36th European Modeling & Simulation Symposium, 031
215 International Multidisciplinary Modeling & Simulation Multiconference

2724-0029 © 2024 The Authors.
doi: 10.46354/i3m.2024.emss.031

Dynamic transport-lot assignment for the hot-storage

daread

Sebastian Leitnerb2*, Philipp Fleck!2, Stefan Wagnerl2 and Michael Affenzeller!

'Heuristic and Evolutionary Algorithms Laboratory, University of Applied Sciences Upper Austria

2Josef Ressel Center for Adaptive Optimization in Dynamic Environments, University of Applied Sciences Upper

* Sebastian.Leitner@fh-hagenberg.at

Abstract

Austria

In this paper, we present a novel transport-lot optimization problem at the boundary between the continuous casters and the
hot-rolling in steel production. The problem and the corresponding solver are part of a system that jointly optimizes the cranes in the
hot-storage area and the vehicles feeding the rolling mill. The goal is to group steel slabs into transport lots and assign transporters,
handover locations, and due dates. We develop heuristics to iteratively build the full solution by choosing from several promising
choices that satisfy a wide variety of safety and performance requirements. We evaluate the performance of different heuristics to
search the tree of possible choices on a diverse collection of real-world problem instances. We find that the pilot method significantly

outperforms the five other tree-search heuristics we tried.

Keywords: Transport-Lots, Hot-storage, Continuous Caster, Integrated Steel Production, Tree-Search

1. Introduction

From steel making to continuous casting to hot rolling,
there are many interconnected and energy-intensive pro-
cesses in a steel plant, that if well optimized, can lead not
only to cost savings but also to a reduced environmental
impact. Tang et al. (2001) gives a good overview of inte-
grated production management systems deployed in steel
plants to realize these benefits. For a good overview of
optimization techniques used towards the hot rolling end
of the entire steel-making process, we recommend Ozgiir
etal. (2021).

This paper is concerned with the optimization of han-
dling of newly cast steel slabs in the so-called hot storage
area. The hot storage area is a very dynamic environment
consisting of multiple continuous casters, buffer stacks,
handover locations, overhead cranes capable of moving a
single slab at a time between each of these locations, and
vehicles to transport stacks of slabs to processing facili-

ties or storage yards. New slabs are continuously produced
in the casters according to a casting program and are fi-
nally transported from the handover locations to their next
processing step by two types of vehicles. One challenge
is that while there is a plan for what the next processing
steps should be for each slab, there is no guarantee that
the slab will meet all of the criteria for that plan to hold
once it is cast. So there is considerable uncertainty about
where each slab needs to go next and when. Transporta-
tion and storage capacity is limited inside and outside the
hot storage area and can be traded against each other to
some extent. So even if the next processing step is cer-
tain it may make sense to transport slabs to a storage yard
if we run out of space in the hot storage area but have a
transporter available. However, transport vehicles, are not
used exclusively for transport from the hot storage area,
so their availability is also uncertain. For a discussion of
the various kinds of uncertainties in this environment,
see Beham et al. (2019). Roljic et al. (2021) optimized an

© 2024 The Authors. This article is an open access article distributed under the terms and conditions of the Creative
Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).


https://creativecommons.org/licenses/by-nc-nd/4.0/.

2 | 36" European Modeling & Simulation Symposium, EMSS 2024

integrated routing and stacking problem for slabs in the
storage yard, which must also satisfy the same safety con-
straints. Priorities and bottlenecks can change quickly,
and there is a need to respond to human feedback about
where problems are occurring and which slabs are needed
most urgently. One source of problems is the continuous
casters themselves, which can break down and require
rescheduling, as discussed by Long et al. (2016).

The slabs are around 700°C hot and weigh tens of tons

when they come out of the caster, which means they must
be handled carefully to avoid damaging equipment, other
slabs, or workers. To achieve this, there are numerous
restrictions on how slabs can be stacked and transported
based on all of their physical properties. Even when all
restrictions are followed, equipment failure can and does
occur and must be handled gracefully. Temperature not
only dictates where and how slabs can be transported, but
also when. This is because most processing steps require
a certain temperature, and slabs cool slowly. Complexity
is further increased because the cooling rate depends pri-
marily on the temperature of all the surrounding slabs in
the stack. Avoiding the need to reheat the slabs before each
processing step is essential to the energy efficiency of the
overall steel plant.

