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Abstract
We describe a new multi-agent distributed stock exchange simulation environment (DSXE), built to model the global network ofcontemporary financial markets. DSXE is an advance on existing state-of-the-art simulation platforms available in the public domain:it is a modular and highly configurable environment which allows researchers to setup and deploy stock exchange agents and traderagents in different geographical locations using commercial cloud-computing services. The efficient implementation in C++ enablesthe running of large-scale simulations with many simultaneous traders. DSXE has been successfully used to model fragmented marketsand to demonstrate price convergence resulting from arbitrageurs operating between two exchange venues trading the same asset.We report here on a series of experiments conducted to measure and quantify the performance and scalability of the system. Theimplementation successfully achieves the goal of modelling HFT, demonstrating the capability to process up to 355 messages per second.Finally, potential avenues for further research and suggested improvements to the implementation are outlined. The C++ code for DSXEis being made available as open-source code via GitHub.
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1. Introduction
Contemporary financial markets consist of a network ofexchanges distributed across different countries and ju-risdictions. The same asset, or group of closely relatedassets, can be traded on different exchanges in multiplecountries at the same time, and economic theory knownas the law of one price suggests that the price across allthe markets should converge on the same value. How-ever, in practice, the complex interactions between marketparticipants and varying delays and latencies in tradingacross different venues give rise to market fragmentation(Claessens (2019)). Studying and understanding the pricedynamics of individual assets traded simultaneously onmultiple markets is key to making informed decisions re-garding financial markets. In this paper, we present firstresults from a new simulator designed to be remotely con-figured, launched, and operated via the cloud-computing

facilities of Amazon Web Services (AWS). Because AWS is aglobal network of cloud data-centres, our simulations canbe configured to operate anywhere on the planet whereAWS has a presence, and our simulator’s distributed net-work of exchanges and trading entities will then run inreal-time and be subject to real-world communicationsand computation latencies: in this sense, our simulator(the Distributed Stock Exchange Simulation Environment,or DSXE) offers a high-fidelity simulation platform forstudying issues in inter-exchange trading.
The study of financial markets and the behaviour ofmarket participants has a long history. Chamberlin (1948)showed in 1948 how experiments in laboratory conditionswith groups of students can be applied to study marketdynamics and explain trader behaviour. And Smith (1962)then built on Chamberlin’s work, initiating a long series ofexperimental studies conducted over decades, for which
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he eventually received the Nobel Prize in Economics.The scientific study of financial market mechanismsand trader behavior began in the mid-20th-Century withthe founding of experimental economics (in which Cham-berlin’s and Smith’s early papers are often stated to be theseminal works) which involves studying groups of humanparticipants interacting in model markets, but in recentdecades this has spawned a complementary approach, in-volving simulations of agent-based models: sometimes re-ferred to as Agent-Based Computational Economics (ACE):see e.g. Tesfatsion (2023). Modelling economic processesas dynamic systems of interacting agents allows one tosimulate and empirically study both complex market struc-tures and individual trader behaviour. One of the first com-puterised stock exchange simulations was the Santa Fe ar-tificial stock market, as discussed by Palmer et al. (1994),which allowed researchers to study the interactions be-tween adaptive agents in a centralised market and theireffect on price dynamics. In the years since the Sante Fework, simulation models published in the research domainhave become increasingly complex, incorporating moresophisticated market models and agent behaviours (e.g.Cliff (2018)), and accounting for factors such as communi-cation latency (e.g. Miles and Cliff (2019)) and executiontime of trading algorithms (e.g. Rollins and Cliff (2020)).While many of these implementations excel in modellingindividual factors affecting price dynamics in financialmarkets, there has yet to emerge a model complex enoughto account for all the major factors influencing trading incontemporary markets.With the advent of High-Frequency Trading (HFT: seee.g. Aquilina et al. (2022)), a particular area of concern isthe real-time performance of the model and the ability toempirically measure the effects of communication latencyand processing delays in real time. Arbitrage strategies em-ployed by HFT companies often rely on instantaneous ac-cess to live market data and the ability to co-locate tradingsystems at exchange venues (see e.g. Arnuk and Saluzzi(2009)). With many market observers and participantsvoicing opinions that HFT is predatory in nature and neg-atively impacts market quality (Dalko and Wang (2020)),it is more important than ever to be able to understandand study the impact of these strategies – and for that,a controlled simulation environment like that providedby DXSE is a necessity. To the best of our knowledge, noagent-based financial model capable of simulating HFT inreal-time across a distributed environment has been re-ported in the published literature, and so the primary novelcontribution of this paper is the description of DSXE’s de-sign and implementation, and the presentation of firstresults from the simulator. To enable other researchersto replicate and extend our work reported here, the fullC++ source-code for DSXE is being made freely availableon GitHub.1

1 https://github.com/artur-varosyan/distributed-
stock-exchange-environment.

Section 2 presents a review and qualitative analysis ofexisting state-of-the-art financial market simulationsavailable in the public domain. The findings from thatreview shaped the design and development of DSXE as anovel real-time distributed agent-based stock exchangesimulation environment: this is described in Section 3.Then in Section 6 we demonstrate the successful use ofDXSE to model price convergence in fragmented marketsas a result of inter-market arbitrage, under two differentmarket scenarios. Section 9 then summarises results fromperformance analysis of DXSE, to measure and quantifythe scalability of the platform, and identify the strengthsand weaknesses of the implementation: we show thatDXSE successfully achieved the aim of handling HFT with amaximum recorded message throughput of 355 messagesper second.
2. Analysis of Stock-Exchange Simulators

