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Abstract

The paper analyses the convergence behavior of the open-ended relevant alleles preserving genetic algorithm (OERAPGA) in dynamic
production scheduling. In a dynamic production environment, frequent changes to the scheduling problem influence the convergence
behavior of the applied genetic algorithm. This study investigates the impact of the two types of changes on the optimization process:
removing the first task in the current solution from the problem and randomly removing one material along with the sub-materials from
the problem. The impact of the changes is tested for different intervals, affecting the optimizer problem update frequency. The research
findings show that frequent and substantive changes significantly reduce the convergence rate and can potentially halt convergence.
For less aggressive changes, withholding problem update information demonstrated mixed results regarding the convergence rate, but
impacted the optimization quality negatively. Ultimately, it is concluded that frequent updating results in the best optimization results,

even if the optimizer does not converge. This is counter-intuitive coming from static optimization.
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1. Introduction

Dynamic production scheduling has been a relevant topic
for quite some time now. It is especially interesting due
to its widespread area of application throughout the in-
dustry (Johnson et al., 2022; Tang et al., 2024). During a
research project concerned with dynamically scheduling
the production process of a window factory, with frequent
changes to the problem, the convergence behavior of the
applied open-ended relevant alleles preserving genetic al-
gorithm optimization algorithm (OERAPGA) (Karder et al.,
2022) gained our interest as it did not seem to converge at
an expected rate.

In general, genetic algorithms (GA) are well suited for
optimization in the real world, as they are flexible enough

to deal with many dynamic changes. Examples of changes
to the problem are information from the machines about
finished work steps resulting in the removal of these steps
from the problem, the modification of existing orders, the
addition of new orders, and the updates to the work times
of the machines. In the optimization of static problems,
the convergence, although not premature convergence,
of a genetic algorithm is desired to achieve the best re-
sults (Pandey et al., 2014 ). Experiments were conducted
to evaluate if this behavior is also desired in the case of
dynamic scheduling of production processes and assess
the impact on the convergence rate of varying changes to
the problem.

The paper is structured into several sections. In the
state-of-the-art section, works about production opti-
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mization and convergence behavior of genetic algorithms
are covered. The materials and methods section provides
information about the problem used for the experiments,
the algorithm used, the setup of the experiments, and how
the data is analyzed. The results and discussion section
covers the resulting data and analysis of the experiments
regarding the convergence rate and the optimization qual-
ity. Finally, the conclusion summarizes the work done and
gives an outlook.

2. State of the Art

While there is quite extensive research done evaluating
the performance of different optimization approaches and
their adaptations to different dynamic scheduling prob-
lems providing one with valuable knowledge on what
might be the best approach for the task at hand, there is
in comparison much less knowledge available on dynamic
optimizer behavior. The main goal of this work is to target
one specific aspect of behaviors: Genetic Algorithms (here
RAPGA) usually display a convergence behavior. Genetic
diversity is lost and the solutions, the algorithm keeps
in its active population become more similar over time.
While convergence is usually a problem-independent algo-
rithmic behavior for static optimization, we will perform
this analysis specifically for the explicit optimization of
a dynamic production scheduling problem There are of
course approaches for dynamic scheduling like e.g. Luo
etal. (2020) by optimizing on a static problem and restart-
ing the optimizer based on events in the production facility,
but for approaches that are similar to the one benchmarked
in this approach conclusions to their convergence effects
may be drawn.

The majority of convergence analyses in production
scheduling focus nonetheless on static tasks, which of
course lack the adaptability of true dynamic optimization
we want to achieve and mostly focus on the issue of pre-
mature convergence or speeding up the convergence to
obtain optimization results quicker as a motivation for
adaptions and new approaches (Werner, 2013).

The dynamic setting is covered significantly less, only
Xu et al. (2022b) and Xu et al. (2022a) offer literature exam-
ples with quantitative measurements on the convergence.
They observed the convergence to improve the parent se-
lection process by comparing the convergence of different
approaches as a key factor of an optimizer’s success. This
analysis offers valuable results to cross-reference but does
not provide insights on how significant the impact of a
pre- or post-mature convergence is to the overall perfor-
mance, which we want to analyze. The efforts to provide
insights into the success factors of the selection process in
reinforcement learning approaches like in Xu et al. (2024)
can be seen as a further motivation for all state-of-the-art
approaches that apply to dynamic production scheduling
on a general level to investigate the inner behavior more
deeply.