The goal is to create a plan for the human crane op-

erators to follow that takes all safety and performance
considerations into account. This is challenging because
of the complex interactions within the systems, the un-
certainty, the dependence on human operators, and the
large number of safety constraints that must be met. The
rest of this paper describes the two-tiered solution ap-
proach in Section 2 and then focuses on the Hot-Storage
Lot-Assignment Problem. Section 3 tests a variety of tree
search variants on a set of 100 real-world problem in-
stances, and Section 4 discusses the results.

2. Problem

All slabs currently in the hot storage are given, including
their positions, physical properties, and next processing
steps. We also include the next slabs to be cast accord-
ing to the current casting schedule. We have information
on every relevant location vehicle and crane, including
stacking restrictions and availability. We have two basic
goals which are to ensure that the hot storage area runs
smoothly and that all downstream processing can operate
efficiently. The first goal boils down to these four points:

1. Never block casters, as this can result in costly manual
repairs.

2. Adhere to constraints, so as not to endanger workers,
equipment, or the quality of the slabs.

3. Use cranes efficiently, by minimizing their travel time
and avoiding relocations as much as possible.

4. Do not overfill the hot storage, as this makes it much
more difficult to achieve all of the previous objectives.

To ensure good downstream performance, we need to

perform the following steps:

1. Select the right slabs to deliver based on both down-
stream processing requirements and the fill level of the
hot storage area.

2. Prioritize deliveries well to avoid downstream waiting
times.

3. Use vehicles efficiently by maximizing capacity uti-
lization and minimizing travel time.

4. Group intelligently for later use to minimize handling
costs at the destination. Some destinations require slabs
in a specific order, while others simply want to maximize
throughput.

While it would be theoretically possible to define one
large optimization problem, we found that we had to split
the optimization into two parts to make it tractable. The
first part is the transport lot assignment problem, where
we decide which slabs will be transported together by a
given vehicle, and when and where to hand them off to
the vehicle. The output of the lot assignment is part to
the input for the stacking problem. There, we optimize
the crane moves required to serve both the incoming slabs
from the caster and the outgoing slabs according to the
lot assignment. Both algorithms are used together in a
framework that maintains an up-to-date model of the hot-
storage area as well as the current plans generated by our
two solvers. It receives real-world events via a message-
passing system and reacts to them by updating its models
checking whether any plans are invalidated by what just
happened, and re-optimizes if they are.

2.1. Hot-Storage Lot-Assignment Problem

The central entity in this problem is the transport lot. Each
transport lot consists of a possibly ordered set of slabs, a
transport vehicle, a handover location, a target location,
and two time intervals. The first interval defines when
we can use the crane to move the slabs to the handover
location, and the second interval defines when we can use
the vehicle to bring the slabs to their destination. When
we create transport lots, we make sure that these intervals
do not overlap between transport lots for any vehicle or
section of the crane runway, otherwise, the solution would
be infeasible.

The goal is to deliver all the slabs that need to be de-
livered as quickly as possible. We call this goal the total
completion time, and it is calculated as

T= delivery, — min handovers.
Z Yx sex s
xclots

(1

The earliest possible handover time of a lot depends on
when the first slab can be put on the handover. This can be
now, when the slab is at the top of a stack, the crane has
nothing else to do, and the handover is ready; or it can be
in the future, after the slab has been cast, the slabs above
have been relocated and the handover became available.



The delivery date depends on when the last slab can be
handed over and when the vehicle is available. So both the
choice of slabs and vehicles and the order of delivery are
important to the quality of the solution.

There are, of course, several restrictions on which slabs
can be transported together and which transporter can
be used. In the case of hot slabs, these restrictions even
depend on the time when the transport should take place.
A solution that violates safety constraints is considered
infeasible. For all other constraints, we allow a config-
urable number of allowed violations before the solution is
considered infeasible.