2.1. Bristol Stock Exchange (BSE)

One of the earliest open-source stock exchange simula-tions is the Bristol Stock Exchange (BSE) by Cliff (2018),first released in 2012. BSE is a discrete, event-driven sim-ulation that simulates the trading of a single tradeable in-strument on a continuous double auction exchange. At theheart of the simulations sits the limit order book (LOB)which records the unexecuted bids and asks currentlypresent on the exchange. The source code also contains im-plementations of some of the early well-known automatedtrading algorithms such as the Zero-Intelligence-Plus(ZIP) trader introduced by Cliff (1997) and the Adaptive-
Aggressive trader by Vytelingum (2006). BSE allows config-uring a population of such traders and running simulationsfor a fixed duration.
2.1.1. ImplementationThe simulation works as follows: at each timestep t, a(pseudo) randomly chosen trader from the population oftraders is given a chance to place an order. If the traderchooses to place an order, the order is matched againstthe resting orders in the LOB. Each trader is restricted tohaving only one active order in the LOB. If the new ordercrosses the spread, a trade has occurred and the simula-tion proceeds to inform all of the traders of the trade. Alltraders are then given a chance to update their internalstate. The internal virtual time is incremented and thecycle repeats, with another random trader being given thechance to place an order. If a trader chooses to place a neworder, the previous order is cancelled. Due to the stochasticnature of the selection process and the pseudo-randomgeneration approximately following the uniform distribu-tion, as time t tends to infinity, each trader should be givenan approximately equal number of chances to trade.
2.1.2. DiscussionWhile being of value to education and wider academia, theBSE simulation has fundamental design flaws and limi-
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tations. The BSE assumes that all transactions are sentand executed with zero latency. In the context of ubiqui-tous HFT in modern financial markets, where the speedof the trading algorithm and the network latency are keyfactors in trading profitability, this is a significant limi-tation of the simulation. Furthermore, the lack of mar-ket orders, where the tradeable asset is bought or sold atthe best available price currently present in the LOB, andcancel orders, where a previously submitted order is can-celled, restricts the possibility of testing more complextrading strategies which rely on these actions. Finally, therestriction that each trader may only have one active orderdisqualifies advanced trading strategies such as spoofingor quote stuffing.
2.2. Threaded Bristol Stock Exchange (TBSE)

Bristol Stock Exchange served as the basis for many im-proved financial market simulations. One such improvedsimulation is the Threaded Bristol Stock Exchange (TBSE),developed by Rollins and Cliff (2020). TBSE aims to ad-dress the assumption that each automated trading algo-rithm takes negligible time to process a market updateand submit an order to the exchange. To tackle this as-sumption, Rollins modified the original codebase by usingmultithreading. This allowed Rollins to study how prof-itable different automated trading algorithms are whenthe execution time is considered.
2.2.1. ImplementationAt the beginning of each simulation, each trader in thesimulation, as well as the exchange, is assigned a uniquethread to run on. Then a series of thread-safe messagequeues are created to facilitate the communication be-tween the traders and the exchange, and the main simula-tion loop. During the simulation, the traders send ordersto the exchange via the exchange message queue. Theexchange processes each order one at a time, checkingwhether the order crossed the spread and a trade is pos-sible against a resting order in the LOB. If a trade occurs,a trade report is sent to each trader via their respectivemessage queue. The order in which traders are updatedis fixed throughout the simulation, raising the questionof whether fairness is preserved. Similarly to the originalBSE, the simulation assumes that each trader may onlyhave one active order on the exchange, and any new orderscancel previously added orders in the LOB.
2.2.2. DiscussionThe improvements implemented by Rollins certainlymean that TBSE is more reflective of real markets com-pared to the original BSE. The results of running numerousmarket simulations on the TBSE have shown that the prof-itability of some of the well-known trading algorithmschanges significantly when their execution time impactshow quickly they can react to market changes.To critically evaluate this implementation, it is impor-

tant to identify some of its weaknesses and design flaws.Similarly to its predecessor, TBSE lacks support for marketorders or order cancellations, and each trader is only al-lowed to hold one active order at a time. More importantly,however, as noted by Rollins, since the simulation is im-plemented in Python using the multithreading library, itis subject to the Global Interpreter Lock (GIL) Python.org(2024). The GIL ensures that at any one time, only one
Python thread is allowed to access the Python interpreter.This means that the TBSE implementation does not makeuse of multiple cores of the machine it is running on. Ineffect, this means that there is no real parallelism and thetrader threads are executed sequentially. Rollins arguesthat while there is no guarantee that each thread will beallocated an equal proportion of the execution time, overthe course of the simulation, the total execution time ofeach thread should be approximately the same. It is diffi-cult to prove this hypothesis, as the allocation of threadsto run will depend on system architecture and kernel im-plementation.
2.3. Distributed Bristol Stock Exchange (DBSE)

Another stock exchange simulation derived from the BSEis the Distributed Bristol Stock Exchange (DBSE) describedby Miles and Cliff (2019). Similarly to TBSE, DBSE aimsto address another design flaw of the original BSE imple-mentation - the assumption of zero latency in communi-cation between the traders and the exchange. Since theBSE is a discrete-event simulation running on a single ma-chine, it is impossible to model or investigate how networklatency affects the market dynamics and profitability ofeach trader. To tackle this issue, Miles developed a dis-tributed simulation deployed on Amazon Web Services(AWS), where trader clients and the exchange server canbe deployed to separate virtual instances in different re-gions of the world. DBSE was built in Python by modifyingand extending the source code of the BSE simulation.
2.3.1. Implementation
While designing the simulation, Miles chose to implementa subset of the Financial Information eXchange (FIX) pro-tocol (see e.g. Fix Trading Community (2023)). FIX is anindustry-standard electronic communications protocolused for the financial markets, most notably in the NAS-DAQ stock exchange (see e.g. NASDAQ (2023)). The FIXprotocol operates on top of the Transmission Control Proto-col (TCP) and allows for bi-directional lossless communi-cations between the exchange and the trader. The protocolprovides extensive messaging capabilities, beyond whatis required for a simulation. On one hand, this makes thesimulation highly realistic, however on the other hand, asnoted by Miles, complicates the development of the sim-ulation. To implement the support for the FIX protocol,DBSE uses the quickfix library (see Miller (2024)). Thelibrary allows sending supported messages between thetrader clients and the exchange server and provides an
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interface to implement handlers for different incomingmessages.
In the simulation configuration outlined by Miles andCliff (2019), the exchange is hosted on an instance basedin London with four separate clients: two in London, onein the United States and one in Australia, with every clientrunning a population of traders. On each market updatereceived, the clients shuffle the list of traders randomly,before sequentially iterating through the list and allowingeach trader to place and send an order to the exchange.The exchange attempts to match the new order against theresting orders on the LOB and sends an acknowledgementmessage to the trader. If the new order has resulted in atrade, the exchange broadcasts the LOB data to all clients.DBSE supports limit orders as well as market orders, andorder cancellations.