The combination of convergence analysis and open-

ended genetic algorithms, especially for use in produc-
tion scheduling does not seem to be covered sufficiently,
as open-ended optimization is still a relatively new topic
compared to static optimization.

3. Materials and Methods

The experiments and the following analysis consist of sev-
eral aspects covered in this section. The optimization al-
gorithm and its corresponding quality metrics are defined.
Additionally, the problem instance is described. Finally,
the different setups for the experiments and how the ex-
periment results are analyzed are described.

3.1. Dynamic Production Scheduling Problem

The production environment consists of nine machines
and two storage buffers as depicted in Figure 1. The pro-
cessing times of the machines are listed in Table 1. The
machines strictly adhere to a worktime schedule, meaning
that a processing step can only start during the machine’s
work time and must be done before the worktime ends.
Additionally, the two buffers between the machines hold
ten materials each.

Within this production environment, orders are to be
processed. Orders consist of several products, often con-
sisting of several sub-materials that are processed and
assembled into the final products. How and in what order
to process the materials is defined in the recipe of the final
product. This also means that the assignment of the pro-
duction machines is not to be optimized. An order is gen-
erated by randomly picking the number of sub-materials
and the corresponding number and type of processing
steps for each material. Additionally, the features of each
material are also randomly chosen from a set of options.

To optimize this problem, the required steps in the
product recipes are seen as a sequence of tasks. Consid-
ering all recipes, this results in a sequence containing all
tasks to be planned. The order in this sequence is adjusted
to improve the quality of the solution.

The solutions are evaluated by applying the tasks on
a simulation based on the production environment. The
simulation applies the task in the order specified in the
current solution. Each task is started as soon as the ma-
chine is available (based on the processing times and the

Table 1. Processing times and step types of the production machines.

Machine Steptype  Processing times
1 initial 30 sec
initial 25 + size « thickness sec

3 initial 120 sec

21 processing 30 sec

22 processing 30 sec

23 processing 30 sec

24 processing 30 sec

yAl finalizing 30 sec

42 finalizing 30 sec
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Figure 1. Production setup used for the experiments. The material is introduced into the production environment at the initial step and removed at the
finalizing step. The buffers are of limited capacity and both buffers can supply materials to the finalizing step.

worktimes) and the buffer has sufficient capacity. This
results in a series of actions done in the simulation from
which the three quality metrics, over buffer, overdue-ness,
and makespan are calculated.

3.2. Optimzation Algorithm

The genetic algorithm used for the experiments is an open-
ended variant of the relevant alleles preserving genetic
algorithm (RAPGA) (Affenzeller et al., 2007) which is a
population-based optimizer that produces variations (off-
spring) of existing solutions (parents) in every iteration.
The RAPGA has a varying population size based on how
much of the offspring is better than its parents. The al-
gorithm is converged when it is impossible to find better
offspring through selection, crossover, and mutation. In
the case of the OERAPGA, this triggers a reseed of the popu-
lation, meaning that a new completely random population
is initialized. To retain some information of the previous
generation after reseeding, the elites from the last genera-
tion can be copied to the next population.

For the experiment, some configuring of the OERAPGA
isrequired. The maximum effort, the number of offspring
produced per generation, is set to 50. The comparison
factor determines how much better a generated offspring
must be to make it into the new population. It is set to 0,
meaning the offspring must be better than at least one of
the parents. Random selection is used to select parents
to generate offspring. The mutation rate is set to 7%. As
the crossover, the maximal preservative crossover (MPX)
(Miihlenbein, 1992) is used. This configuration is constant
for all experiment runs.

3.3. Quality Metrics

For this work, three quality metrics are used: The first
metric is the maximum number of materials that would

overfill the buffers at any time in the simulation. This usu-
ally happens due to poor ordering of the solution but could
be unavoidable in theory, for more generalized produc-
tion systems in extreme conditions. The second metric is
the mean work time the materials are delayed regarding
the due date specified in the order (MeanOverDueness).
Finally, the last metric is the makespan, the work time
required to finish all currently scheduled tasks. To make
the makespan comparable across different problem sizes,
it is divided by the total number of tasks resulting in the
mean makespan. As this experiment does not use a multi-
objective optimization, these quality metrics are ordered
hierarchically so only when the first metric (OverBuffer)
is equal, will the next metric (MeanOverDueness) be com-
pared and finally if both of the first metrics are equal, the
final criterium (MeanMakeSpan) is compared.