2.1.1. Problem Tree-Encoding

To facilitate the search for the best lot assignments, we em-
ploy various tree search heuristics, which are described in
more detail later in Sec. 3. For the tree search, the problem
is defined in a tree structure, where each non-terminal
node is a partial solution, and the terminal nodes are so-
lutions to the lot assignment problem. Starting with the
root node, which has a list of ‘“unassigned slabs” and no
lots assignments, each node lists potential choices of lot-
assignments. Each lot assignment then defines the list of
slabs for a lot, the target handover location, and the vehicle.
Because lots are limited by various constraints, such as ve-
hicle capacity, lot-assignments contain only a finite num-
ber of slabs. Therefore, for a given list of slabs, there are
many possible lot-assignments in which different slabs
are grouped together, or the same slabs are grouped at
different handover locations.

When a lot assignment is applied to the current partial
solution (i.e. a tree search node), a new (partial) solution
(i.e., a new node) is created, adding the selected lot as-
signment to the list of lot assignments and removing the
associated slabs from the list of unassigned slabs. This
continues until all slabs are assigned to a lot and a node
forms a terminal node.

The tree search itself is responsible for selecting one of
the possible lot assignments for a given partial solution,
and thus traversing through the search space. Efficient
guidance relies on the order of choices, as the tree search
assumes earlier choices are optimal. Therefore, when we
create the list of potential lot assignments, we order them
according to domain experts rules, which should favor
good lot assignments that contribute to an overall efficient
grouping of lots. Invalid or undesirable lot assignments
are not even returned and are therefore not considered by
the tree search algorithm.

In the following, we will discuss in more detail the steps
to create the (ordered) list of choices for the lot assign-
ments, since this process defines the search space and is
thus the heart of the optimization, defining all the rules
and heuristics to guide the algorithms to proper solutions.
An overview of the steps is shown in Fig. 1.

Leitneretal. | 3

Get Choices (potential Lot-Assignments)

|

Select
(Priority) Slabs

l

Handle previous
Choices

I

Create
Initial Slabs

for each extensible lot (slabs & handover)

for each pair of

for each Slab Determine Slab & Handover

Handovers

Fill up Lot
until full

v

Final Ordering
of Lots

Figure 1. An overview of how to create potential lot assignments for a given
partial solution.

2.1.2. (Priority-)Slab Selection

In the first step, we evaluate which slabs should be put on
a handover, i.e., which slabs should be transported out of
the storage location, by defining the initial list of unas-
signed slabs for the root node of the tree search problem.
In other words, this filter defines which slabs remain in
the hot storage, and which slabs should be transported
and therefore assigned to a lot, a vehicle, and a handover.
This filter already reduces the search space by limiting the
number of slabs for which an algorithm must build lots.

The filters are defined by an ordered list of selection
rules. When evaluating a single selection rule for a slab,
it can choose to exclude a slab, include a slab, or remain
undecided and pass on the decision to the next rule. For ex-
ample, an early exclusion rule checks if a slab is already on
a handover, and therefore does not need to be put in a new
lot. If the slab is already on a handover, it is excluded and
the selection of that slab is determined. Another early rule
specifies that if a slab is marked by a human operator for
removal from the hot storage, it is included and no further
rules need to be evaluated. In this way, rules are evaluated
sequentially, with the first rule that is not undecided either
including or excluding the slab. If all rules are undecided,
the slab is not included.

The list of rules and their order is mainly given by do-
main experts and can be changed depending on the current
optimization goals. The following is an example of a rule
set:

Excl. slabs where transport is already issued.

Excl. slabs that are already on handovers.

Excl. slabs with no feasible handover.

Incl. slabs marked for transport by the operator.
Excl. slabs marked for keeping by the operator.
Excl. slabs cooling before transportation.

Incl. slabs with known destinations (e.g. slab yard).
Incl. slabs marked as “urgent”.

Incl. slabs to be moved to a warm-keeping box.