2.3.2. Discussion

By carefully selecting different AWS regions to provisioninstances in, Miles was able to investigate how increasingthe physical distance to the exchange impacts the latencyand in turn the profitability of different trading algorithms.Through a series of simulations, Miles has shown thatcommunication latency significantly increases with in-creasing distance to the exchange and that traders runningon clients deployed closer to the exchange achieve betterprofitability. More specifically, traders running in Londonoutperformed traders running in the United States, whichin turn outperformed traders running in Australia.
DBSE is a significant improvement to the original BSEsimulation. It supports market orders and cancelling or-ders. It can effectively model network latency arising fromgeographical separation. It uses an industry-standard FIXprotocol for communications. Finally, it is a real-time sim-ulation with each trader being able to hold multiple activeorders on the exchange.
One of the biggest flaws in the design of the DBSE is thedecision for each simulation client to host multiple traders,with each trader running sequentially during the simula-tion. This is not reflective of the real world, where tradingcompanies deploy trading algorithms to machines locatedphysically in the stock exchange building, each one run-ning on independent hardware with a dedicated networkconnection to the stock exchange system. Furthermore,the manual nature of the deployment of the simulation,requiring a user to SSH into every single instance to runthe experiments, limits the potential of the platform as aresearch tool. The simulation does not produce any outputfiles with data regarding the market session. Instead, alldata is displayed on standard output. Finally, the simula-tion supports running only one exchange venue at a time,meaning that scenarios such as market arbitrage cannotbe simulated.

2.4. Distributed Threaded Bristol Stock Exchange

The latest iteration of the Bristol Stock Exchange is theDistributed Threaded Bristol Stock Exchange (DTBSE) de-veloped by Jiang (2023). DTBSE aims to synthesise andcombine the works of Rollins and Miles into a single uni-fied implementation. More specifically, DTBSE is a real-time simulation deployed in the cloud where each clientruns multiple traders, with every trader having a dedicatedthread. This allowed Jiang to not only study the effects ofreal-world network latency as in Miles’ paper but alsotrader execution time as in Rollins’ paper.
2.4.1. ImplementationThe simulation consists of an exchange instance and sev-eral client instances deployed in AWS. This time, however,each client instance is running multiple threads, with onetrader per thread. Each trader thread makes use of a ded-icated thread-safe queue to send and receive orders andmarket updates. The FIX application reads incoming mes-sages from the trader queues and sends them to the ex-change server via the underlying TCP connection. Simi-larly, external messages from the exchange, are forwardedto the trader threads via their respective queues.Jiang added improvements to the implementation mak-ing it easier and faster to configure and deploy simulations.DTBSE features a simple TCP server to synchronise the ex-change server and the trader clients. This TCP server waitsfor messages from all simulation clients, before sendingout a signal for the simulation to begin. Likewise, at theend of each simulation trial, the TCP server sends a sig-nal to the exchange to reset the exchange’s internal LOBready for the next trial. At the end of each trial, simula-tion output files are generated and compressed into ZIParchives, before being uploaded to AWS S3 bucket stor-age Services (2024). This allows for easier retrieval of thesimulation data. Lastly, the DTBSE simulation uses a cen-tralised configuration file where simulation parameterscan be defined.
2.4.2. DiscussionJiang was able to reproduce Miles’ result and investigatehow trader execution times impact trader profitability.The results show that simpler algorithms tend to performbetter, particularly as the geographical distance from theexchange increases. Conversely, as the distance from theexchange increased, the performance of complex tradersseemed to deteriorate. DTBSE therefore gives the researchcommunity the ability to run more complex and realisticsimulations, giving new insights into the profitability ofautomated trading algorithms.In the future work section of their dissertation Jiang(2023), Jiang outlines some of the possible avenues for fur-ther development and expansion of the simulation. Jiangsuggests that using containerisation and services such asthe Amazon Kubernetes Service (EKS) Services (2024),would allow the users to configure and run simulationsmore easily. This would eliminate the need for establish-
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ing a manual SSH connection to each client as is the casewith both DBSE and DTBSE.While successfully combining the features of DBSE andTBSE into one platform, DTBSE also inherits some of theweaknesses of these implementations. Most notably, eachsimulation client is running multiple trader threads, butdue to the limitations of the Python GIL, only one threadcan run at any single time. Moreover, all traders run-ning on the client share the same TCP connection withthe exchange. While this should not be an issue for low-frequency trading, to model HFT accurately, each tradershould have an interrupted runtime and dedicated net-work connection to the exchange.Most of the previous research and financial exchangesimulation development at the University of Bristol hasfocused on extending the functionality of the Bristol StockExchange. Miles, Rollins and Jiang, successively workedon the source code of the BSE, adding new features andmaking the simulation more realistic. The DTBSE is theresult of many years of research and its success can beattributed to the contributions of all of these authors. Tobuild an even more sophisticated and realistic stock ex-change simulation, however, it was necessary to considerother leading simulation implementations available in thepublic domain.
2.5. Agent Based Interactive Discrete Event Simulation

Agent-Based Interactive Discrete Events Simulation(ABIDES: Byrd et al. (2020)) is an open-source discretesimulation developed by researchers at the Georgia Insti-tute of Technology in collaboration with J.P. Morgan AIResearch. Unlike previously considered implementations,this simulation explicitly adopts a completely agent-basedapproach to modelling the dynamics of trading on a stockexchange. Similarly to the BSE however, ABIDES is imple-mented as a single-threaded Python application.
2.5.1. ImplementationABIDES is an extensive and highly configurable simulationenvironment. Among the many configurable parameters,the user is able to specify a computational delay for eachtrader agent, as well as a simulated network latency. Thesimulated network latency is configured using a latencymatrix - a preconfigured latency in nanoseconds for eachagent pair. Furthermore, ABIDES supports simulating spe-cific dates in the past when provided with historical mar-ket data. This is achieved using a liquidity injection agentwhich places orders from historical data. This feature en-ables studying the potential market impact of differenttrading strategies when applied to historical prices.The simulation is centred around a discrete event-based kernel, which acts as the proxy, sending messagesbetween the autonomous agents in the simulation. Thekernel is also responsible for maintaining a global virtualtime during the simulation. The individual agents com-municate with other agents solely via the kernel, with the

kernel providing functionality such as sending a messageto another agent and scheduling a callback at some pointin the future. When the kernel processes messages it ap-plies the previously configured latency when appropriate.The source code contains a base agent class, which all de-rived agents must inherit from. This base class containsmethods that respond to events corresponding to differentsimulation stages, such as initialisation or termination ofthe simulation.
The ExchangeAgent class contains a LOB which keepstrack of orders submitted by traders. When the exchangereceives a new incoming order it attempts to match theorder against the appropriate side of the LOB. The LOB sup-ports partial execution, meaning that if an order can onlybe filled in part, the remainder is added to the LOB. Theexchange informs the trader agents of the status of theorder after it is received and whether it was filled, partiallyfilled or unfilled. The exchange also supports order cancel-lations. To facilitate the communication of all of these mes-sages, ABIDES uses a custom message protocol inspired bythe ITCH and OUCH protocols NASDAQ (2024a)NASDAQ(2024b). These protocols are proprietary protocols devel-oped by the NASDAQ stock exchange and used primarily forultra-low latency trading. The former is concerned withbroadcasting real-time detailed LOB information, whilethe latter is used for exchange-trader communication andenables submitting orders and receiving confirmations.Unlike the FIX protocol, ITCH and OUCH encode data inbinary format for optimised performance and reduced net-work bandwidth usage. This however does not apply toABIDES since it is a discrete single-threaded simulation,so no data is sent over the network.