3.4. Experiment Setup

To simulate a dynamic production environment, after each
generation of the OERAPGA, the problem that the algo-
rithm is optimizing can be changed. Figure 2 shows the
experiment setup with optimizer and experiment environ-
ment. For the experiments, it is possible to hold back the
generational optimizer problem updates and only period-
ically update the problem, resulting in two problem ver-
sions, a current, external problem, and a slightly outdated
optimizer problem. This gives the algorithm more time
to converge. To still have comparable qualities for varying
problem update rates, the solutions of a new generation
are re-evaluated on the external problem after they are up-
dated. Note that this hold-back effect may be introduced in
practice inadvertently, by latency, synchronization efforts,
or batching of production events.

The experiment environment also has some configura-
tions to discuss. An experiment consists of 2000 genera-
tions of the GA and the optimization, problem update cycle
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Figure 2. The experiment setup is split into its optimizer and environment
tasks. This is an open-ended process, but the experiments are stopped
after a predefined number of cycles.

is terminated when reached. As changes to the problem re-
sult in the removal of tasks from the problem, the problem
size would reach zero if no new orders are supplied. For
this, a new order is generated when less than 100 tasks are
being optimized. This results in an implicit change to the
problem and a fluctuating problem size throughout the
experiment, which is also visible in the quality metrics.

For this work, two kinds of changes are considered. As
in a production environment, the proposed schedule is
processed from the start, resulting in the removal of tasks
from the front of the schedule. This is the first kind of
change examined. As the problem is changed based on

the outcome of the optimizer, the quality metrics are not
directly comparable. The values {1, 2, 5, 10, 20, 50} for gen-
erations per change were tested and were chosen to ex-
amine a range of problem change intensities. The lowest
change frequency of 50 generations per change, is roughly
the convergence rate without any changes.

To also have an experiment with comparable quality
metrics, the second kind of change randomly removes
one final material and corresponding tasks from the prob-
lem. This approach results in identical problems regard-
less of the optimizer outcome. Compared to removing just
the first task in the schedule, removing a whole material
is a more significant change in the problem. The values
{1,2, 5,10, 20, 50} for generations per change were tested.

Additionally, the interval when the optimizer is updated
with the current external problem is also evaluated with
the values {1, 2, 10, 20, 50,100, co}. The number given rep-
resents the interval in generations. Longer update inter-
vals result in longer durations a new change is held back.
This results in more undisturbed optimization time for the
optimizer. To have a comparison with an undisturbed op-
timizer the setting for no problem update (co) was added.

3.5. Analysis of Experiment Data

The experiments resulted in per-generation data regard-
ing the optimization, containing information about the
external problem size, optimizer problem size, selection
pressure, quality metrics, and the experiment parame-
ters. Primarily important are the selection pressure and
the quality metrics. The selection pressure is the aver-
age ratio of how many children were created to produce
a successful child over a generation. Figure 3 shows the
selection pressure during the optimization run. The num-
ber of generations between convergences is calculated to
compare the convergence behavior and quality of different
parameter configurations.

Focusing on the selection pressure, each run is split into
convergences by starting a new convergence after the se-
lection pressure reaches the maximum value. The various
line colors in Figure 3 depict the different convergences.
With the convergences identified, the average convergence
rate for a run is calculated by averaging the maximum
generation number for each convergence. This maximum
generation number is calculated for each convergence indi-
vidually, thus starting at zero for each convergence. Since
the experiments run a fixed number of generations, the
last convergence run is likely not completed, thus skewing
the results. To remedy this, the final convergence run is
discarded. This average convergence rate is comparable to
other runs with different parameterizations.

Furthermore, the optimization quality is examined to
assess the effect of varying experiment parameters. This
optimization quality is the best found quality from the
population evaluated on the current, external problem.
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Figure 3. The selection pressure of an open-ended optimization run. The
red lines mark the generations where the population converged and thus
has reached the limit of selection pressure. Each convergence after is visu-
alized by a different color.

4. Results and Discussion

The experiments are analyzed in two aspects. The first one
is the impact of problem changes on the convergence rate.
The second aspect is the resulting optimization quality
for the two described problem change types and various
optimizer problem update frequencies.

4.1. Convergence Rate

For both types of problem changes, the mean convergence
rate is given as generations per convergence. For more
stable results, each parameter configuration was run ten
times, and the median of the mean convergence rate was
shown.