O O3 IV HWDN



4 | 36t European Modeling & Simulation Symposium, EMSS 2024

10. Incl. slabs that are about to be milled.

2.1.3. Handle Previous Results

Since the hot-storage area is a dynamic environment and
solutions can become obsolete due to unplanned events,
parts from previous solutions may already be in motion
and need to be considered when updating a solution. For
example, when a lot assignment is created, and the re-
sulting crane movement requests are sent to the crane
operator, we do not want to update or delete these move-
ment requests to give the crane operator a stable preview
of the next movements he or she has to perform There-
fore, in the data that describes the current state of the hot
storage area, which includes all the positions of the slabs
and vehicles, we also include a list of frozen lots, which are
lot assignments where this lot has already been sent to the
crane operator system and the corresponding movement
requests have already been issued. Similarly, if we have
lot assignments from previous optimization runs that are
still valid and no movement requests have been issued, we
try to reuse those extensible lots for efficiency and also to
provide a robust preview for the operators.

First, if we encounter frozen lots in the data, we create
unmodified lot assignments only for the existing frozen
lots and do not consider any of the unassigned slabs. Sec-
ond, if no frozen lots exist but extensible lots are avail-
able, we use the extensible lots as starting points and
try to fill them up if possible, using the same procedure
as in the later step described in Section 2.1.7. If a lot as-
signment based on a frozen or extensible lot is applied
during the search, this lot is removed from the list of
frozen/extensible lots. Only if there are no frozen or ex-
tensible lots left, we will consider creating new lots in the
next step.

2.1.4. Choices of Lot-Assignments

In the remaining steps, we build choices of lot assignments
from which the tree search algorithm can choose. Since
the potential combinations of lots that can be formed from
the unassigned slabs grow exponentially, we use a more
structured approach to creating the lot assignments.

First, we want to limit the number of lot assignments
for a current partial solution. This allows us to force im-
portant decisions early in the search process via custom
priority rules. This does not mean that we only consider
slabs that meet one of the priority rules, but rather that we
force the tree search to deal with some slabs earlier, and
postpone decisions for lower-priority slabs later, when
the decision may not be relevant because the low-priority
slabs have already been added to higher-priority lots. Ad-
ditionally, it limits the number of lot assignments created
for a partial solution, which can improve performance in
cases where the tree search only considers the first few
choices (which is a reasonable assumption), since we do
not need to create any lot assignments that the tree search
will not consider anyway.

When building lot assignments, we start with a list of

initial slabs. For each of these initial slabs, we also deter-
mine suitable handover locations.

With the initial slab and handover location fixed, we
consider all combinations of a second slab from the re-
maining unassigned slabs to have all potential, valid two-
element lots of the initial slab and any other slab from the
unassigned list. Next, we try to greedily add more slabs
until the lot is full. In this way, building lots scale roughly
quadratic with the number of unassigned slabs.

The following is a more detailed description of the steps
involved in creating lots.

2.1.5. Create Initial Slabs for Lots

In this step, we create a list of initial slabs for lots. Given
an initial slab, we will later try to find other slabs that are
good matches for that initial slab.

As a first step, we order all remaining unassigned slabs
according to a list of slab priorities. Similar to the selection
rules in (priority-) slab selection, a slab priority defines
an order by comparing two slabs and either ranks one slab
higher or is undecided. In the case of an undecided slab
priority, the next priority rule is evaluated until an order
can be determined, or two slabs simply have the same
priority.

Again, the list of priorities is provided by experts and
can be tweaked according to the current optimization
goals:

1. Prioritize slabs manually marked by the operator to
leave the hot storage and deprioritize the ones marked to
remain in the hot storage.

2. Prioritize slabs marked as urgent.

3. Prioritize slabs scheduled for hot milling later (i.e., not
stored in slab yard prior to milling).

4. Prioritize slabs that come next in the milling plan.

5. Prioritize slabs that are currently in a caster and can
be picked up.

6. Prioritize slabs that are currently cast but not ready to
be picked up.

7. Prioritize slabs with earlier arrival dates.

8. Prioritize slabs that are currently on a buffer stack.

9. Prioritize slabs that are higher up in a stack.

The next step is to select the initial slabs for the lots
based on the ordered slab list. To limit the number of ini-
tial slabs and thus keep the number of lot assignments
manageable, we select only one initial slab per caster con-
text, i.e. the region around a caster. First, if any slabs are
marked as going out of the hot storage by the operator, we
take the highest priority slab (as per the previous order-
ing) per caster context that is marked as going out, and
do not consider any other slabs as initial slabs. If no slabs
are marked as going out, we select an initial slab for each
caster context by selecting the highest priority slab cur-
rently stocked at a caster or, if no slab is stocked at the
caster, the highest priority slab for that context.