2.5.2. Discussion
The highly configurable nature of the simulation togetherwith the completely agent-based approach are undoubt-edly the biggest strengths of ABIDES as a simulation plat-form. The platform can be used for simulating many dif-ferent market scenarios with a high number of tradersand measuring their market impact on historical prices.Moreover, the authors demonstrate that ABIDES can beused as a platform for non-financial applications, such asmultiparty artificial intelligence simulations. Among theweaknesses of the simulation, the most notable ones arethat latency and computational delay are pre-configuredand cannot be empirically measured. A simulation whichcould test in real-time how the network latency and com-putational time of algorithms impact their profitabilitywould provide more credible results. Furthermore, sim-ilarly to the BSE, the Python-based single-threaded im-plementation limits the scalability of the platform.
2.6. Multi-Agent eXchange Simulator (MAXE)

Thus far, the financial market simulations covered in thissection have all been implemented using Python. Onepublic-domain stock exchange simulation implementa-
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tion, focused on efficiency and written in C++ is the Multi-Agent eXchange Simulation (MAXE: Belcak et al. (2021))developed by researchers at the Oxford-Man Institute ofQuantitive Finance, released as recently as 2020. Similarlyto ABIDES, it is a discrete agent-based simulation built ona message-driven architecture.
2.6.1. ImplementationIn MAXE, all entities of the simulation are modelled andimplemented as agents - this includes traders, exchangesbut also possibly other types of agents such as news out-lets. All agents remain dormant unless they have receiveda message. On receiving a new message, an agent is givenunlimited execution time to process the message anddecide whether (or not) to take an action. Similarly toABIDES, MAXE allows users to configure a non-negativeprocessing delay. This delay includes both the networklatency and the decision time for any agents.The ExchangeAgent implementation is capable of han-dling many types of messages including limit orders, mar-ket orders, order cancellations, order retrievals and sub-scriptions to different market events such as trades. The
ExchangeAgent holds a pointer to an LOB which containsa separate queue for asks and bids. The LOB processesnew orders against the existing resting orders and sup-ports partial order execution. On each successful trade,the ExchangeAgent notifies all trade subscribers.
2.6.2. DiscussionMAXE is a versatile simulation with many potential usecases. Its architecture implicitly allows running simula-tions with multiple exchanges at the same time, and thepresence of the XML configuration file allows users to con-figure arbitrary simulations with different types of agents.MAXE includes implementations of different matchingalgorithms including the most common price-time first-in-first-out (FIFO) algorithm as well as pro-rata ordermatching, where incoming orders are matched to restingorders proportionally to their quantity.One of the biggest strengths of this simulation is itsperformance and speed of execution. The efficient im-plementation means that the simulation is easily scal-able and handles a large number of agents without issues.The authors compared the implementation to ABIDES anddemonstrated that with an increasing number of agents,the simulation time on MAXE is increasingly lower thanthat of ABIDES when configured to run the same simu-lation. Furthermore, the authors noted that while run-ning simulations with 450 agents on ABIDES resulted in amemory error, the MAXE implementation with the sameconfiguration runs efficiently using <100 MiB of memory.When critically evaluated, however, the MAXE imple-mentation suffers from some of the same limitations asABIDES, namely being a discrete simulation where real-world network latency and execution times cannot be in-vestigated and must be pre-configured.

2.7. MarketSim

The final stock exchange simulation considered in thissection is the MarketSim simulation platform developedby Duffin and Cartlidge (2018). This is a discrete-eventagent-based simulation with support for multiple tradingvenues to investigate the effects of latency arbitrage infragmented markets.
2.7.1. Implementation
The simulation is implemented as an object-oriented ap-plication in Java. The source code is built on top of Desmo-J,an open-source library for discrete-event simulations de-veloped by the University of Hamburg University of Ham-burg (2024). The simulation is inherently agent-based,with each agent represented by a node in a weighted di-rected graph. The weights between any two given nodesrepresent the latency that should be applied when mes-sages are sent between them. The Model class acts as theproxy, and facilitates this communication, with each mes-sage being represented by a packet. Agents can choose toimplement handlers for different types of packets such aslimit orders and acknowledgements.

Duffin provided two implementations of exchangeagents - a continuous double auction exchange, typical ofmost contemporary financial exchanges, and a discrete-time call auction, where incoming orders are batched andmatched at a regular time interval. Both exchange im-plementations only support limit orders, however, due tothe well-structured code and class hierarchy, adding morecomplex order types would not require significant effort.While only one agent is active at any time during a simu-lation, the implementation uses multiple threads to runmultiple independent experiments in parallel.
2.7.2. Discussion
Duffin’s paper was heavily inspired by the works of Wahand Wellman (2013), who used an agent-based model toshow that latency arbitrage negatively affects market effi-ciency in fragmented markets. To replicate their experi-ments, Duffin built a two-market model with a populationof zero-intelligence traders and an arbitrage trader withfaster access to the market data. Duffin was then able toshow that the presence of latency arbitrage benefits frag-mented markets, casting doubt on Wah and Wellman’sinitial results.

