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Abstract
Computer simulations of minimal population-dynamics models have long been used to explore questions in ecosystems coexistence and
species biodiversity, via simple agent-based models of three interacting species, referred to as R, P, and S, and where individual agents
compete with one another in predator/prey contests that are determined by the cyclic dominance rules of the Rock-Paper-Scissors game.
Recent publications have explored the dynamics of five-species models, based on the Rock-Paper-Scissors-Lizard-Spock (RPSLS) game.
A 2022 paper by Zhong et al. reported simulation studies of species coexistence in spatial RPSLS systems in which one or more directed
edges are ablated from the five-vertex tournament digraph defining the RPSLS game: Zhong et al. showed that the ablation of a single
inter-species interaction can lead to a collapse in biodiversity. In this paper I present first results from simulation studies of evolutionary
spatial cyclic games where there are seven species, but where each species is still in its own local five-species RPSLS-like interaction
network: the dominance networks I use for this are a subset of the n-node k-regular circulant digraphs D(n,Ω) for odd-numbered n
and |Ω| = 2. My results indicate that Zhong et al.’s results are due to the specific fully-connected tournament dominance network used
in their RPSLS model: when other, equally realistic, RPSLS-style dominance networks are used instead, no such sudden collapse in
biodiversity occurs. The Python source-code used for the work reported here is freely available on GitHub.
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1. Introduction

In theoretical biology research there is a long tradition
of using computer simulations of minimal population-
dynamics models to explore questions in ecosystems co-
existence and species biodiversity via simple agent-based
models of three interacting species, referred to as R, P,
and S, and where individual agents compete with one an-
other in life-or-death predator/prey contests that are de-
termined by the cyclic dominance rules of the Rock-Paper-
Scissors (RPS) game. Much of this research has been fo-
cused on evolutionary spatial cyclic games (ESCGs), where
each agent occupies a specific location on a lattice or grid of

cells, competes only with its immediate neighbours, and is
able to move around the lattice over time. In these minimal
RPS models of ecosystems, each ‘species’ forever plays one
of the three available moves, and the questions of interest
concern how many species can co-exist, and what is the
asymptotic steady-state frequency of each species, under
differing circumstances. More recent publications have
explored the dynamics of slightly richer five-species ECSG
systems, based on an extension of RPS known as Rock-
Paper-Scissors-Lizard-Spock (RPSLS). A recent paper by
Zhong et al. (2022) reported simulation studies of species
coexistence in spatial RPSLS systems in which one or more
of the species interactions are ablated from the game’s
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dominance network, i.e. one or more directed edges are
deleted from the five-vertex directed graph (or digraph)
defining the dominance relationships for the RPSLS game
(Zhong et al. refer to the dominance network as the “inter-
action structure”). Zhong et al. showed that the ablation of
a single inter-species interaction can lead to a collapse in
biodiversity, with the number of coexisting species falling
by more than 50%, with the final outcome sometimes be-
ing only two or fewer species remaining. However, because
the complete RPSLS digraph has a total of ten directed
edges, Zhong et al.’s deletion of a single edge amounts to
ablating 10% of the entire network of inter-species inter-
actions, which would amount to a fairly major change in
any ecosystem and is such a large perturbation that it is
arguably no surprise that extinctions then follow.

In this paper I present first results from simulation
studies of RPSLS-style ECSGs where there are seven
species, but where each species is still in its own local five-
species RPSLS interaction network. This is novel, and
involves recognising that the dominance networks for the
3-species RPS system and the 5-species RPSLS system are
both, in the language of graph theory (explained further
in Section 3), k-regular circulant digraphs. Other authors
have referred to these dominance networks as tournament
digraphs, which is strictly correct, but these tournament
digraphs are a subset . A tournament digraphs is one where
every vertex vi (representing species Si) is joined by a sin-
gle directed edge to every other vertex vj 6=i in the network
– that is, if we let NS denote the number of species in the
model ecosystem, in the NS=3 (RPS) and NS=5 (RPSLS)
models, every species is in a direct predator/prey relation-
ship with all other species: for any pair of species Si and
Sj 6=i, either Si eats Sj or Sj eats Si.

However, the set of tournament digraphs with an odd
number NS of vertices is a subset of a wider class of graphs
known as the k-regular circulant digraphs, in which every
vertex in the graph has an in-degree (number of directed
edges pointing into it) of k and an out-degree (number
of directed edges pointing out from it) also of k: in RPS,
each vertex in the dominance network has in-degree and
out-degree of one, so the RPS dominance network graph is
1-regular; and in RPSLS each vertex has in-degree and out-
degree of two, so its dominance network is 2-regular. Cru-
cially, unlike tournament digraphs, vertices in circulant
digraphs are not always connected to every other vertex
in the network.

In these terms then, the NS=3 RPS dominance network
graph and the NS=5 RPSLS dominance network graph are
each both a tournament graph and a circulant digraph: but
once we move up to NS=7 it is possible to study the behav-
ior of RPSLS-like systems where the dominance network
is either a tournament network (every species directly in-
teracting with all others) or a non-tournament circulant
(NTC) network (each species interacting with some subset
of 2k<NS other species in the system). Other authors (e.g.
Yang and Park (2023)) have reported studies of 7-species
extensions of RPSLS, but always as tournament systems.

As far as I am aware, this is the first study of RPSLS for
NS>5 via NTC dominance networks.

Here I explore what Zhong et al. called ecosystem in-
teraction structures, i.e. dominance networks, that are a
subset of the n-node circulant digraphs D(NS,Ω) for odd-
numbered NS and |Ω|=2. In the terminology of circulants,
the 3-vertex RPS game dominance network can be seen
as the 1-regular circulant digraph D(3, {1}) (it has three
vertices, and each vertex vi dominates vertex vi⊕1 where⊕
denotes addition modulo NS) and the 5-vertex RPSLS dom-
inance net can be seen as the 2-regular circulant D(5, {1, 3})
(it has five vertices, and each vertex vi dominates vertices
vi⊕1 and vi⊕3). This observation then allows us to gener-
alise, creating RPSLS-like systems with higher values of
odd NS by using the set of distinct digraphs D(NS, {1, 3})
and/or D(NS, {1, NS 	 2}) (where 	 denotes subtraction
modulo NS) which each have a total of 2NS edges and in
which each species is still predator to two species and prey
to two other species. Hence the number of edges in these
multi-RPSLS systems can be much larger than 10, and
then deleting one edge from the digraph represents a less-
than-10% reduction in the number of species interactions.

Having recognised that the set of tournament digraphs
are a subset of the circulants, we can in principle study
ESCGs where there are (for example) 101 species: and yet
where each species remains in an RPSLS-style interac-
tion, being predator to only two other species, and be-
ing predated upon by only two other species: given that
the original 5-species version of RPSLS is D(5, {1, 3}), we
would configure the dominance network as D(101, {1, 3})
or D(101, {1, 99}). This insight opens up the possibility of
exploring any changes in dynamics of the class of D(NS,Ω)
systems for |Ω|�NS as NS is increased up from 7, which
is one obvious line of future enquiry. Another route of en-
quiry would fix NS at some suitably high value and then
explore variations in k=|Ω|. But, in this paper, I start small
and present a detailed examination of the 2-regular seven-
species case, i.e. k=2 and NS=7. As will be shown below,
results from NS=7 cast unexpected doubts on the general-
ity of the key result reported by Zhong et al. (2022).