The slabs selected in this step are now the initial slabs
for the next steps.



2.1.6. Determine Handovers
For each initial slab that will later form a lot assignment,
we determine potential handover locations where the lot
can be placed. Again, we want to limit the number of po-
tential handovers to avoid generating a large number of
combinations to avoid performance issues when increas-
ing the number of slabs and handovers.

For each initial slab, we first obtain all potential han-
dovers that must satisfy the following constraints:

- The handover is within the same or adjacent caster con-
text as the initial slab.

- There is no manual blocking of the handover defined
by an operator.

- Various size, weight, and temperature constraints of
the transport vehicles are met (e.g. maximum and min-
imum lengths for certain vehicles).

Currently, we have two types of handovers: a pallet
(which is pulled by another vehicle) and a stack (where
the lot is picked up directly by a vehicle), with different
restrictions. To propose handovers, we take up to three
different handovers per handover-type according to the
following scheme:

1. Take the earliest available handover (e.g. because it
becomes available after transporting a different lot).

2. Take the handover with the least amount of time
it would take to move the initial slab to that handover
(e.g. zero if it is already there, otherwise the estimated
relocation time).

3. Take the handover that is available earliest if no lot is
assigned to that handover yet.

2.1.7. Add Slab to Lots

For a given initial slab of a lot and a given handover, in this
step,we generate different combinations of slabs that can
form the lot. Before forming the lot, the available slabs
(i.e., the unassigned slabs that are not yet part of the lot)
are sorted. The order used in this step is different from the
order used to select the initial slabs because we also take
into account how well the other slabs match the properties
of the initial slab. For example, if we are sorting two poten-
tial slabs with different destinations, and one of the slabs’
destinations matches the destination of the initial slab, we
prefer the slab with the matching destination. Again, we
have a list of rules, and if a criterion (like the slab destina-
tion) is indecisive (e.g. all slabs have the same destination),
the next rule is checked. To sort slabs based on the initial
slab (and the handover), we currently use the following
rules:

1. Prioritize the slab with the matching (to the initial slab)
disposition, i.e. the decision whether a slab stays in hot
storage or will be moved out.

2. Prioritize slabs that both have the hot-rolling mill as
their destination.

3. Prioritize slabs with matching rolling mill types.

4. Prioritize slabs with smaller differences in milling due

Leitneretal. | 5

date.

5. Prioritize slabs with matching target location (e.g. stor-
age yard, processing facility, etc.)

6. Prioritize slabs at the same location (e.g. caster or
buffer) as the initial slab.

7. Prioritize slabs from the same caster as the initial slab.
8. Prioritize slabs from the same stack as the initial slab.
9. Prioritize slabs that are closer to the initial slab (by
estimated movement and excavation times).

Starting with the initial slab at a given handover, we
use this ordered list to create different combinations of
slabs that form lots. Each time we try to add an additional
slab to the lot, we check the following lot restrictions, all
of which must be met in order for the slab to be added to
the lot:

- If handover is a stack, check if putting an additional lot
on the stack violates the maximum height or weight for
a vehicle transporting from stacks.

- Check if general with, depth, and weight restrictions of
the handover locations are not violated.

- Check if the milling type is homogeneous.

- Check if the temperature is low enough for transporta-
tion.

- Check if the slab is accessible (i.e. not burrowed in a
buffer stack of slabs that will not be moved).

- Slabs are sorted correctly if the destination requires
a specific order (ascending or descending by milling
number).

- All slabs are in the same or adjacent caster contexts.

- No manual blocks by the operator at the current slab
location.

- We do not cross a caster other than in which the one the
slab was cast.