MarketSim and Wah and Wellman’s models are the onlyagent-based models developed for studying arbitrage sce-narios published in the literature in recent years. The mod-els inherently support having multiple exchanges in thesame simulation. They therefore will serve as an inspira-tion for designing some of the parts of the DSXE simulatorintroduced in this paper. However, being discrete-eventsimulations, both models do not allow one to empiricallymeasure factors such as computational delay or commu-nication latency and therefore have limited potential forsimulating HFT.
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3. Designing for low-latency networking

3.1. Network protocols and performance

Given the distributed nature of the simulation and the aimof modelling HFT accurately, a strong emphasis was placedon developing an efficient and highly performant simu-lation. More specifically, significant effort was put intodeveloping a system with low-latency communication.To ensure that any computation and processing is asfast as possible, C++ 20 was chosen as the language ofthe implementation. The low-level nature of C++ and thecompilation of source code to machine code allows C++code to make better use of the underlying hardware andachieve higher performance when compared to programswritten in other languages such as Python or Java.To facilitate the communication between any twoagents in the simulation, the simulation platform supportstwo transport-layer protocols: Transport Control Proto-col (TCP) and User Datagram Protocol (UDP) Kumar andRai (2012). The former is a loss-less connection-orientedprotocol, while the latter is a simple protocol that does notguarantee the order of delivery of packets.TCP requires two entities to establish a connection andperform a handshake before exchanging further messages.On each packet received, the receiver sends an acknowl-edgement (ACK) with a sequence number back to thesender. If the sequence number does not match or the ac-knowledgement is not received within a time interval, thesender retransmits the packets. Each segment containsa checksum that ensures the integrity of any messages.These two features guarantee reliable delivery and makeTCP the protocol of choice for electronic communicationbetween traders and exchange venues.UDP on the other hand is a much faster protocol used forapplications where the speed of delivery takes priority overreliable delivery. It does not require a handshake and doesnot maintain a connection between two communicatingparties. It is most commonly used in real-time streamingof data and media, and in the context of financial markets,it is used for publishing market data to all market partici-pants at extremely high frequency. If a packet with marketupdate information is lost, little to no damage occurs asanother packet immediately follows.
3.2. Implementation

In the simulation, networking has been implemented us-ing the boost::asio library Boost.org (2024), an open-source low-level IO and networking library for modernC++. The NetworkEntity class encompasses the functional-ity to send and receive messages using both protocols. Forthe purposes of the DSXE simulation, a message denotes apiece of information sent via a previously established TCPconnection and a broadcast denotes a piece of informationsent via a UDP connection. The NetworkEntity class pro-vides the interface for agents to communicate througheither of two means. Going back to our graph analogy, you

Figure 1. UML architecture diagram of Agent and NetworkEntity classes

may now consider the simulation system to be a multi-graph - that is a graph with parallel edges between anytwo given nodes. More specifically any pair of nodes mayhave two parallel edges, one representing the TCP commu-nication and one representing the UDP communication.The relationship between a NetworkEntity and an Agentcan be described as a composition. The lifecycle ofan Agent is wholly owned by the NetworkEntity. The
NetworkEntity may own only one Agent at a time. Simi-larly, a NetworkEntity may remove the Agent and replaceit with another one. When a new message or broadcastis received, the NetworkEntity calls a handler function ofthe underlying Agent. The Agent holds a non-owning ref-erence via a pointer to the NetworkEntity. This allows it touse the interface to initiate communication with and sendmessages to other NetworkEntities (and therefore Agents)in the simulation. Intuitively, while the Agent can be con-sidered as the brain of the system, the NetworkEntity canbe considered as the body. While this analogy is usefulfor conceptualising this relationship, it is not a perfectcomparison, as the Agent may be replaced at any time. Fig-ure 1 shows the architecture diagram illustrating the twoclasses and their interactions.
4. Harnessing the power of the cloud

4.1. Motivation

There are many motivations for a distributed computingapproach to developing a financial markets simulation.With the rise of public cloud computing services, it is trivialto deploy applications to servers located in arbitrary geo-graphical locations around the world and empirically mea-sure the latency between them. This allows for studyingand investigating the effects of latency due to geographicaldistance between two distant parties, such as traders trad-ing in exchange venues across the ocean. This was the mo-tivation behind the work by Miles and Cliff (2019), wherethey showed that increasing latency due to geographi-cal distance negatively affects automated trader profits.Perhaps more importantly, the use of cloud computingplatforms such as AWS, allows one to study the effectsof co-location on HFT strategies. As noted by Zook and



8 | 36th European Modeling & Simulation Symposium, EMSS 2024

Grote (2017) contemporary financial exchanges operateco-location facilities or server farms, where HFT compa-nies rent racks of computers to maximise proximity to thematching engine servers. The physical distance betweenthe trading computer and the exchange servers is criticalto HFT companies to the extent that major stock exchangesoffer standardised cable lengths. Arnuk and Saluzzi (2009)argue that HFT companies are able to achieve almost risk-free profits by engaging in latency arbitrage enabled bythis co-location at stock exchange venues.
4.2. Cloud infrastructure

To accurately model co-location and physical distance be-tween agents, the simulation is deployed on Amazon WebServices (AWS). To ensure that each trader agent has adedicated and uninterrupted compute time and networkconnection, the EC2 service Services (2024) is used witheach agent running on an independent instance. EC2 al-lows the provisioning of virtual compute instances in anyof the supported geographical regions. The service offersa range of instance options, with different numbers ofvirtual CPUs (vCPUs), amounts of RAM and network band-width. The highly configurable and scalable nature of theservice made it an appropriate choice for running the sim-ulation. Since the source code is written in C++, whichis in turn is compiled to architecture-specific machinecode, containerisation was used to ensure cross-platformcompatibility. Containers are lightweight, isolated envi-ronments that contain an executable package that can berun on any platform supporting the containerisation en-gine. This was one of the improvements suggested byJiang (2023) for DTBSE. For this project, all source codewas compiled and built into a Docker (2024a) image beforebeing deployed to the server instances in the cloud.
4.3. Provisioning simulation nodes

The deployment and orchestration of the simulation dis-tributed across tens and hundreds of virtual servers in thecloud has proved to be a challenge. It was essential to comeup with effective ways of deploying the code and synchro-nising the simulation. A simple shell script was used toautomate the deployment and set-up of each simulationnode. Below is a step-by-step description of the processof provisioning instances and deploying the executable:
1. A user provisions a set number of EC2 instances in theAWS console.2. A newly provisioned instance automatically runs theset-up script.3. The instance installs the Docker engine using the built-in package manager.4. The latest version of the DSXE image is then pulledfrom Docker Hub Docker (2024b).5. The container starts in the background and the servernode is ready to be used in the simulation.