The novel contributions of this paper are the recogni-
tion of RPS and RPSLS dominance networks as k-regular
circulant digraphs, and the presentation of results from
extensive computer simulation studies which show that
the central result of Zhong et al. (2022), their observed col-
lapse in biodiversity down to two or fewer species, is due
to the specific fully-connected tournament dominance
network that they used in their RPSLS model: when other,
equally realistic, RPSLS-style dominance networks are
used instead, no such collapse in biodiversity occurs.

Section 2 explains the background to this work, and
then Section 3 briefly reviews the relevant graph theory
needed to understand the distinction between tournament
and circulant digraphs. After that, Section 4 explains the
design of experiments used here, and Section 5 then shows
results both from many hundreds of individual simula-
tions. The results are discussed in Section 6.
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Figure 1. The dominance network for the Rock-Paper-Scissors (RPS) game
visualised as a three-vertex directed graph. A directed edge from vertex vi
to vertex vj denotes that the move represented by vi dominates the move
represented by vj. There are three possible distinct labelings of the vertices:
(v0=R, v1=S, v2=P); (v0=P, v1=R, v2=S); and (v0=S, v1=P, v2=R). The three
distinct graphs are isomorphic, i.e. their topology is identical and they differ
only by their labelings.

2. Background

2.1. Three Species: Rock, Paper, Scissors

In its original form, Rock-Paper-Scissors (RPS) is a hand-
gesture game played by two competitors who both, at the
same instant in time, make their move by forming one
of their hands into either a fist (Rock), a flat open palm
(Paper), or by making a vee-shape with their index and
middle fingers (Scissors). If the two players have each
made the same move, the game is tied; but if the two ges-
tures are different then the winner is determined accord-
ing to the three rules that define the game: Rock beats
(“blunts”) Scissors; Scissors beats (“cuts”) Paper; and Pa-
per beats (“covers”) Rock. In the language of mathematical
game theory, RPS is a zero-sum game because the winner’s
gain and the loser’s loss are equal: that is, they sum to zero.
Furthermore, and using using R, P, and S as abbreviations
for the three possible moves, game theorists would say
that R dominates S; S dominates P; and P dominates R –
and this intransitive dominance network means that RPS is
often referred to as a cyclic game, because when the dom-
inance network is visualised as a three-vertex directed
graph or digraph (as shown in Figure 1) the entire network
is a single cycle or loop. For a game to be transitive, if
move X beats move Y and move Y beats move Z then move
X would also beat move Z, and the dominance network
would be a directed acyclic graph.

Despite its stark simplicity, the RPS game has proven
to be a remarkably useful tool in theoretical biology where
the complexities of the intricate and dynamically changing
network of competitive interactions between species in an
ecosystem has often been modelled by reducing the inter-
species interactions to the playing of simple games such
as the three-move RPS game or the equally well-known
two-move game Prisoners Dilemma (see e.g. Nowak and
May (1992); Huberman and Glance (1993)), well known
not only for its use in modelling biological ecosystems but
also for its value as a model and a metaphor in the social,
economic, and political sciences.

Landmark papers exploring RPS-based models of
ecosystems were published in 2007–08 by Reichenbach
et al. (2007a,b, 2008), who extended the previous non-

spatial RPS model of May and Leonard (1975) by instead
modeling each species as a time-varying number of dis-
crete individual agents, where at any one time each agent
occupies a particular cell in a regular rectangular lattice or
grid of cells, and can move from cell to cell over time — that
is, the agents are spatially located and mobile. Agents can
also, under the right circumstances, reproduce (asexually,
cloning a fresh agent of the same species into an adjacent
empty cell on the lattice); and they can also compete with
an individual agent in a neighbouring cell by playing the
RPS game, with the loser being deleted from the lattice
leaving an empty cell behind. Different authors use dif-
ferent phrasings to explain the inter-species competition,
but it is common to talk in terms of predator-prey dynam-
ics: that is, each species is predator to (i.e., dominates)
some specified set of other species, and is in turn also prey
to (i.e., is dominated by) some set of other species. Because
this class of models involves multiple species evolving over
time while being spatially located and mobile, and com-
peting via the cyclic dominance network of a simple game,
they are commonly referred to as Evolutionary Spatial Cyclic
Game (ESCG) models.

2.2. Five Species: Rock, Paper, Scissors, Lizard, Spock

Kass and Bryla (1998) invented an extension of RPS,
adding two more moves inspired by the classic science-
fiction TV and movie franchise Star Trek: these are Lizard
and Spock, and the expanded game is most often referred
to by the acronym RPSLS. In Star Trek, Mr Spock is from
the planet Vulcan, and to avoid the clash with S already
abbreviating Scissors, the character V can be used as the
single-letter abbreviation for Spock in the RPSLS domi-
nance network, which is illustrated in Figure 2.

RPSLS can be played by people as a hand-gesture game
in the same style as the original RPS: Lizard has a ges-
ture best described as a naked sock-puppet; while Spock’s
gesture involves the hand being held vertical, open palm
facing the other player and with the fingers held such that
there is a vee-shaped separation between the middle finger
and the ring finger (this is a gesture the Star Trek charac-
ter uses). The caption to Figure 2 explains the dominance
relations, i.e. which move beats which other moves.

Simulations of co-evolutionary population dynamics
via ESCGs are simple discrete-time systems that are tech-
nically unchallenging to write a program for, and are
strongly reminiscent of – but not identical to – cellular au-
tomata (see e.g. Wolfram (2002)). The lattice/grid needs
to first be set up, i.e. its dimensions and initial conditions
at the first time-step need to be specified. Each cell in the
grid is either empty or contains exactly one agent, and each
individual agent is a member of exactly one of the model’s
set of species. If the number of species in the model is Ns,
one common way of doing the initialisation is to assign one
individual to every cell in the grid, with that individual’s
species being an equiprobable choice from the set of avail-
able species (i.e., choose species si with probability 1/Ns).
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Figure 2. Two five-species dominance networks. Network A (left) is the
dominance network for the Rock-Paper-Scissors-Lizard-Spock (RPSLS)
game presented as a five-vertex directed graph. As with Figure 1, a directed
edge from vertex vi to vertex vj indicates that vi beats vj. One of the five
isomorphic labelings of this graph is v0=S (Scissors), v1=P, v2=R, v3=L , and
v4=V (for Vulcan, the planet Mr Spock was born on). The rules of this game
are: scissors cut paper; paper covers rock; rock blunts scissors; scissors de-
capitates lizard; lizard eats paper; paper disproves Spock; Spock vaporizes
rock; rock crushes lizard; lizard poisons Spock; and Spock smashes scissors.
In the graph-theory terminology introduced in Section 3, this network
is the 2-regular tournament circulant digraph D(5, {1, 3}). The Eulerian
circuit visiting all the Network A nodes using only the edges forming the
convex hull of the outer pentagon traces a clockwise cycle, and the Eule-
rian circuit traversing only the edges forming the inner pentangle traces a
counterclockwise route. Network B (right) is the tournament circulant di-
graph D(5, {1, 2}): this is superficially different from Network A because its
inner-pentangle circuit is clockwise rather than counterclockwise; but B is
isomorphic with A (denoted by A∼=B) under the relabelling 0B→0A, 1B→3A,
2B→1A, 3B→4A, 4B→2A.