Firstly, just removing the first task in the current so-
lution from the problem, shown in Figure 4 is discussed.
Looking at the y-axis it is clear that changing the prob-
lem significantly impacts the convergence rate. Compared
to not updating the optimizer problem at all, as seen in
the rightmost column, updating the optimizer problem in-
creases the convergence rate about six times. Furthermore,
there appears to be some separation between problem
variations that change so fast, that the algorithm has se-
vere trouble converging, and slower problem changes that
barely impact convergence speed. Holding back changes,
shown on the x-axis seems to improve the convergence
rate only in a minor way, only showing a significant effect
when the optimizer converges faster than the update inter-
val. This is likely due to the increasing divergence between
the external problem and the optimizer problem. Hold-
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Figure 4. A heatmap showing the median of the mean convergence rate of
repeated runs. The y-axis shows the varying interval of removing the first
element in the solution from the external problem. The x-axis shows the
optimizer problem update interval with co meaning no updates beyond the
initial setup.
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Figure 5. A heatmap showing the median of the mean convergence rate of
repeated runs. The y-axis shows the varying interval of removing a ran-
dom material from the external problem. The x-axis shows the optimizer
problem update interval with co meaning no updates beyond the initial
setup.

ing back the changes longer, results in collecting more
changes for one large change, which seems to disrupt the
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optimizer nearly as much, as just updating immediately.

Figure 5 shows the experiments with random removal
of one material. A similar trend is visible along the x-axis,
the external update interval. The changes are more severe,
so by updating the external problem each generation and
updating the optimizer problem up to ten generation inter-
vals, the optimizer does not converge within the 2000 gen-
eration limit in the median case. With the already larger
change type, holding back the changes seems to affect the
convergence rate positively.

4.2. Optimization Quality

Only experiments with the random removal of materi-
als are considered to evaluate the optimization quality, as
removing tasks from the problem based on the current
solution would result in different problem states for all
runs, changing the quality. Figure 6 shows the optimizer
problem size and the first two quality metrics, for a range
of optimizer problem updated interval values. Other val-
ues for generations per change parameter show a slowed
down but similar picture, thus they were not visualized.

The over-buffer data in the figure clearly shows the
effect of holding back the external problem changes. For
update intervals of one, two, and ten generations the in-
terval of the optimization problem update is still small

enough to keep the drift not too far from the external prob-
lem, thus all are reaching the optimum of zero. Starting
the update interval of 20 generations per update, the so-
lutions optimized on the outdated optimizer problem do
not match the quality of optimization run with a higher
update frequency.

The second quality, the mean over dueness, seems not
to be optimized at all, as the optimizer cannot optimize
both the over buffer and over dueness at the rate of changes
tested in the experiment. On a static problem, the opti-
mizer takes hundreds of generations to optimize this sec-
ond quality criterium.

Overall it does not seem like holding back updates im-
proves the optimization quality of the OERAPGA. Due to
the dynamic nature of the problem, holding back changes
only leads to optimizing a past state of the problem that
does not transfer well to the current external problem.

5. Conclusions

This work evaluates the impact of two types of changes
to the dynamic scheduling problem optimized by OER-
APGA with and without holding back updates to the opti-
mizer. Changes with high frequency drastically reduce the
convergence rate, even stopping convergence altogether
when the changes are severe enough. For less aggressive
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Figure 6. Lineplot showing the problem size and two of the three optimization criteria, for a set of experiment runs where one material is removed each
generation. The first 50 generations are shown, so there is no elite from a previous convergence. Each column shows a different optimizer problem update

interval. For the sake of legibility, not all parameter settings are visualized.



changes to the problem, holding back the information is
not as effective as for more severe changes. Furthermore,
the quality of the optimization was also evaluated. For
the OERAPGA, updating the optimizer problem as fast as
possible, resulted in the best optimization results. Indicat-
ing the counter-intuitive proposition, that convergence
plays a less significant role in dynamic optimization per-
formance. The initial assumption, that the population
should converge, does not seem to be valid. Due to the dy-
namic nature of this particular case, problems regarding
premature convergence were not relevant as opposed to
other other papers on the topic.

To better understand the GA behavior on dynamic prob-
lems, more dynamic problems should be used for further
experiments. Other problems could be interesting as the
types of changes and the associated quality metrics might
behave differently regarding the convergence rate and the
resulting quality. Testing different open-ended optimiza-
tion algorithms also seems like a good idea as the behavior
of the RAPGA may not apply to other algorithms.
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