This almost entirely automated process means that con-figuring the simulation to run on a high number of servernodes is trivial.
4.4. Orchestrating the simulation

The next step in designing the simulation environmentwas to define how the simulation is configured and simu-lation nodes synchronised. The bulk of the configurationis done using an XML file. The configuration file allows tospecify the IP addresses of all simulation nodes involvedin the current simulation. The user may also specify thetypes of agents present in the simulation, such as differenttrading agents and exchange agents, and their properties.To synchronise all simulation nodes effectively, anew type of Agent, the OrchestratorAgent was imple-mented. When the executable is run in the orchestra-tor mode, the local configuration file is read and aninstance of the OrchestratorAgent is instantiated. The
OrchestratorAgent attempts to connect to all server in-stances listed in the configuration file. Upon a successfulconnection, the OrchestratorAgent sends a configurationmessage to each server node to assign it an agent iden-tity and configure its properties. The NetworkEntity onthe other side of the connection reads the configurationmessage and creates an instance of the specified Agentwith the provided properties. The node is then consideredto be fully configured and actively running an Agent. Atthe end of the simulation, the server nodes remain liveand can be reused for the next simulation trial. The usermay restart the orchestrator with a different configurationfile. The server nodes will then be assigned different agentidentities and a new simulation trial will begin.
5. Stock exchange implementation

The network infrastructure outlined above forms the ba-sis of a scalable and efficient simulation platform. Thesubsections below describe in detail how a complex stockexchange environment was built on top of this platform.
5.1. Scalable Limit Order Book (LOB)

To begin with, the concept of orders is introduced to thesimulation. Fundamentally, an order contains a uniqueidentifier, a symbol identifying the asset traded, a quan-tity, a side, describing whether the order is a bid or an ask,metadata about its sender and an indication of its currentstatus. Several concrete types of orders have been imple-mented, namely a limit order and a market order. Theformer additionally contains a maximum or minimumprice at which the asset should be bought or sold. Any con-crete order implementation is derived from the generic
Order class. The full list of supported order types in DSXEand their descriptions can be found in Table 1.Limit orders which have not been executed immedi-ately, known as resting orders, are kept in a LOB. The LOB
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Order type DescriptionMarket order The order is executed immediately at the bestavailable price. If the order cannot be exe-cuted in full, the remainder will be cancelled.Limit order The order must be executed at price specifiedor a better price. Any remainder quantity ofthe order is inserted into the LOB.Immediate-or-Cancel (IoC) The order must be executed immediately atthe price specified or a better price. Any re-maining quantity is cancelled.Fill-or-Kill (FoK) The order must be executed immediately andin-full at the price specified or a better price.Otherwise the order is cancelled.Cancel order If the order has not been filled in-full cancelany remaining quantity immediately.
Table 1. Supported order types in DSXE

consists of two priority queues - one for the bids and onefor the asks. The orders are sorted according to price-timepriority. Orders are first ranked according to their price,and in the case of two orders with the same price, accord-ing to their time of arrival. The in-built priority queuehandles insertions of new orders, and retrievals of bestbids and asks efficiently.
5.2. Fast matching engine

Unlike in a discrete-event simulation, the performanceof the matching engine in a real-time context is key tothe successful operation of an exchange. The matchingengine must be able to sequentially process a large numberof messages in the order of arrival at extremely low latencyand zero downtime Aquilina et al. (2022).This requirement calls for an uninterrupted runtimeand efficient implementation of the matching engine logic.In DSXE, the matching engine therefore runs on a stan-dalone thread. A dedicated IO thread handles any com-munication between the exchange and the traders. Thetwo threads communicate via a custom implementationof a synchronised queue. This is a classic example of theproducer-consumer problem. On every new message re-ceived, the IO thread, or the producer, pushes the messageto the synchronised queue. The matching engine, or the
consumer, continuously consumes from the queue untilthe queue is empty. If the queue is empty, i.e. no new mes-sages are present, the matching engine thread sleeps untila new message is pushed to the queue. This allows to createa buffer between messages received and messages beingprocessed. Similarly, when the matching engine sends anacknowledgement message or a market data broadcast tomarket subscribers, it posts the job to the IO thread andproceeds to read the next message from the queue. The
boost::asio library provides an interface that allows fora smooth handover of tasks from non-IO threads to IOthreads. For a diagram illustrating two threads workingtogether in DSXE, see Varosyan (2024).Unlike some of the other simulation platforms, theDSXE matching engine supports partial order execution,meaning that limit orders submitted by traders can be par-

tially executed and their remainder can be saved in theLOB for later execution. Alternatively, trader agents canchoose to submit Fill-or-Kill (FoK) and Immediate-or-Cancel (IoC) orders. The former describes orders whichmust be fulfilled in full or cancelled entirely, while the lat-ter describes orders which can be partially executed butno remainder is saved in the LOB.
5.3. Unified implementation

The StockExchange class encompasses both the scalableLOB and the fast matching engine implementation. Be-ing derived from the base Agent class, the StockExchangeclass implements handlers for different types of incomingmessages. The StockExchange maintains a separate LOBfor each symbol traded. Trader agents may choose to sub-scribe to market data related to any of the assets trading onthat particular exchange. Furthermore, the StockExchangemaintains a tape of all trades that have been executed andmessages that have been received. This granular data isthen written to a CSV file for further processing and dataanalysis.The completely agent-based approach enables one to gobeyond having one stock exchange in a simulation and tomodel several exchange venues in a single trial. It is trivialto set an arbitrary number of StockExchange agents in asimulation and define the population of automated traderstrading in any subset of them. This allows for models andsimulation of greater scale, and studying market scenariosinvolving multiple exchanges, such as market arbitrage.For this reason, DSXE is best thought of as an environmentor platform, rather than a single program or simulator.
6. Using DXSE for Experiments

6.1. Statistical analysis

The subsections below demonstrate the features of DSXEand describe some of the results obtained from runningdifferent experiments. Each experiment ran for a fixedduration of 300 seconds. Each set of results was obtained byreplicating the experiment 5 times and taking the medianacross repetitions to account for anomalies in the data.The data was visualised and analysed, and appropriateconclusions were drawn.
6.2. Compute and networking

As described in Section 4, the simulation was deployedon AWS. All EC2 compute nodes used in the simulationwere deployed in the eu-west-2a availability zone of the
eu-west-2 region. This effectively achieves the effect ofco-location, as availability zones are isolated data cen-tres located within the same region with sub-millisecondcommunication latency between any two given instances.This was consistent with the experiments, as the averagemeasured latency was 0.18 ms. More powerful computeinstances were chosen for the exchanges used in the sim-