In the first step, we exhaustively create all possible pairs
of the given initial slabs plus a second slab from the previ-
ously defined list (the order does not matter in this case),
where the lot restrictions defined above are satisfied. This
results in all possible two-slab lots with the given initial
slab. All of these two-slab lots are immediately used as
potential choices.

In the second step, for each of the two-slab lots, we start
a greedy process that adds as many slabs as possible to the
two-slab lot. In this process, we go through all ordered
slabs (ordered by slab priority using the initial slab as ref-
erence) after the second slab that forms the two-slab lot.
For example, if the second slab is at position 10 out of 20,
we go through slabs 11 to 20. During the iteration, if a slab
can be used to expand the lot by checking the lot restric-
tions above, we immediately add it to the lot and continue
with the next of the remaining slabs. After the two-slab
lots are filled with all the greedily added slabs, such a lot
is also returned as a potential choice for the tree-search.
If no other slab could be found to extend an initial lot, a
single-slab lot is created as a fallback, since as we must
deliver all the slabs we identified at the beginning.



6 | 36" European Modeling & Simulation Symposium, EMSS 2024

2.1.8. Final Ordering of Lot-Assignments

From the previous stage, we obtained several potential
lot assignments, starting with creating the initial slabs,
determining handover, and adding additional slabs to the
lot. In this last step, we perform additional ordering to pri-
oritize some lots over others by considering the following
lot properties:

1. Consider all lots that have the earliest handover time
within a margin of 30 minutes. This usually means all lots
that are available now will be available at about the same
time later.

2. Prefer lots with three or more slabs.

3. Prefer lots where deliveries can start earlier.

4. Prefer lots with less active crane time.

After this final sorting, these lot assignments can be
traversed by the tree-search algorithm, allowing it to grad-
ually form lots according to the various prioritization rules
and constraints that exist for the hot storage lot assign-
ment problem.

2.2. Stacking

The stacking problem is modeled as a dynamic variant
of the block relocation problem with continuous pickup
and delivery. Its goal is to fulfill all the transportation re-
quests defined in our lot assignments while minimizing
the distance the cranes have to travel. An earlier limited
version of this is described in detail by Raggl et al. (2018).
Unlike the previous work, the stacking now supports mul-
tiple cranes and takes transport lots as input instead of
generating them on the fly using heuristics. All stacking
restrictions including temperature are handled. This even
includes the simulation of the slow cooling of slabs. Since
casters are operating continuously, we have to limit the
horizon we consider for optimization. We typically choose
a horizon of two hours and consider the stacking problem
solved when we have stored all the slabs cast within that
time and delivered all the transport lots due before that
time. We search for the best solution using a variant of tree
search called iterated rake search.

3. Experiments

For testing, we use 100 real-world problem instances
collected every 10 hours over 42 days, capturing a wide
range of operational conditions. We used our open-source
TreesearchLib !, which enabled us to test a variety of algo-
rithms, namely Depth-First Search (DFS), Beam Search
(BS), Limited Discrepancy Search (LDS), Rake Search (RS),
Iterated Rake Search (IRS), and Pilot Method (PM) and
compare them to the greedy baseline. Greedy, DFS, and
LDS rely on the choices to be sorted so that the most
promising candidates appear first. BS uses a heuristic to

1 https://github.com/heal-research/TreesearchLib

1.0 4 e e ==

0.8
=
g !
S 0.6 4 [
- !
E L Greedy
a — DFS
2 0.4 41 -
° ——= Pilot
e —- D3
o2/ Beam
—-= R5 1024
IRS 64
0.0 - . T T T T
1.0 1.2 1.4 1.6 1.8

performance ratio

Figure 2. Performance profile of selected algorithms.

evaluate how good a given child is and filters only those
children that are not in the top n. Finding a good heuristic
and picking the right beam width can be tricky. The pilot
method introduced in Vof et al. (2005) gets around this
problem by evaluating the quality of a branch in the search
tree using a look-ahead, and then greedily picking the
branch with the best look-ahead result. As a look-ahead
we can just greedily pick the first choice until we have a
solution. Rake search does a breath first search until a
limit is reached and then uses a look-ahead to find solu-
tions, while iterated rake search does this repeatedly and
is, therefore, a generalization of PM.