The modeller also needs to specify the dimensionality of
the lattice, and its length (i.e., number of cells) along each
dimension. In almost all of the published work in this field,
the lattice is two-dimensional and square, so its extent
is defined by a single system parameter: the side-length
(conventionally denoted by L); and the total number of
cells in the lattice (conventionally denoted by N) is hence
N = L2. Working with 2D lattices has the advantage that
the global state of the system can be readily visualised as
a snapshot at time t as a color-coded or gray-shaded 2D
image, with each species in the model assigned its own
specific color or gray-scale value, and animations can eas-
ily be produced visualising the change in the system state
over time.

In the literature on evolutionary spatial cyclic games,
authors often make the distinction between two scales
of time-step in the simulation. At the very core of the
simulation process is a loop that iterates over a number of
elementary steps (ESs), the finest grain of time-step; and
then some large number of consecutive ESs is counted as
what is conventionally referred to as a Monte Carlo Step.

In a single ES, one individual cell (denoted ci) is chosen
at random, and then one of its immediately neighboring
cells (denoted cn) is also chosen at random: most published
work on 2D lattice model ESCGs uses as the set of possible
neighbours the 4-connected von Neumann neighborhood
rather than the 8-connected Moore neighborhood com-
monly used in cellular automata research; but there seems
to be no firm convention on whether to use periodic bound-
ary conditions (also known as toroidal wrap-around) or
no-flux boundary conditions (such that cells at the edges

and corners of the lattice have a correspondingly reduced
neighbour-count) – some authors use periodic, others
no-flux. The results presented in this paper come from
simulations with no-flux boundary conditions, as used
by Zhong et al. (2022). Then in each ES one or more of
three possible actions occurs: competition, reproduction,
or movement, and the probabilities of each of these three
actions occurring per ES is set by system parameters µ,σ,
and ε, respectively (this is explained in more precise detail
later, in Section 2). Competition involves the individuals
at ci and cn interacting according to the rules of the cyclic
game, resulting in either a draw or one of the individuals
losing, in which case it is deleted from its cell, leaving an
empty cell (denoted by ∅); reproduction occurs when one
of ci or cn is empty, the empty cell being filled by a new
individual of the same species as the nonempty neighhbor;
and movement involves swapping the contents of ci and cn.

In the original formulation, each ES involves only one
of the three possible actions (competition, reproduction,
or movement) occurring for a single cell, and a Monte
Carlo Step (MCS) is conventionally defined as a sequence
of N = L2 ESs, the rationale being that, on the average, each
cell in the lattice will be randomly chosen once per MCS,
and hence that, again on the average, every cell in the grid
has the potential to change between any two successive
MCSs. Most published research on this type of model uses
MCS as the unit of time when plotting time-series graphs
illustrating the temporal evolution of the system, and I
follow that convention here.

In their seminal papers, Reichenbach et al. (2007a,b,
2008) studied 2D lattice systems where interspecies com-
petition was via NS=3 RPS games, withµ=σ=1.0, and where
L ranged from 100 to 500, and they illustrated and ex-
plained how the overall system dynamics result in progres-
sive emergence of one or more temporally and spatially
coherent interlocked spiral waves. The specific nature of
the wave-patterning, i.e. the size and number of spiral
waves seen in the system-snapshot images, depended on
a mobility measure M = ε/2N, which is proportional to the
expected area explored by a single mobile individual in the
model, per MCS.

In the years since publication of Reichenbach et al.
(2007a,b, 2008), many papers have been published that
explore the dynamics of such ESCGs based on RPS. For ex-
amples of recent publications exploring a range of issues
in the three-species RPS ESCG, see: Nagatani et al. (2018);
Kabir and Tanimoto (2021); Mood and Park (2021); Bazeia
et al. (2022); Park (2021); Menezes et al. (2022a,b); Zhang
et al. (2022); Menezes et al. (2023); Park and Jang (2023)
and Kubyana et al. (2024).

More recently, various authors have reported experi-
ments with a closely related system where NS=5: this game
is known as Rock-Paper-Scissors-Lizard-Spock (RPSLS),
an extension of RPS introduced by Kass and Bryla (1998)
and subsequently publicized in an episode of the popu-
lar American TV show Big Bang Theory. The dominance
network for the RPSLS game is illustrated in Figure 2 and
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explained in the caption to that figure. This (and other
five-species ECSGs) was first explored in the theoretical bi-
ology literature by Laird and Schamp (2006, 2008, 2009),
and other recent papers exploring RPSLS include Hawick
(2011); Dang et al. (2013); Cheng et al. (2014); Park et al.
(2017); Park and Jang (2019, 2020) and Viswanathan et al.
(2024); and ECSGs related to RPSLS, but with NS≥5, were
recently explored by Avelino et al. (2022).

2.3. Zhong et al. (2022): Ablated Dominance Networks

In a recent paper, Zhong et al. (2022) studied the effects
on co-evolutionary dynamics of selectively ablating the
RPSLS dominance network, i.e., deleting one or more of
the directed edges in the RPSLS digraph and exploring
the consequent changes in the population dynamics. In
the abstract to their paper, Zhong et al. wrote that these
systematic changes to the dominance network (which they
refer to as the interaction structure):

“. . . impacts the evolutionary dynamics, and different interaction struc-
tures allow for different states of multi-species coexistence. We also
find that the competition between different three-species-cyclic inter-
actions is crucial for the realization of different asymptotic behaviors at
low mobility. Our findings may be useful to understand the subtle effects
of competitive structure on species coexistence and evolutionary game
outcomes."