10 | 36th European Modeling & Simulation Symposium, EMSS 2024

ulation and less powerful for the traders. The two typesof AWS instances used, and their specifications, were asfollows: for the exchanges we used AWS c5.2xlarge in-stances which have 8 vCPUs, 16GiB of memory, and up to10Gbps network bandwidth; for the traders we used AWS
t3.micro instances which have 2 vCPUs, 1GiB of memory,and up to 5Gbps of network bandwidth. The main con-sideration behind the instance choice for the exchangewas the requirement of high network bandwidth to han-dle concurrent high-frequency communication from thetraders, and a high clock rate to process through orderswith low latency. The individual traders in turn requiremuch less computational power and network bandwidthas they communicate solely with the exchange agent.
7. Arbitrage with zero-intelligence traders

7.1. Market setup

The scenario studied in this subsection consists of two in-dependent exchanges trading the same asset. The tradingwindow for both exchanges is assumed to open simulta-neously and lasts for 5 minutes. Each exchange containsa population of zero-intelligence traders of type ZI-C, 20buyers and 20 sellers. Each trader in the experiment isassigned a private limit price at the start of the experi-ment. The exchanges have fixed and symmetrical supplyand demand curves, with theoretical equilibrium pricesof 100 for Market 1 and 70 for Market 2. Every trader isintra-marginal and may engage in a trade. Each tradermay only trade at one exchange. The traders have beeninitialised with a trading interval time of 500ms.This market setup describes an example of two frag-mented markets with complete information asymmetry.The two populations of traders can only access the marketdata from their respective exchanges and are unaware ofthe state of the other exchange throughout the simulation.In the second experiment, an arbitrageur is introducedto the markets after 60 seconds of trading. The arbitrageagent has instantaneous access to both markets and maysubmit orders to either exchange. The arbitrage agenthas also been configured with a faster trading interval of250ms.
7.2. Price convergence

Figure 2 shows the median trade price per second for eachone of the two experiments, with and without arbitrage.Initially, the trade price oscillates around the respectivetheoretical equilibrium prices on each exchange as ex-pected. After 60 seconds, when the arbitrage trader isintroduced, the prices across the two exchanges movetowards convergence instantaneously. From that pointonwards, the prices on the two exchanges oscillate in har-mony around a new equilibrium. When the trade price de-creases in Market 1, the arbitrageur submits buys in Mar-ket 1 and sells in Market 2 to make a risk-free profit, caus-ing the trade price in Market 2 to follow. The reverse also

Figure 2. Stock price in fragmented markets with ZI-C: upper figure iswithout arbitrage; lower figure is with a single arbitrage agent enabled attime=60s.

holds. While no full price convergence has been achievedand the prices across the two exchanges continue to differby some offset, this is likely due to the sparse distribu-tion of order prices around the theoretical cross-exchangeequilibrium. As implied by the name, zero-intelligencetraders do not respond to market events and therefore con-tinue generating prices according to the uniform discretedistribution after arbitrage begins. The arbitrage traderwill in turn continue submitting limit orders wheneverthere is a sufficient arbitrage opportunity, bringing theprices across the two exchanges closer.

Figure 3. Surplus in fragmented markets with ZI-C
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Figure 4. Trading volume in fragmented markets with ZI-C

7.3. Market surplus and trading volume

The dynamics of the markets after the introduction of thearbitrage trader were studied in more depth. Figure 3 illus-trates the total market surplus, defined as the differencebetween the trade price and each trader’s private limitvalue. A higher surplus after the introduction of a trader isexpected as the arbitrage trader generates profit until fullconvergence occurs. Since no full convergence is achieved,the two markets continue to exhibit a higher total surplusfor the remainder of the simulation.Similarly, the total trading volume across the two ex-changes increases dramatically with the introduction ofthe arbitrage trader. Since the arbitrage trader is config-ured to trade faster and is able to continue making a profiton the price discrepancies between the two exchanges in-definitely, a higher trading volume is expected. This isillustrated in Figure 4. The arbitrage trader is responsiblefor the vast majority of trades on the two exchanges oncearbitrage begins.
8. Arbitrage with reactive traders

While the market setup used in the previous experimentis a source of valuable insight into how the price dynamicschange in the presence of an arbitrageur, it is not indica-tive of the real world. The population of zero-intelligencetraders used in the experiment does not react to marketevents and continues to submit orders at random quoteprices. It would be desirable to investigate the price con-vergence with a more intelligent and realistic trader thatconsiders the current state of the market when makingtrading decisions.
8.1. Market setup

A similar experiment was therefore conducted with a pop-ulation of ZIP traders. ZIP traders actively aim to makea profit and adjust their profit margins according to thecurrent trade price in the market and whether they suc-cessfully engaged in a trade. The market setup closelyresembles the previous experiment. Two exchanges are

Figure 5. Stock price in fragmented markets with ZIP

configured with a fixed population of 20 buyers and 20 sell-ers each. The theoretical equilibrium price is 70 in Market1 and 100 in Market 2. As previously, an arbitrage trader isintroduced to the markets after 60 seconds.
8.2. Stronger price convergence

Figure 5 shows the median trade price per second recordedduring the experiments. In line with previously publishedfindings (Cliff (1997)), ZIP traders converge on the the-oretical equilibrium price on each exchange. When thearbitrage trader is introduced, the prices across the twoexchanges instantaneously move towards the theoreticalglobal equilibrium. Unlike with the population of zero-intelligence traders, the trade prices remain close to theequilibrium for the remaining duration of the simulation.Interestingly, the prices across the two exchanges con-verge with a constant difference in value of 1. Since thearbitrage trader only submits orders when there is an ar-bitrage opportunity, and has been configured with a fastertrading interval, it provides the majority of the liquidity inthe market and can manipulate the markets to convergeat a price which guarantees continuous arbitrage opportu-nity.
8.3. Higher market surplus and trading volume

During the first 60 seconds of the simulation, the twomarkets populated with ZIP traders exhibit much highersurplus and volume traded than the respective zero-intelligence counterparts. The total market surplus forZIP markets is 3.53x higher. This can be explained by thefact that ZIP traders are better at price discovery and there-fore are better able to extract the maximum surplus giventhe supply and demand in the market. This can be alsoseen in the trading volume, which is 3.6x higher comparedto the ZI-C population during the pre-arbitrage period.When the arbitrage trader is introduced, both the trad-ing volume and market surplus increase momentarily be-fore levelling off seconds later. This is due to the addi-tional liquidity present in the market while the arbitragetrader brings the two prices closer to the global marketequilibrium. Once the prices have converged, the arbitrage
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Figure 6. Surplus in fragmented markets with ZIP