All of our runs have a time limit of one minute, as this
was found to be the upper limit of what is acceptable in
the real-world use case due to the uncertainty and ever-
changing environment described above. Where there are
parameters in the algorithms that can be selected, we have
chosen them so that the search takes approximately one
minute of time. All benchmarks are performed on a Win-
dows 10 desktop machine with an Intel(R) Xeon(R) W-2145
CPU @ 3.70GHz 8 cores and 32 GB of RAM. Everything is
implemented in C# and uses multithreading where appro-
priate.

Figure 2 shows a performance profile comparing the
algorithms. The x-axis shows the performance targets
in terms of multiples of the best-known solution, while
the y-axis shows the proportion of runs that achieved a
given performance target, as described by Dolan and Moré
(2002). So the further an algorithm is to the top left, the
better.

Naturally, greedy performs the worst, followed by rake
search, which is just the best greedy result for the first
1024 nodes in breadth-first order. Beam search does a lit-
tle better because it can look at choices other than the first
one, but it is still pretty bad because we do not have a high-
quality heuristic due to the complexity of the problem.
Another challenge with beam search is the choice of beam



width, because counter-intuitively a larger beam width
does not necessarily lead to better results, as discussed
by Lemons et al. (2022). Empirically we found a beam of
just 5 to work best. Depth-first search is the next best, but
it focuses too much on decisions deep in the search tree.
All of the top three methods aim to spread the effort spent
more evenly throughout the whole depth of the search tree.
In third place is the limited discrepancy search introduced
by Harvey and Ginsberg (1995), which limits the num-
ber of times the algorithm can deviate from the ordering
heuristic. We use a maximum discrepancy of 3 to keep the
runtime under control.

It is unclear why the pilot method outperforms the iter-
ated rake search to such an extend, since it is essentially a
special case of the latter, with the rake width always set to
the number of choices.

o 5 o
1.8 1 o) ¢
© 0
E 1.6 1 8 o
[+}]
O
= o ° o % o
E 1.4 e
kS 8
g 8
1.2 4
i %

T T T T T T T
Greedy DFS Pilot LD 3 Beam RS 1024 IRS 64

Figure 3. A comparison of the qualities achieved relative to the best.

The figures 3 and 4 show the ratio of the found solution
to the best-known solution and the runtime required to get
there, respectively. Interestingly, the best-performing pi-

runtime (sec)
w
[=]
1

201 L]
lD_ %
04 —&—

T T T T T T T
Greedy DFS Pilot LD 3 Beam RS 1024 IRS 64

Figure 4. A runtime comparison of the algorithms.

Leitneretal. | 7

—— Pilot
—— Pilot DFS256
——- Pilot DFS512
-
@«
=
=1
wi
wl
£
2
o
2
a
0.2 4
O-O T T T T T T T T
100 105 110 115 1.20 125 130 135 1.40

performance ratio

Figure 5. Comparison of different look-ahead strategies.

lot method has the third shortest average runtime, beaten
only by greedy and beam search, both of which produce
much worse solutions. Since the pilot method did not need
the full minute we set as the time limit, we also experi-
mented with allowing a limited amount of backtracking
in the look-ahead by switching to using a DFS. Figure 5
shows that allowing 256 backtracking steps in the look-
ahead outperforms 0 backtracking, but allowing 512 back-
tracking steps underperforms. While this seems counter-
intuitive at first, it is explained by the fact that with more
backtracking steps we run into the one-minute time limit
more often and the PM cannot run to completion.