Here I will use Na to denote the number of ablated
edges in the dominance network. Specifically, Zhong et
al. show (in their Figures 3, 5, 6, and 7) results from many
thousands of independent repetitions of simulations of
the ablated-digraph RPSLS systems for networks with
Na ∈ {1, 2, 3} ablated edges, plotting the frequencies of
different classes of outcome for mobility M values rang-
ing from 10–7 to 10–3. Zhong et al.’s primary measure of
the outcome of any one experiment was the number of
species remaining in what they refer to as the “asymp-
totic state”, i.e. how many species remain with nonzero
population-counts at time t=105MCS – the assumption be-
ing that by the time this many MCS have been simulated,
the system will have settled to a steady-state dynamic
equilibrium. Here I will use ns(t) to denote the number of
species remaining after t MCS, so Zhong et al.’s key metric
is ns(105). Using this notation, Zhong et al.’s primary ob-
servation is that for each value of Na, at low M, the system
almost always converges to ns(105)∈{3, 4}, and then as
M is increased the system shows a gradual fall to zero in
the frequency of ns(105)=4, followed by a sudden steep de-
cline in frequency of ns(105)=3, with ns(105)≤2 becoming
the asymptotic state in≈100% of the experiments. In all
of Zhong et al.’s experiments, this sudden transition, the
change from ns(105)=3 to ns(105)≤3, occurs very sharply
somewhere in the interval M∈[10–4/2, 10–4].

Zhong et al. used a square grid with L=200 and ran
each experiment for 105 MCS. For each data-point on their
asymptotic-state frequency plots they computed 500 in-
dependent and identically distributed (IID) repetitions of
any one experiment for any given value of M, and each of

their Figures 3 and 5–7 has data-point markers showing
that they sampled 20 different values of M∈[10–7, 10–3]
for each plot. Thus, in total, the four asymptotic-state fre-
quency figures presented by Zhong et al. represent results
from 4×20×500×105 = 4.0×109 individual MCS, and each
of their MCS involves L2=4×105 ESs, so the total number
of ESs they simulated is 1.6×1014. That’s 160 trillion ESs
in total.

2.4. Summary

To summarise: for RPS and RPSLS the only viable dom-
inance network is a tournament, because the values of
NS are so low. When higher values of NS are used to cre-
ate the circulant dominance networks, a richer space of
topologies opens up, offering the possibility of modelling
NS-species ecosystems coexistence and biodiversity in sit-
uations where it is not the case that every single species
interacts (either positively or negatively) with every other
species in the entire ecosystem, which must surely be the
case in many real-world situations of genuine interest.
Yet, to the best of my knowledge, it seems that every re-
searcher working on RPS-style ESCGs focuses either on
games defined by fully-connected tournament networks,
or on games where the dominance network is a simple
single macrocycle where all nodes have in-degree and out-
degree of one. As far as I am aware, my work reported
here is the first to explore RPS-style ESCGs with non-
tournament circulant graphs where the node in-degrees
and out-degrees are greater than one.

3. Graph Theory for Dominance Networks

In the language of graph theory, we can say that the RPS
and RPSLS dominance networks shown in Figures 1 and 2
are both strongly connected digraphs, because in both for
each vertex all other vertices in the graph are reachable by
at least one path; they are also both regular digraphs, be-
cause in both each node/vertex has the same in-degree
(number of arrows pointing into it) and the same out-
degree (number of edges pointing out of it) and the in-
degree and out-degree are equal (a digraph is said to be
k-regular if each vertex has in-degree and out-degree of
k, so the RPSLS network is 2-regular while the RPS net-
work is 1-regular). More specifically, these two graphs
are instances of what is known as an n-node tournament.
An n-node tournament graph is formed by starting with
the undirected n-node complete graph (i.e., where each
node/vertex is directly connected to all n–1 other nodes in
the graph) and then giving the graph an orientation, which
involves turning each undirected edge in the graph into a
directed edge.

The number of edges in an n-node complete graph is
given by n(n – 1)/2, and hence that is also the number of
directed edges in a tournament digraph. Tournament di-
graphs are useful to us here because there is only a single
directed edge between any two vertices: this is impor-
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tant in the present context because domination, i.e. which
move beats the other for any pair of moves, is absolute
and mutually exclusive: either node A dominates node B,
represented by an arrow from A to B, or B dominates A,
represented by an arrow from B to A; there would be little
sense in a dominance network where there is an arrow
from A to B and also an arrow from B to A, that would be
a contradiction – below, when discussing procedurally
constructed circulant digraphs, I’ll refer to this as the uni-
directionality constraint.

Some further terminology will be useful in the discus-
sion that follows: if one or more directed paths exists
between two nodes in a digraph then the shortest path
between them is is known as the graph geodesic and the
number of edges in the geodesic is the distance between
the two vertices. The diameter of a graph, denoted here by
�, is the length of the longest geodesic in the graph (this
can be identified by creating the set S of shortest paths for
each pair of vertices in the network and then identifying
the longest path in S: that is, the diameter is the longest
shortest path).

Further, note that because we want dominance network
digraph to be regular (so that each species is dominated by
the same number of species that it dominates, as in RPS
and RPSLS), for a tournament network the count of n – 1
edges connecting to each node must be even (half coming
in, half going out), and hence the total number of nodes
in the network n must be an odd number. And, finally,
using the definition given by van Doorn (1986), a circulant
digraph (also known as a directed star polygon) denoted by
D(n,Ω) consists of a set of vertices V(D) = {v0, v1, . . . , vn–1}
and a set of arcs (directed edges) A(D) such that:

(vi, vj) ∈ A(D) ⇐⇒ (j – i) ≡ ω (mod n)

for someω ∈ ΩwhereΩ ⊂ {1, 2, . . . , n – 1}. In these terms,
the RPS dominance network is D(3, {1}) and the RPSLS
network is D(5, {1, 3}). In the discussion that follows, it
will be useful consider the set of vertices as an ordered
sequence, i.e. V(D) = 〈v0, v1, . . . , vn–1〉; and let the symbols
⊕ and 	 denote addition and subtraction modulo n for
vertex-index arithmetic, such that for example: if i=0 then
vi	1 = vn–1, otherwise vi	1 = vi–1; and if i=n–1 then vi⊕1 =
v0, otherwise vi⊕1 = vi+1.

Procedurally, a graph of an NS-vertex circulant can
be constructed by placing the n vertices equally spaced
around the circumference of a circle, and then for each ver-
tex vi doing the following: for eachωk ∈ Ω draw a directed
arc from vi to vj where j = i ⊕ k. That is, the elements of
Ω are a set of vertex-index-offsets to be used for connect-
ing each vi to the other nodes that it dominates; repeating
this for all nodes creates the full network. Examples of
circulant digraphs are illustrated in Figure 3. Because of
the unidirectionality constraint, the need for the domi-
nance networks to be regular, and the requirement that n
must be odd, we need only concern ourselves with those
circulants where |Ω|≤bNS/2c. An additional constraint

Figure 3. Three examples of circulant digraphs: upper-left network is
D(5, {1, 4}), which has a diameter �=2, and which violates the unidirec-
tionality constraint introduced in Section 3; upper-right is the tournament
circulant digraph D(7, {1, 2, 3}), with �=2; below is a “generalised RPSLS”
non-tournament circulant (NTC) digraph D(9, {1, 7}), with �=4.

to avoid redundancy is to letΩ={ω1,ω2, . . . ,ω|Ω|} and re-
quireωi<ωi+1, ∀i. When |Ω|=bNS/2c a tournament graph is
produced but, as is shown in Figure 3, for NS>5 interesting
topologies can be generated by cases where |Ω|<bNS/2c.

