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Abstract
The paper analyses the convergence behavior of the open-ended relevant alleles preserving genetic algorithm (OERAPGA) in dynamicproduction scheduling. In a dynamic production environment, frequent changes to the scheduling problem influence the convergencebehavior of the applied genetic algorithm. This study investigates the impact of the two types of changes on the optimization process:removing the first task in the current solution from the problem and randomly removing one material along with the sub-materials fromthe problem. The impact of the changes is tested for different intervals, affecting the optimizer problem update frequency. The researchfindings show that frequent and substantive changes significantly reduce the convergence rate and can potentially halt convergence.For less aggressive changes, withholding problem update information demonstrated mixed results regarding the convergence rate, butimpacted the optimization quality negatively. Ultimately, it is concluded that frequent updating results in the best optimization results,even if the optimizer does not converge. This is counter-intuitive coming from static optimization.
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1. Introduction

Dynamic production scheduling has been a relevant topicfor quite some time now. It is especially interesting dueto its widespread area of application throughout the in-dustry (Johnson et al., 2022; Tang et al., 2024). During aresearch project concerned with dynamically schedulingthe production process of a window factory, with frequentchanges to the problem, the convergence behavior of theapplied open-ended relevant alleles preserving genetic al-gorithm optimization algorithm (OERAPGA) (Karder et al.,2022) gained our interest as it did not seem to converge atan expected rate.
In general, genetic algorithms (GA) are well suited foroptimization in the real world, as they are flexible enough

to deal with many dynamic changes. Examples of changesto the problem are information from the machines aboutfinished work steps resulting in the removal of these stepsfrom the problem, the modification of existing orders, theaddition of new orders, and the updates to the work timesof the machines. In the optimization of static problems,the convergence, although not premature convergence,of a genetic algorithm is desired to achieve the best re-sults (Pandey et al., 2014). Experiments were conductedto evaluate if this behavior is also desired in the case ofdynamic scheduling of production processes and assessthe impact on the convergence rate of varying changes tothe problem.
The paper is structured into several sections. In thestate-of-the-art section, works about production opti-
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mization and convergence behavior of genetic algorithmsare covered. The materials and methods section providesinformation about the problem used for the experiments,the algorithm used, the setup of the experiments, and howthe data is analyzed. The results and discussion sectioncovers the resulting data and analysis of the experimentsregarding the convergence rate and the optimization qual-ity. Finally, the conclusion summarizes the work done andgives an outlook.
2. State of the Art

While there is quite extensive research done evaluatingthe performance of different optimization approaches andtheir adaptations to different dynamic scheduling prob-lems providing one with valuable knowledge on whatmight be the best approach for the task at hand, there isin comparison much less knowledge available on dynamicoptimizer behavior. The main goal of this work is to targetone specific aspect of behaviors: Genetic Algorithms (hereRAPGA) usually display a convergence behavior. Geneticdiversity is lost and the solutions, the algorithm keepsin its active population become more similar over time.While convergence is usually a problem-independent algo-rithmic behavior for static optimization, we will performthis analysis specifically for the explicit optimization ofa dynamic production scheduling problem There are ofcourse approaches for dynamic scheduling like e.g. Luoet al. (2020) by optimizing on a static problem and restart-ing the optimizer based on events in the production facility,but for approaches that are similar to the one benchmarkedin this approach conclusions to their convergence effectsmay be drawn.The majority of convergence analyses in productionscheduling focus nonetheless on static tasks, which ofcourse lack the adaptability of true dynamic optimizationwe want to achieve and mostly focus on the issue of pre-mature convergence or speeding up the convergence toobtain optimization results quicker as a motivation foradaptions and new approaches (Werner, 2013).The dynamic setting is covered significantly less, onlyXu et al. (2022b) and Xu et al. (2022a) offer literature exam-ples with quantitative measurements on the convergence.They observed the convergence to improve the parent se-lection process by comparing the convergence of differentapproaches as a key factor of an optimizer’s success. Thisanalysis offers valuable results to cross-reference but doesnot provide insights on how significant the impact of apre- or post-mature convergence is to the overall perfor-mance, which we want to analyze. The efforts to provideinsights into the success factors of the selection process inreinforcement learning approaches like in Xu et al. (2024)can be seen as a further motivation for all state-of-the-artapproaches that apply to dynamic production schedulingon a general level to investigate the inner behavior moredeeply.The combination of convergence analysis and open-

ended genetic algorithms, especially for use in produc-tion scheduling does not seem to be covered sufficiently,as open-ended optimization is still a relatively new topiccompared to static optimization.
3. Materials andMethods