Figure 7. Trading volume in fragmented markets with ZIP

continues, albeit generating less surplus.
9. DXSE Performance testing and scalability

9.1. Experimental setup

To test the performance and scalability of the DSXE im-plementation, a series of experiments with an increasingnumber of zero-intelligence traders in one market are per-formed. The experiments begin with a total population of20 traders, 10 buyers and 10 sellers. The traders are ini-tialised to give rise to a flat supply and demand curve witha theoretical equilibrium price of 100. The population oftraders is scaled by factors of 2, 3, 4, 5, 6, and 7, reachingup to 140 simultaneous traders. Every trader is running ona dedicated server instance, meaning that up to 141 AWSEC2 instances were used during the experiments. Severalkey metrics such as processing times and throughput arerecorded and presented below.
9.2. Metrics

• Message Throughput: The total number of messagesprocessed per second by the exchange.• Message Interarrival Time (ms): The time betweenany two given consecutive messages received by theexchange.• Total Processing Time (ms): The time taken for a mes-sage to be fully processed by the exchange, including

time spent in the IO thread and matching engine.• Matching Engine Processing Time (ms): The timetaken for a message to be processed by the matchingengine only.• Max Memory Usage (MB): The maximum recordedmemory usage of the exchange during the simulation.
9.3. Performance analysis

Figure 8 (upper) shows the number of messages per sec-ond processed by the exchange during the simulation. Themessage throughput scales linearly with the number oftraders up until 100 simultaneous traders are present. Theexchange implementation is able to comfortably accom-modate this number of simultaneous traders. During thistime, the median total processing time was recorded to beunder 5 ms. The peak message throughput achieved acrossall simulations was 355 messages per second. This corre-sponds to a message interarrival time of 2.816 ms. Theimplementation therefore achieves the goal of supportingHFT.Beyond 100 traders, the performance of the exchangebegins to drop rapidly, with the total processing time grow-ing exponentially and the total message throughput de-creasing. Figure 9 illustrates the proportion of the pro-cessing time spent in the matching engine thread. Whilethe median processing time in the matching engine in-creases linearly with the increasing number of traders, itsurprisingly remains well below 1 ms. Therefore, the ma-jority of the processing delay, as seen in Figure 8 (lower),can be attributed to the IO thread, implying that it is thebottleneck of the system. As described in Section 5.2, theIO thread handles and serialises any incoming messagesand adds them to the queue to be read by the matchingengine. It also is responsible for deserialising and sendingoutgoing messages from the exchange. For every addi-tional order message received, the exchange must senda market update to all the market subscribers. Thereforethe relationship between incoming messages and outgo-ing messages can be expressed as follows: msgsin = n;
msgsout = n ∗ msgsin = n ∗ n = n2 where n is the num-ber of traders, and msgsout and msgsin are the number ofmessages sent and received by the exchange per secondrespectively. It follows that with an increasing number ofsimultaneous traders, the total processing time grows ex-ponentially. Figure 10 shows the maximum memory usagerecorded during the simulation for each market configura-tion tested. The max memory increases in an exponentialtrend, peaking at just over 100 MB of memory used. Thisrepresents a fraction of the 16 GiB of memory available inthe compute instance. This furthermore implies that thecomputation is CPU-bound on the IO thread.
9.4. Potential improvements

The analysis of performance metrics recorded during test-ing provides insight into the bottlenecks of the implemen-tation. The following improvements are believed to in-
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Figure 8. Implementation scalability performance: upper graph is messagethroughput; lower graph is total processing time.

Figure 9. Matching engine processing time

Figure 10. Maximum memory usage

crease the message throughput potential of the system:
1. Separate outgoing and incoming IO threadsA separation of concerns is desirable in this implementa-tion. The IO thread should be divided into an incoming IOthread handling TCP communication from all the tradersand an outgoing IO thread sending TCP messages to thetraders and sending UDP broadcasts with market data.2. Minimising work done on the IO threadsThe work done by the IO threads should be minimised toallow for greater message throughput. Currently, the IOthread redundantly deserialises all messages into a char-acter stream for every outgoing UDP broadcast messagewith market data. Since the same market data message issent to all subscribers of the market, the message couldbe deserialised once and the same array of characters sentto all market participants.3. Thread pool for incoming IO communicationLastly, a pool of threads could be used to handle incomingcommunication from the traders. This would make betteruse of the multicore processors on the compute instances.Each thread would read from the TCP connection buffer,proceed to serialise the message and push it to the queue.Since the matching engine processes each message in thequeue sequentially, this approach maintains fairness whilemaximising incoming message throughput.
While the potential improvement is difficult to quantify, aseveralfold increase in message throughput is predicted.
10. Future work

The versatility of the simulation developed in this paperallows for studying price convergence in arbitrary mar-ket configurations. This paper is our first publication todescribe DSXE and many potential avenues for further in-vestigation remain open, including the following:
1. Latency arbitrage in fragmented marketsThe simulation platform could be extended to conduct ex-periments with a high-frequency arbitrageur and a pop-ulation of traders trading at multiple exchange venuessimultaneously, building on top of the findings from pre-vious research by Wah and Wellman (2013) and Duffin andCartlidge (2018).2. The impact of co-location on arbitrageur profitsSince co-location can be trivially achieved in DSXE bydeploying the exchange agents and trader agents in thesame availability zone, it allows one to investigate how co-location and the latency between the arbitrageur and theexchange impact price dynamics and arbitrageur profits.3. Predatory trading by HFTGiven the high message throughput of the platform and itsmeasurable latency and processing delay, predatory trad-ing strategies such as spoofing and quote stuffing couldbe investigated in a controlled simulation environment.

Finally, while the DSXE platform has demonstrated
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high performance and ability to handle a large number ofsimultaneous traders, the analysis of performance metricsprovided insights into the bottlenecks of the implemen-tation. The evidence suggests that the potential improve-ments outlined in Section 9.4 would further increase thescalability and performance of the system.
11. Conclusion

In this paper we have introduced DSXE which was de-signed and implemented from scratch in response to ourcareful review of existing public-domain financial ex-change simulators reported in the literature. We haveshown DSXE being used for real-time experimental stud-ies of arbitrage trading that would be difficult or impossi-ble with the previously-available simulators, and we havepresented results from performance profiling which showthat DSXE is fast, robust, and scalable. The C++ source-code for DSXE has been made freely available as open-source on GitHub, so that other researchers can use DSXEas a platform for further experimentation, and so thatother software developers can build upon the foundationsthat we have established here.
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