Here I’ll assert that the combinatorics ofΩ only start to
get properly interesting once NS rises above the 5 of RPSLS.
To explain that claim, first consider this: when generating
an NS=3 circulant for RPS, there are only two possible con-
tents ofΩ: {1} and {2}; and the two networks generated
by these are isomorphic tournaments – i.e., topologically
identical apart from the (arbitrary) labelling of the vertices.
So there is only one possible RPS dominance network: it is
1-regular, and is both a tournament digraph and a circulant
digraph: D(3,{1}).

Similarly, the RPSLS dominance network of Figure 2A
is 2-regular, and also it is both a tournament digraph
and a circulant digraph: D(5, {1, 3}), and it is unique.
There is another D(5, S): |S|=2 graph that is superfi-
cially different from D(5, {1, 3}), and that is the circulant
D(5, {1, 2}), illustrated in Figure 2B. Comparing Figures 2A
and 2B, the cyclic path v0→v1→v2→v3→v4→v0 traced
around the outer pentagon is clockwise in both graphs;
but the cyclic path on the inner pentagram is anticlock-
wise v0→v3→v1→v4→v2→v0 in the RPSLS dominance net
of D(5, {1, 3}) but is clockwise v0 →v2→v4→v1→v3→v0 in
the alternate dominance net of D(5, {1, 2}) – the nodes
of which could just as easily be given labels of Rock, Pa-
per, Scissors, Lizard, and Spock. The caption of Figure 2
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explains how the vertices of D(5, {1, 2}) can be relabelled to
give D(5, {1, 3}) and hence D(5, {1, 2}) ∼= D(5, {1, 3}). Thus,
like the NS=3 case of RPS, there is only one, unique, domi-
nance network, which is both a tournament digraph and a
2-regular circulant digraph.

But, as I show below, when NS>5, (in fact, as soon as
NS=7), there are k-regular RPSLS-style dominance net-
works that are tournament circulant digraphs like those
for NS∈{3, 5}, but there are also k-regular RPSLS-style
dominance networks that are circulant digraphs that are
not tournaments – and these non-tournament circulant
(NTC) digraphs are of significant interest. For NS=7, the
tournament circulant digraphs are 3-regular, but the NTC
networks of relevance for this paper are 2-regular, because
Zhong et al. (2022) reported results from the original RP-
SLS, and the original RPSLS is 2-regular.

Before going on to explore NTC digraphs in more detail,
a final issue to discuss is how to determine the number of
distinct (non-isomorphic) 2-regular circulant digraphs
for NS≥5.

Consider first the NS=5 case: when generating circulant
for RPSLS the contents ofΩ satisfying |Ω| ≤ bNS/2c can in
principle be any of the following: {1}; {2}; {3}; {4}; {1, 2};
{1, 3}; {1, 4}; {2, 3}; {2, 4}; and {3, 4}. The networks given
by D(5, {1, 4}) (illustrated in Figure 3) and D(5, {2, 3}) both
violate the unidirectionality constraint because for any
2-regular circulant whereΩ={ω, NS 	ω}, each vertex vi
will dominate vi⊕ω and each vertex vi⊕ω will dominate
vi; that is, here {1, 4} ≡ {1, n 	 1} and {2, 3} ≡ {2, n 	 2}
and hence those two values ofΩ are ruled out of consid-
eration. The four cases where |Ω|=1 give four isomor-
phic networks (i.e., only one distinct graph) that topo-
logically is a simple 1-regular NS-node loop: evolutionary
spatial cyclic games (ESCGs) involving such loops have
been explored in previous publications (see e.g. Carvalho
et al. (2023)), but are not of interest here because they
are not 2-regular – they can be considered as NS>3-node
extensions of RPS, but are not analogous to RPSLS. Note
that, because of the modular index-arithmetic of ordered
vertices on 2-regular NS-node circulant graphs, a pair
of offsets Ω={ω1,ω2} is equivalent to the pair of offsets
Ω={NS 	 ω1, NS 	 ω2}. So of the four remaining |Ω|=2
cases for NS=5, D(5, {1, 2}) ∼= D(5, {3, 4}) (that is, they pro-
duce isomorphic graphs) and D(5, {1, 3}) ∼= D(5, {2, 4}).
This leavesΩ={1, 2} andΩ={1, 3}, which produce a pair of
isomorphic graphs, as explained in the caption to Figure 2.

The reasoning for NS=5 given in the previous paragraph
can be generalised for 2-regular circulants with NS>5 in
very few words, as follows: we need the set of all offset
pairs Ωi={ωi,1,ωi,2}∈{1, . . . , NS – 1}2 such that ωi,2>ωi,1
andωi,2 6=NS	ωi,1.

For further reading on the mathematics of regular tour-
naments, see Chamberland and Herman (2014); Akin
(2020) and Akin (2023); on generating regular digraphs
see Brinkmann (2013).

4. Design of Experiments

Section 5 presents first results from a series of seven-
species (NS=7) evolutionary spatial cyclic game (ESCG)
simulation experiments designed to identify and explore
the differences, if any, between ECSGs with tournament
and circulant dominance networks, when the dominance
network is subject to random ablations in the manner stud-
ied by Zhong et al. (2022). In all the experiments presented
here, I followed the convention of setting (without loss
of generality) µ=σ=1.0 and then varying the mobility M
(which determinesε) over several orders of magnitude. For
each value of M explored, I ran Nexp=100 independent and
identically distributed (IID) ECSG simulations. The unit of
time t in each simulation experiment here is a single Monte
Carlo Step (MCS), and all the experiments reported here
ran from t=0 to t=2×105 MCS. In all the experiments re-
ported here, I used a square lattice with side-length L=500,
and the lattice was initialised by each cell being filled with
an agent whose species was set by random draw from a
uniform distribution such that the probability of the indi-
vidual agent i’s species-type si being any specific species
Sj was Pr(si = Sj) = 1

7 , ∀i,∀j.
The set of nested control loops for the main experiment

is shown as pseudocode in Algorithm 1. This takes as con-
trol parameters the value of NS, the set of offsets Ω that
determined the dominance network connectivity, and the
number of directed edges in the network to be randomly
ablated. It first creates the full unablated network, and
then ablates the specified number of randomly-chosen
edges in the network. In all the experiments reported
here, only one randomly-chosen edge was ablated, and
this was always ablated from the set of edges originating
from species S0: that is, in each ablation experiment, the
number of other species dominated by S0 is one fewer than
the number dominated by all other species.

Following Zhong et al. (2022), the primary outcome
that was monitored for each individual experiment was
the number of species remaining at the final MCS, de-
noted here by ns(Tmax) but whereas Zhong et al. used
ns(105), the experiments reported here were run for con-
siderably longer than that, because the dynamics of the 7-
species systems were observed to have much longer time
constants than those of the 5-species system explored
by Zhong et al.: whereas the NS=5 systems studied by
Zhong et al. could stabilise to an “asymptotic state” by
Tmax=105, the NS=7 systems studied here typically needed
Tmax≥2×105 before they settled to a stable state.