The experiments and the following analysis consist of sev-eral aspects covered in this section. The optimization al-gorithm and its corresponding quality metrics are defined.Additionally, the problem instance is described. Finally,the different setups for the experiments and how the ex-periment results are analyzed are described.
3.1. Dynamic Production Scheduling Problem

The production environment consists of nine machinesand two storage buffers as depicted in Figure 1. The pro-cessing times of the machines are listed in Table 1. Themachines strictly adhere to a worktime schedule, meaningthat a processing step can only start during the machine’swork time and must be done before the worktime ends.Additionally, the two buffers between the machines holdten materials each.Within this production environment, orders are to beprocessed. Orders consist of several products, often con-sisting of several sub-materials that are processed andassembled into the final products. How and in what orderto process the materials is defined in the recipe of the finalproduct. This also means that the assignment of the pro-duction machines is not to be optimized. An order is gen-erated by randomly picking the number of sub-materialsand the corresponding number and type of processingsteps for each material. Additionally, the features of eachmaterial are also randomly chosen from a set of options.To optimize this problem, the required steps in theproduct recipes are seen as a sequence of tasks. Consid-ering all recipes, this results in a sequence containing alltasks to be planned. The order in this sequence is adjustedto improve the quality of the solution.The solutions are evaluated by applying the tasks ona simulation based on the production environment. Thesimulation applies the task in the order specified in thecurrent solution. Each task is started as soon as the ma-chine is available (based on the processing times and the
Table 1. Processing times and step types of the production machines.

Machine Step type Processing times
1 initial 30 sec2 initial 25 + size ∗ thickness sec3 initial 120 sec21 processing 30 sec22 processing 30 sec23 processing 30 sec24 processing 30 sec41 finalizing 30 sec42 finalizing 30 sec
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Figure 1. Production setup used for the experiments. The material is introduced into the production environment at the initial step and removed at thefinalizing step. The buffers are of limited capacity and both buffers can supply materials to the finalizing step.

worktimes) and the buffer has sufficient capacity. Thisresults in a series of actions done in the simulation fromwhich the three quality metrics, over buffer, overdue-ness,and makespan are calculated.
3.2. Optimzation Algorithm

The genetic algorithm used for the experiments is an open-ended variant of the relevant alleles preserving geneticalgorithm (RAPGA) (Affenzeller et al., 2007) which is apopulation-based optimizer that produces variations (off-spring) of existing solutions (parents) in every iteration.The RAPGA has a varying population size based on howmuch of the offspring is better than its parents. The al-gorithm is converged when it is impossible to find betteroffspring through selection, crossover, and mutation. Inthe case of the OERAPGA, this triggers a reseed of the popu-lation, meaning that a new completely random populationis initialized. To retain some information of the previousgeneration after reseeding, the elites from the last genera-tion can be copied to the next population.For the experiment, some configuring of the OERAPGAis required. The maximum effort, the number of offspringproduced per generation, is set to 50. The comparisonfactor determines how much better a generated offspringmust be to make it into the new population. It is set to 0,meaning the offspring must be better than at least one ofthe parents. Random selection is used to select parentsto generate offspring. The mutation rate is set to 7%. Asthe crossover, the maximal preservative crossover (MPX)(Mühlenbein, 1992) is used. This configuration is constantfor all experiment runs.
3.3. QualityMetrics

For this work, three quality metrics are used: The firstmetric is the maximum number of materials that would

overfill the buffers at any time in the simulation. This usu-ally happens due to poor ordering of the solution but couldbe unavoidable in theory, for more generalized produc-tion systems in extreme conditions. The second metric isthe mean work time the materials are delayed regardingthe due date specified in the order (MeanOverDueness).Finally, the last metric is the makespan, the work timerequired to finish all currently scheduled tasks. To makethe makespan comparable across different problem sizes,it is divided by the total number of tasks resulting in themean makespan. As this experiment does not use a multi-objective optimization, these quality metrics are orderedhierarchically so only when the first metric (OverBuffer)is equal, will the next metric (MeanOverDueness) be com-pared and finally if both of the first metrics are equal, thefinal criterium (MeanMakeSpan) is compared.
3.4. Experiment Setup

