump-and-dump scheme as being “suc-cessful” if the maximum price reached during or afterthe community is corrupted is larger than the maximumprice reached by 95% of 50 “uncorrupted” simulationsusing identical model parameter settings. Fig. 7 shows anexample successful pump-and-dump scheme. However,for all standard parameter sets (see Table 1), the successrate of pump-and-dump schemes (with reasonable signalstrengths s.t. S ≤ 50) is very low, and not significantlygreater than random chance. This should not come as asurprise, since pump-and-dump schemes are relativelyinfrequent, especially in mature markets predominatedby professional investors who carefully monitor the fun-damental value of assets.

Notwithstanding, some parameter configurations dolead to more frequently successful pump-and-dumpschemes. Broadly, there are four distinct classes:
• Speculative markets: where, by altering the transi-tion pressures from equations (3) and (10), the impor-tance that traders place on the actual price trend of theasset, α2, or the profit made by other traders, α3, be-comes much lower than the importance placed on oneanother’s type, b.• Volatile markets: where the price changes quickly. Thiseffect can be further exacerbated through changes tothe parameters in equation (5), such that the price be-comes heavily influenced by the actions of speculativetraders (i.e., large tc), or only mildly influenced by fun-damentalist traders (i.e., small γ).• Chartist-heavy markets: where, through equation (1),small values of s make it unlikely for chartists to transi-tion into fundamentalists.• Nascent markets: pump-and-dump schemes are gen-erally more successful when T0 is small, since the mar-ket is young and presumably still unstable.

In other words, markets that are speculative, volatile,nascent, and chartist-dominated are most susceptible topump-and-dump. This fits with the common understand-ing of social media-driven pump-and-dump schemes,where targets are often naïve traders who are tricked intobuying relatively obscure cryptocurrency assets after otherusers in a WhatsApp group claim to be making great profits.
5. Discussion

We have introduced a new agent-based model of finan-cial markets, where agent behaviours and opinions areinfluenced by a hierarchical network of communities. Ourmodel extends the well-regarded Lux-Marchesi model(LM99) of financial markets, with the addition of a hierar-chical influence network to simulate social media effects.We explored the general behaviour of the model andshowed that it reproduces several stylized facts of real mar-kets (Table 4; Section 4.1), which strongly evidences model
realism. Of particular note are the much higher autocorre-lation of returns than the base model (LM99 logarithmicautocorrelation at τ = 10, T = 70 is smaller than 0.25 forall parameter sets, and squared autocorrelation is smallerthan 0.2 (Bohorquez, 2024)). This higher degree of volatil-ity clustering indicates a lower degree of market efficiency(Hameed et al., 2009), which is another sign pointing to-ward the model’s validity, since strong social media effectsare commonly believed to reduce the efficiency of the mar-ket upon which they act (Al-Yahyaee et al., 2018; Bundi andWildi, 2019). The finding that a stronger hierarchy resultsin higher levels of volatility and more frequent instancesof explosive behaviour (Table 3) is also consistent withresults presented by Alfarano et al. (2011), who concludethat a hierarchical structure is strongly correlated withmarkets displaying erratic behaviour.
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The model was then used to explore scenarios of real-world markets (Section 4.2), with findings confirmingevidence in the literature, including: social media net-works, which increase communication efficiency, leadingto more volatile markets; echo chambers found in socialmedia leading to higher levels of speculation; and pump-and-dump schemes being mostly successful in specula-tive, volatile, and chartist-dominated markets. These find-ings provide strong evidence of the validity and versatilityof the model to explore a range of phenomena of financialmarkets.
Related work: As described in Section 2.5, our model ismost closely related to the MV23 model (Meine and Vve-densky, 2023), which also extends LM99 with a hierar-chical influence network. However, there are some keydifferences. (i) Our model’s generalised network repre-sentation, which includes LM99 under some parameterconfigurations, allows for the gradual tuning and explo-ration of community effects. In contrast, MV23 presentsa markedly more discrete jump in behaviour. (ii) Withmuch simpler rules for agent behaviour transitions, ourmodel can be more easily tailored for specific scenariossuch as echo chambers and pump-and-dump schemes(see Section 4.2).

6. Conclusions
We have extended a well-established financial ABM (Luxand Marchesi, 1999) to introduce a new hierarchical modelof social media-driven influence on trading behavioursin financial markers. Empirical evidence shows that themodel can succinctly and accurately replicate several emer-gent phenomena of real financial markets, especially thosestrongly influenced by social media. To the authors’ bestknowledge, no other model in the literature has beenshown to reproduce all these effects of social media, in-cluding the most similar model of Meine and Vvedensky(2023).However, our model is limited by some restrictive as-sumptions, such as: only a single asset is traded; everytrader is affected by community influences equally; andthe number of traders in the market is a fixed constant.In future works, we will relax some of these assumptions.A multi-asset market will be addressed following the ap-proach of Zhang et al. (2017), where each asset is modelledas a “topic,” and each individual’s interest and opinionvaries depending on the topic (i.e., asset); factors that af-fect speculative traders will be drawn from distributionsthat vary between traders; and traders will switch betweenan active and inactive state, allowing trade volumes to varyover time. We will also focus on better understanding thecausal relationships that lead to emergent phenomena, aswell as exploring the simulation of other scenarios throughthe basic hierarchical structure presented in this paper.
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