In each individual ECSG experiment, the density ρi(t)
of each species Si was recorded after each MCS: illustrative
time-series of the ρi values from several experiments are
shown in Section 5. The variation in densities at any one
time is also of interest: for this the mean density at time t
was calculated as ρ̂(t) = 1

NS

∑NS
1 ρi(t) and then the variation

in density ρv(t) was calculated as the standard deviation
ρv(t) = ( 1

NS

∑NS
1 (ρi(t) – ρ̂(t))2)0.5.

For each IID repetition of the experiment, the domi-
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nance network is created and randomly ablated, and the
lattice for time t=0 is populated with agents of randomly
assigned species, as described above. Then for each M-
value being explored, the lattice is reset to its t=0 state and
then Tmax MCS are executed. Each MCS consists of exe-
cuting some number (denoted here by Emax) of elementary
steps (ESs). Before each ES, an individual cell is in the lat-
tice is randomly selected: let ~pi denote its position in the
lattice (i.e., in the 2D case here, ~pi will be the row and col-
umn lattice coordinates of the randomly selected cell), and
then one of that cell’s immediate neighbors is randomly
chosen for interaction – let ~pn denote the position of the
neighboring cell. The random selection of an individual
cell is achieved by a simple function RndCell and the
random choice of neighboring cell is achieved by a simple
function RndNeighbor, which needs to implement two
things: (1) a neighborhood function, determining whether
each cell has either four neighbours (the von Neumann
neighborhood) or eight (the Moore neighbourhood); and
(2) the boundary conditions, i.e. whether a cell at an edge
or corner of the lattice has a reduced set of neighbors (i.e.,
no-flux boundary conditions), or instead the edges of the
lattice wrap-around giving it a toroidal topology (i.e., peri-
odic boundary conditions). In all the experiments reported
here, the von Neumann neighborhood was used with no-
flux boundary conditions, and the number of elementary
steps per MCS was set to Emax=L2= N, as is the convention
in the literature.

Note that in each IID repetition of the core ESCG simu-
lation, the ablated network is created once only, and sim-
ilarly the lattice is randomly populated with agents once
only, and the system is re-set to these initial conditions
for each successive value of M explored: this means that,
for any one initial lattice, the system is re-playing the tem-
poral evolution of the same initial lattice for all values of M
and hence any variation in final outcome is going to be due
to the change in M and in the different sequence of random
numbers generated for each experiment. In all the exper-
iments reported here, the revised elementary step (RES)
described in Cliff (2024) was used for the ElStep function
in Algorithm 1: RES is more efficient in both space and
time and gives qualitatively similar population dynamics
in comparison to the original elementary step (OES) used
previously by very many researchers in this field (e.g. Yang
and Park (2023); Zhong et al. (2022); Reichenbach et al.
(2007a,b, 2008)).

5. Results

For brevity, all results for NTC networks presented here
come only from D(7, {1, 3}); in future publications I will
report results from other D(7,Ω):|Ω|=2 NTC networks. In
all the experiments reported here, Tmax=2×105, µ=σ=1.0,
and L=500; and because ε=1.0 at Mmax(L)=1/2L2=2×10–6,
that is the upper bound on the range of M values explored.

I first show baseline results from unablated (Na=0)
seven-species (NS=7) tournament systems and NTC sys-

Algorithm 1M-Sweep 2D Square ECSG
Require: L ≥ 1 ∈ Z . Side-length of square lattice l
Require: B ∈ {‘noflux’, ‘periodic’} . Boundary condition
Require: N ∈ {‘vonNeumann’, ‘Moore’} . Nbrhood
Require: µ ∈ [0.0, 1.0] ⊂ R . Pr(compete)
Require: σ ∈ [0.0, 1.0] ⊂ R . Pr(reproduce)
Require: Ns ≥ 3 ∈ Z . # species
Require: Ω = {ω1, . . .} : 0 < ωi < Ns . Circulant offsets
Require: Na ≥ 0 ∈ Z . # ablations
Require: Mmin ∈ R+ . Minimum M
Require: Mmax ∈ R+ . Maximum M
Require: Mmul > 1 ∈ R . M multiplier
Require: Tmax ≥ 1 ∈ Z . #MCS per experiment
Require: Emax ≥ 1 ∈ Z . #Elementary steps per MCS
Require: Nexp > 0 ∈ Z . # IID experiments
Ensure: Ns = 2j + 1; j ∈ Z . Ns must be odd
Ensure: Mmin < Mmax

1: N ← L2 . # cells in lattice
Ensure: Mmax ≤ 1

2N . s.t. ε ∈ [0.0, 1.0] ∈ R
2: r← 0 . r is current IID repetition
3: while r < Nexp do
4: D←CreateDomNet(Ns,Ω) . Create dom net
5: D′ ← AblateDomNet(D, Na) . Ablate net
6: l0 ← Populate(L, Ns) . Fill lattice with agents
7: M← Mmin
8: whileM ≤ Mmax do . Sweep M
9: ε← 2MN . Pr(move)

10: l← l0 . Set lattice to initial state
11: t← 0 . t is time, in units of MCS
12: while t ≤ Tmax do
13: e← 0 . e is current elementary step (ES)
14: while e < Emax do . Core inner ES loop
15: ~pi ← RndCell(l)
16: ~pn ← RndNeighbor(l, ~pi,B,N )
17: l← ElStep(l, D′, ~pi, ~pn,µ,σ, ε)
18: e← e + 1
19: end while
20: t← t + 1
21: end while
22: M← M×Mmul
23: end while
24: r← r + 1
25: end while
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Figure 4. Upper graph: time-series of species densities from a single ex-
periment with the seven-species (i.e., Ns=7) system when the dominance
graph is the unablated (i.e., Na=0) tournament circulant D(7, {1, 3, 5}), for
L=500, µ=σ=1.0, M=10–7. Horizontal axis is time t measured in MCS; verti-
cal axis is percentage density (i.e., ρi(t)) for species Si:i∈{0, . . . , 6}. Lower
graph: Time-series of variation in species densities (i.e., ρv(t)) for the
experiment shown in the upper graph: horizontal axis is time measured in
MCS; vertical axis is variation in density ρv(t), as a percentage of N.

tems in Sections 5.1 and 5.2, respectively. After that, in
Section 5.3, I show results from ablated (NS = 7, Na=1) tour-
nament systems which qualitatively replicate and confirm
Zhong et al.’s results for their NS=5 tournament systems:
we see a phase transition where the number of coexisting
species suddenly collapses once M is increased beyond a
threshold value. And then finally, in Section 5.4, I show
results from ablated (NS=7, Na=1) NTC systems, directly
analogous to the NS=5 system studied by Zhong et al., in
which the collapse in species numbers frequently does not
occur. These results are discussed further in Section 6.