To simulate a dynamic production environment, after eachgeneration of the OERAPGA, the problem that the algo-rithm is optimizing can be changed. Figure 2 shows theexperiment setup with optimizer and experiment environ-ment. For the experiments, it is possible to hold back thegenerational optimizer problem updates and only period-ically update the problem, resulting in two problem ver-sions, a current, external problem, and a slightly outdatedoptimizer problem. This gives the algorithm more timeto converge. To still have comparable qualities for varyingproblem update rates, the solutions of a new generationare re-evaluated on the external problem after they are up-dated. Note that this hold-back effect may be introduced inpractice inadvertently, by latency, synchronization efforts,or batching of production events.The experiment environment also has some configura-tions to discuss. An experiment consists of 2000 genera-tions of the GA and the optimization, problem update cycle
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Figure 2. The experiment setup is split into its optimizer and environmenttasks. This is an open-ended process, but the experiments are stoppedafter a predefined number of cycles.

is terminated when reached. As changes to the problem re-sult in the removal of tasks from the problem, the problemsize would reach zero if no new orders are supplied. Forthis, a new order is generated when less than 100 tasks arebeing optimized. This results in an implicit change to theproblem and a fluctuating problem size throughout theexperiment, which is also visible in the quality metrics.
For this work, two kinds of changes are considered. Asin a production environment, the proposed schedule isprocessed from the start, resulting in the removal of tasksfrom the front of the schedule. This is the first kind ofchange examined. As the problem is changed based on

the outcome of the optimizer, the quality metrics are notdirectly comparable. The values {1, 2, 5, 10, 20, 50} for gen-erations per change were tested and were chosen to ex-amine a range of problem change intensities. The lowestchange frequency of 50 generations per change, is roughlythe convergence rate without any changes.
To also have an experiment with comparable qualitymetrics, the second kind of change randomly removesone final material and corresponding tasks from the prob-lem. This approach results in identical problems regard-less of the optimizer outcome. Compared to removing justthe first task in the schedule, removing a whole materialis a more significant change in the problem. The values{1, 2, 5, 10, 20, 50} for generations per change were tested.
Additionally, the interval when the optimizer is updatedwith the current external problem is also evaluated withthe values {1, 2, 10, 20, 50, 100,∞}. The number given rep-resents the interval in generations. Longer update inter-vals result in longer durations a new change is held back.This results in more undisturbed optimization time for theoptimizer. To have a comparison with an undisturbed op-timizer the setting for no problem update (∞) was added.

3.5. Analysis of Experiment Data

The experiments resulted in per-generation data regard-ing the optimization, containing information about theexternal problem size, optimizer problem size, selectionpressure, quality metrics, and the experiment parame-ters. Primarily important are the selection pressure andthe quality metrics. The selection pressure is the aver-age ratio of how many children were created to producea successful child over a generation. Figure 3 shows theselection pressure during the optimization run. The num-ber of generations between convergences is calculated tocompare the convergence behavior and quality of differentparameter configurations.
Focusing on the selection pressure, each run is split intoconvergences by starting a new convergence after the se-lection pressure reaches the maximum value. The variousline colors in Figure 3 depict the different convergences.With the convergences identified, the average convergencerate for a run is calculated by averaging the maximumgeneration number for each convergence. This maximumgeneration number is calculated for each convergence indi-vidually, thus starting at zero for each convergence. Sincethe experiments run a fixed number of generations, thelast convergence run is likely not completed, thus skewingthe results. To remedy this, the final convergence run isdiscarded. This average convergence rate is comparable toother runs with different parameterizations.
Furthermore, the optimization quality is examined toassess the effect of varying experiment parameters. Thisoptimization quality is the best found quality from thepopulation evaluated on the current, external problem.
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Figure 3. The selection pressure of an open-ended optimization run. Thered lines mark the generations where the population converged and thushas reached the limit of selection pressure. Each convergence after is visu-alized by a different color.