4. Discussion

By framing the hot-storage lot-assignment Problem as a
tree search, we were able to quickly test a variety of algo-
rithms and heuristics. More importantly, by constructing
a solution one lot at a time, were were able to guarantee
that every solution found was feasible. This is more diffi-
cult to achieve when using any of the population-based
metaheuristics that typically operate on full solutions. Ad-
ditionally, it has the advantage that it is easy to account
for the fact that the transport lots have different levels of
importance and urgency by sorting them as described in
Section 2.1.5. We also tried exact solvers based on a mixed-
integer programming formulation of the problem, but im-
plementing the full complexity of the problem proved dif-
ficult, and even a variant with key constraints missing
was too slow to be useful for real-world use. We found
that the pilot method, a tree search heuristic, is very well
suited to this problem because it can find good solutions
relatively quickly by spreading the search effort evenly
over the depth of the search tree. The exact goals and con-
straints of the lot assignment problem changed several
times during development in response to feedback from
the operators of the production system. For this reason,



8 | 36" European Modeling & Simulation Symposium, EMSS 2024

the implementation is written to prioritize extensibility
and ease of experimentation over raw performance. How-
ever, when we do optimize for execution speed, our ex-
periments show that we have a way to translate this into
better optimization results by using a more accurate but
costly look-ahead in the pilot method.

5. Conclusions

We presented a complex lot-building problem that is part
of a larger system to optimize the hot storage area at a
steel plant. We have deployed and tested the entire system
in the real world. These tests provide invaluable insights
into the dynamics of the system, because while both the
lot assignments problem and the stacking problem are
complex enough on their own, using them together is even
more challenging to incorporate the constantly changing
conditions of the real world. We are now at a point where
the system works very well in general unless there is a
new special case we have not yet encountered. The next
steps are to make the system robust enough to declare it
fully operational. Of course, running such a system 24/7
brings a whole new set of challenges in terms of operator
acceptance and maintenance.

6. Funding

The financial support by the Austrian Federal Ministry
for Digital and Economic Affairs and the National Foun-
dation for Research, Technology and Development and
the Christian Doppler Research Association is gratefully
acknowledged.

References

Beham, A., Raggl, S., Wagner, S., and Affenzeller, M.
(2019). Uncertainty in real-world steel stacking prob-
lems. In GECCO 2019 Companion - Proceedings of the 2019
Genetic and Evolutionary Computation Conference Com-
panion, pages 1438-1440.

Dolan, E. D.and Moré, J.J. (2002). Benchmarking optimiza-
tion software with performance profiles. Mathematical
Programming, 91(2):201—213.

Harvey, W. D. and Ginsberg, M. L. (1995). Limited discrep-
ancy search. In IJCAI (1), pages 607—615.

Lemons, S., Lopez, C. L., Holte, R. C., and Ruml, W. (2022).
Beam search: Faster and monotonic. In Proceedings of
the International Conference on Automated Planning and
Scheduling, volume 32, pages 222—230.

Long, J., Zheng, Z., and Gao, X. (2016). Dynamic schedul-
ing in steelmaking-continuous casting production for
continuous caster breakdown. International Journal of
Production Research, 55:1—20.

Raggl, S., Beham, A., Tricoire, F., and Affenzeller, M.
(2018). Solving a real world steel stacking problem.
International Journal of Service and Computing Oriented
Manufacturing, 3(2-3):94—108.

Roljic, B., Leitner, S., and Doerner, K. F. (2021). Stacking
and transporting steel slabs using high-capacity vehi-
cles. Procedia Computer Science, 180:843—851. Proceed-
ings of the 2nd International Conference on Industry
4.0 and Smart Manufacturing (ISM 2020).

Tang, L., Liu, J., Rong, A., and Yang, Z. (2001). A review of
planning and scheduling systems and methods for inte-
grated steel production. European Journal of Operational
Research, 133(1):1—20.

Vo3, S., Fink, A., and Duin, C. (2005). Looking ahead
with the pilot method. Annals of Operations Research,
136(1):285-302.

Ozgiir, A., Uygun, Y., and Hiitt, M.-T. (2021). A review of
planning and scheduling methods for hot rolling mills
in steel production. Computers Industrial Engineering,
151:106606.



	Introduction
	Problem
	Hot-Storage Lot-Assignment Problem
	Problem Tree-Encoding
	(Priority-)Slab Selection
	Handle Previous Results
	Choices of Lot-Assignments
	Create Initial Slabs for Lots
	Determine Handovers
	Add Slab to Lots
	Final Ordering of Lot-Assignments

	Stacking

	Experiments
	Discussion
	Conclusions
	Funding