5.1. Unablated Tournament Network

Figure 4 shows an illustrative typical time-series of re-
sults for the seven-species system with the unablated
dominance network being a tournament graph (i.e., every
species Si dominates three other species, and is dominated
by three other species; and all Sj 6=i are either dominated by
or dominates Si): the upper plot shows the densities ρi(t)
of the seven species S0 to S6, and the lower plot shows the
variation in density ρv(t) calculated from the individual
densities. As can be seen from both graphs, the open-
ing phase of the experiment involves a rapid transition
away from the initial conditions, where each species is
equally dense (and hence ρv(0)≈0), to a situation in which
at any one time some species’ densities are low (but will
eventually rise) and other species’ densities are high (but
will eventually fall), the densities rising and falling in a
quasiperiodic fashion over the duration of the experiment.

To provide a baseline against which the results from
ablated-network systems could be judged, a set of experi-

Figure 5. Time-series of mean (plus and minus one standard deviation)
value of ρv(t) aggregated over NS=7, Na=0 unablated tournament exper-
iments where M was swept over the range [10–9, 2×10–6], with 100 IID
experiments performed at each value of M sampled. Horizontal axis is time
measured in MCS; vertical axis is variation in density ρv(t), expressed as a
percentage of N.

Figure 6. Minimum value of ρi(t)∀i∀t aggregated over NS=7, Na=0 un-
ablated tournament experiments where M was swept over the range
[109, 2×10–6], with 100 IID experiments performed at each value of M
sampled. Horizontal axis is M; vertical axis is density, as a percentage of N.

ments were run where the value of M was swept over the
range [10–9, 2×10–6]. At each value of M sampled in this
range, 100 IID experiments like the one illustrated in Fig-
ure 4 were conducted. The outcome of every one of these
experiments was essentially the same as the one illustrated
in Figure 4: the number of species at the end was always
seven (i.e., ns(105)=7). Figure 5 shows the mean and stan-
dard deviation of ρv(t) aggregated over this entire set of
experiments: as can be seen, after the initial transient of
roughly 1000MCS, mean ρv(t) stabilises at roughly 0.9%
for the remainder of the experiment. Figure 6 shows the
minimum density recorded across all species over all time
in each experiment, i.e. min(ρi(t))∀i∀t for the whole set of
experiments summarised in Figure 5: there is a clear non-
linear relationship between M and the minimum density
recorded, which never goes below 7.5%.
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Figure 7. Mean (±1 standard deviation) value of ρv(t) aggregated over
NS=7, Na=0 unablated NTC experiments where M was swept over the range
[10–9, 2×10–6], with 100 IID experiments performed at each value of M
sampled. Format as for Figure 5.

Figure 8.Minimum value of ρi(t)∀i∀t, aggregated over NS=7, Na=0 unab-
lated NTC experiments where M was swept over the range [10–9, 2× 10–6],
with 100 IID experiments performed at each value of M sampled. Format
as for Figure 6.

5.2. Unablated Non-Tournament Circulant Network

Results from simulations of the ECSG with unablated
(Na=0) non-tournament circulant (NTC) dominance net-
work are qualitatively the same as those from the ECSG
with tournament dominance network that were shown
in the previous section, but there are some qualitative
differences. A time-series of the mean ρv(t) aggregated
over the results from all values of M is shown in Figure 7:
as can be seen, in the NTC system the mean variation in
densities is higher, i.e. roughly 1.3% at steady-state, than
that of the tournament system, and the standard deviation
is wider. Similarly, a scatter-plot of minimum ρi(t)∀i∀t
values recorded in each simulation is shown in Figure 8,
and the NTC minima are roughly half those of the tour-
nament system at low M, while at higher values of M the
NTC minima are roughly the same range but more tightly
compressed, than those of the tournament-based system
illustrated in Figure 6.

Figure 9. Time-series of species densities, and variation in densities, in a
single experiment where one extinction occurred, and hence ns(200k)=6,
in the NS=7, Na=1 ablated tournament system: L=500, µ=σ= 1.0, M=10–7.
Format as for Figure 4.

5.3. Ablated Tournament Network

Illustrative results from a single run of the 2-regular
NS=7, Na=1 tournament experiment, where there is one
extinction over the course of the experiment and hence
ns(200k)=6 is shown in Figure 9, and Figure 10 shows re-
sults from a different run where two extinctions occurred
and hence ns(200k)=5.

Results from the M-sweep on 2-regular NS=7, Na=1
tournament experiments are shown in Figure 11: as can
be seen, for low values of M, the outcome ns(200k)=5 oc-
curs almost 100% of the time, but as M increases from
4×10–8 to 10–7 there is a sharp drop in the frequency of 5-
species outcomes, falling to 60% or less, which is matched
by a sharp rise in the number of 2-species outcomes (i.e.,
where ns(200k)=2) rising rapidly from the initial 0% fre-
quency for low M to 40% for M≥10–7. And then, as M is
increased beyond 6×10–6, the frequency of 5-species out-
comes drops sharply again, falling to roughly 30%, while
the number of 3-species and 4-species outcomes rises.
This set of results qualitatively replicates the central find-
ing of Zhong et al.: as M increases, the species biodiversity
undergoes a sharp, sudden decline once M is greater than
some threshold value. Figure 12 shows the aggregate vari-
ation in density for the set of experiments shown in Fig-
ure 11. Because in every experiment there was at least one
extinction, the scatter-plot of minimum ρi(t) is a flat-line
with all data points on zero, and hence is not plotted here.

5.4. Ablated Non-Tournament Circulant Network

Typical results from the system with a single random ab-
lation (Na=1) to the NTC dominance network resulting in
no extinctions are shown in Figure 13; while results from
a typical NTC Na=1 experiment in which three extinctions
occur are shown in Figure 14. The aggregated ρv time-
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Figure 10. Species densities, and variation in densities, in a single experi-
ment where two extinctions extinctions occurred, and hence ns(200k)=5,
in the NS=7, Na=1 ablated tournament system: L=500, µ=σ= 1.0, M=10–7.
Format as for Figure 4.

Figure 11. Frequency of final species-count at 200kMCS (i.e., ns(200k))
for the Ns=7, Na=1 ablated tournament system. 125 IID repetitions were
run for each value of M. Horizontal axis is M; vertical axis is frequency of
occurrence of ns(200k).

Figure 12. Mean (±1 standard deviation) value of ρv(t) aggregated over the
2125 NS=7, Na=1 ablated tournament experiments whose outcomes were
summarised in Figure 11. Format as for Figure 5.

Figure 13. Species densities, and variation in densities, from a single run
of the Ns=7, Na=1 ablated NTC system where no extinctions occur;µ=σ=1.0,
M=10–7. Format as for Figure 4.

series for this set of experiments is shown in Figure 15,
and the minimum ρi data is presented in Figure 16.