4. Results and Discussion

The experiments are analyzed in two aspects. The first oneis the impact of problem changes on the convergence rate.The second aspect is the resulting optimization qualityfor the two described problem change types and variousoptimizer problem update frequencies.
4.1. Convergence Rate

For both types of problem changes, the mean convergencerate is given as generations per convergence. For morestable results, each parameter configuration was run tentimes, and the median of the mean convergence rate wasshown.Firstly, just removing the first task in the current so-lution from the problem, shown in Figure 4 is discussed.Looking at the y-axis it is clear that changing the prob-lem significantly impacts the convergence rate. Comparedto not updating the optimizer problem at all, as seen inthe rightmost column, updating the optimizer problem in-creases the convergence rate about six times. Furthermore,there appears to be some separation between problemvariations that change so fast, that the algorithm has se-vere trouble converging, and slower problem changes thatbarely impact convergence speed. Holding back changes,shown on the x-axis seems to improve the convergencerate only in a minor way, only showing a significant effectwhen the optimizer converges faster than the update inter-val. This is likely due to the increasing divergence betweenthe external problem and the optimizer problem. Hold-
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Figure 4. A heatmap showing the median of the mean convergence rate ofrepeated runs. The y-axis shows the varying interval of removing the firstelement in the solution from the external problem. The x-axis shows theoptimizer problem update interval with ∞ meaning no updates beyond theinitial setup.

1 2 10 20 50 100
Interval to update optimizer [Gen]

1
2

5
10

20
50

In
te

rv
al

 to
 re

m
ov

e 
ra

nd
om

 o
rd

er
 [G

en
]

2001 2001 2001 679 927 179 48

1410 1410 433 262 289 145 48

132 130 127 129 85 91 48

87 87 87 89 87 72 48

70 70 70 70 71 69 48

56 56 56 56 56 54 48

Median of mean convergence rate
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ing back the changes longer, results in collecting morechanges for one large change, which seems to disrupt the
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optimizer nearly as much, as just updating immediately.
Figure 5 shows the experiments with random removalof one material. A similar trend is visible along the x-axis,the external update interval. The changes are more severe,so by updating the external problem each generation andupdating the optimizer problem up to ten generation inter-vals, the optimizer does not converge within the 2000 gen-eration limit in the median case. With the already largerchange type, holding back the changes seems to affect theconvergence rate positively.

4.2. Optimization Quality

Only experiments with the random removal of materi-als are considered to evaluate the optimization quality, asremoving tasks from the problem based on the currentsolution would result in different problem states for allruns, changing the quality. Figure 6 shows the optimizerproblem size and the first two quality metrics, for a rangeof optimizer problem updated interval values. Other val-ues for generations per change parameter show a sloweddown but similar picture, thus they were not visualized.
The over-buffer data in the figure clearly shows theeffect of holding back the external problem changes. Forupdate intervals of one, two, and ten generations the in-terval of the optimization problem update is still small

enough to keep the drift not too far from the external prob-lem, thus all are reaching the optimum of zero. Startingthe update interval of 20 generations per update, the so-lutions optimized on the outdated optimizer problem donot match the quality of optimization run with a higherupdate frequency.The second quality, the mean over dueness, seems notto be optimized at all, as the optimizer cannot optimizeboth the over buffer and over dueness at the rate of changestested in the experiment. On a static problem, the opti-mizer takes hundreds of generations to optimize this sec-ond quality criterium.Overall it does not seem like holding back updates im-proves the optimization quality of the OERAPGA. Due tothe dynamic nature of the problem, holding back changesonly leads to optimizing a past state of the problem thatdoes not transfer well to the current external problem.
5. Conclusions

This work evaluates the impact of two types of changesto the dynamic scheduling problem optimized by OER-APGA with and without holding back updates to the opti-mizer. Changes with high frequency drastically reduce theconvergence rate, even stopping convergence altogetherwhen the changes are severe enough. For less aggressive
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changes to the problem, holding back the information isnot as effective as for more severe changes. Furthermore,the quality of the optimization was also evaluated. Forthe OERAPGA, updating the optimizer problem as fast aspossible, resulted in the best optimization results. Indicat-ing the counter-intuitive proposition, that convergenceplays a less significant role in dynamic optimization per-formance. The initial assumption, that the populationshould converge, does not seem to be valid. Due to the dy-namic nature of this particular case, problems regardingpremature convergence were not relevant as opposed toother other papers on the topic.To better understand the GA behavior on dynamic prob-lems, more dynamic problems should be used for furtherexperiments. Other problems could be interesting as thetypes of changes and the associated quality metrics mightbehave differently regarding the convergence rate and theresulting quality. Testing different open-ended optimiza-tion algorithms also seems like a good idea as the behaviorof the RAPGA may not apply to other algorithms.
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