Figure 17 shows the frequency of outcomes as the value
of M is swept across its range: these results from the
M-sweep 2-regular NS=7, Na=1 NTC experiments differed
markedly from those of the 3-regular NS=7, Na=1 tourna-
ment experiments, in that for the NTC systems roughly
55% of the IID repetitions showed no extinctions at all,
with ns(200k)=NS=7, and the frequencies of ns(200k)=3
and ns(200k)=4 outcomes are also essentially constant
with respect to variation in M over most of its range, albeit
with some changes occurring once M≥6×10–7.

6. Discussion and Conclusion

My results presented in Figure 11 show that the ESCG sim-
ulator I have written for this study does qualitatively repro-
duce the central result of Zhong et al. (2022): in the specific
case of a seven-species tournament RPSLS-like system,
deleting a single directed edge (Na=1) can change the sys-
tem’s overall population dynamics such that, as mobility M
is increased beyond some threshold value (here, 4×10–8)
there is a sharp fall-off in the frequency of experiment
outcomes where the system settles to five-species coexis-
tence, counterbalanced by a sharp rise in the frequency of
experiments where the system settles to two-species coex-
istence: this is the collapse in biodiversity witnessed in the
five-species RPSLS system reported by Zhong et al. (2022).
In one sense, the results of Figure 11 support those of Zhong
et al. (2022), because the biodiversity collapse has now
been demonstrated both in the five-species tournament
D(5, {1, 3}) system and in the seven-species D(7, {1, 3, 5})
system.

However, my results presented in Figure 17 cast signifi-
cant doubt on the generality of Zhong et al.’s result: surely,
for Zhong et al. (2022) to be of genuine scientific interest,
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Figure 14. Species densities, and variation in densities, from a single run of
the Ns=7, Na=1 ablated NTC system where one extinction occurs; µ=σ=1.0,
M=10–7. Format as for Figure 4.

Figure 15. Mean (±1 standard deviation) value of ρv(t) aggregated over
1700 NS=7, Na=1 ablated NTC experiments where M was swept over the
range [10–9, 2×10–6], with 100 IID experiments performed at each value
of M sampled. Format as for Figure 5.

Figure 16. Minimum value of ρi(t), ∀i∀t, aggregated over 1700 NS=7, Na= 1
ablated NTC experiments for M ∈ [10–9, 2×10–6], with 100 IID repetitions
at each value of M sampled. Format as for Figure 6.

Figure 17. Frequency of final species-count at 200kMCS (i.e., ns(2×105))
for the NS=7, Na=1 ablated NTC system. 200 IID simulations performed for
each value of M. Format as for Figure 11.

to actually be of relevance to real ecosystems biodiversity,
such biodiversity collapses should be seen in any, or at
least many, plausible “interaction structures” (i.e., dom-
inance networks), but Figure 17 shows that a manifestly
closely related interaction structure, the non-tournament
circulant network D(7, {1, 3}) does not undergo the sudden,
phase-transition-like, biodiversity collapse for any plausi-
ble value of M. Thus, it seems reasonable to conjecture that
the prima facie interesting results of Zhong et al. (2022)
are in fact nothing more than a quirk arising from their
choice to study only the one RPSLS interaction structure,
the tournament circulant D(5, {1, 3}): I have shown here
that if they had searched for the same phenomenon in
only ever so slightly different interaction structures, they
would not have found it.

A counterargument to what I am concluding here could
potentially be based on claiming that tournament interac-
tion structures, where every single species is either preda-
tor or prey to every other species in the entire ecosys-
tem, are somehow more realistic models of actual bio-
logical ecosystems than are circulant interactions struc-
tures, where each species is predator/prey to only a (poten-
tially small) subset of the entire array of species within the
ecosystem. But such a counterargument could be quickly
defeated by anyone armed with junior-school understand-
ing of real biological food webs: the shrimp eat the plank-
ton; the small fish species feed on the shrimp; the medium-
size fish species eat the small fish; the big predator fish
species eat the medium-size fish; and the bird of prey dives
to dine on the big predator fish – the point here being that
eagles don’t eat plankton, or shrimp. My view is that the
non-tournament circulant (NTC) interaction structure
ESCGs explored here, apparently for the first time, are po-
tentially more realistic than the ECSGs using tournament
networks such as RPS and RPSLS that so many researchers
have focused exclusively on for so long.

To some extent, it seems that the near-exclusive fo-
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cus in the literature on tournament-structured RPS and
RPSLS has been motivated by a desire to do what Kuhn
(1962) referred to as normal science: experimenting and
observing and theorizing within the intellectual confines
of a settled, agreed explanatory framework. As Isaac New-
ton famously wrote to Robert Hooke, we see further when
we stand on the shoulders of giants: if some researcherR
publishes a ground-breaking and influential paper about
a model systemM then it is natural, it is sound scientific
practice, for some other researcher S to replicate and ex-
tend R’s study ofM, and then for another researcher T
to replicate and extend S’s work onM, which may then
prompt researcher U to replicate and extend T ’s study, and
so on and so forth, and henceM can become locked-in, be-
coming one of the prevailing paradigm’s standard models
that everyone in the field is familiar with and accepting of,
and which is studied to the exclusion of other equally (or
perhaps more) plausible and relevant models that in fact
the original researcherR could just as easily have chosen
to work on in the first place, but just happened not to.

There are many directions in which the work reported
here could be taken further, several of which were men-
tioned in passing in the main text of this paper. The Python
source-code used for the simulations reported here is
freely available as open-source on GitHub, under the MIT
Open-Source License,1 to allow other researchers to read-
ily replicate and extend this work.
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Appendix: Three Modes of Response
Figure 11 summarised results from approx 2,500 tourna-
ment experiments where in each experiment one of the
dominance relationships from species S0 to species S1, S3,
and S5 was randomly for deletion, and as such it presented
the superposition of three different modes of response. For
completeness, Figures 18, 19, and 20 show the frequency
of outcome for each of those three modes, separately. A
corresponding set of three graphs could be plotted for the
data shown in Figure 17, but the lack of variation in that
data makes for three boring graphs, not shown here.

Figure 18. Frequency of final species-count at 200kMCS (i.e., ns(200k))
for the Ns=7, Na=1 ablated tournament system when the ablated edge is the
dominance interaction from S0→S1. Graph shows results from approx. 800
IID repetitions in total, so roughly 50 for each value of M. Format as for
Figure 11, but here the legend also shows, in parenthesis, the indexes of
the surviving species.

Figure 19. Frequency of final species-count at 200kMCS (i.e., ns(200k))
for the Ns=7, Na=1 ablated tournament system when the ablated edge is the
dominance interaction from S0→S3. Graph shows results from approx. 800
IID repetitions in total, so roughly 50 for each value of M. Format as for
Figure 18.

Figure 20. Frequency of final species-count at 200kMCS (i.e., ns(200k))
for the Ns=7, Na=1 ablated tournament system when the ablated edge is the
dominance interaction from S0→S5. Graph shows results from approx. 800
IID repetitions in total, so roughly 50 for each value of M. Format as for
Figure 18.
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