
36th European Modeling & Simulation Symposium, 03121st International Multidisciplinary Modeling & Simulation Multiconference
2724-0029 © 2024 The Authors. doi: 10.46354/i3m.2024.emss.031

© 2024 The Authors. This article is an open access article distributed under the terms and conditions of the CreativeCommons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Dynamic transport-lot assignment for the hot-storage
area
Sebastian Leitner1,2,*, Philipp Fleck1,2, Stefan Wagner1,2 and Michael Affenzeller1
1Heuristic and Evolutionary Algorithms Laboratory, University of Applied Sciences Upper Austria
2Josef Ressel Center for Adaptive Optimization in Dynamic Environments, University of Applied Sciences Upper Austria
* Sebastian.Leitner@fh-hagenberg.at

Abstract
In this paper, we present a novel transport-lot optimization problem at the boundary between the continuous casters and thehot-rolling in steel production. The problem and the corresponding solver are part of a system that jointly optimizes the cranes in thehot-storage area and the vehicles feeding the rolling mill. The goal is to group steel slabs into transport lots and assign transporters,handover locations, and due dates. We develop heuristics to iteratively build the full solution by choosing from several promisingchoices that satisfy a wide variety of safety and performance requirements. We evaluate the performance of different heuristics tosearch the tree of possible choices on a diverse collection of real-world problem instances. We find that the pilot method significantlyoutperforms the five other tree-search heuristics we tried.
Keywords: Transport-Lots, Hot-storage, Continuous Caster, Integrated Steel Production, Tree-Search

1. Introduction

From steel making to continuous casting to hot rolling,there are many interconnected and energy-intensive pro-cesses in a steel plant, that if well optimized, can lead notonly to cost savings but also to a reduced environmentalimpact. Tang et al. (2001) gives a good overview of inte-grated production management systems deployed in steelplants to realize these benefits. For a good overview ofoptimization techniques used towards the hot rolling endof the entire steel-making process, we recommend Özgüret al. (2021).
This paper is concerned with the optimization of han-dling of newly cast steel slabs in the so-called hot storagearea. The hot storage area is a very dynamic environmentconsisting of multiple continuous casters, buffer stacks,handover locations, overhead cranes capable of moving asingle slab at a time between each of these locations, andvehicles to transport stacks of slabs to processing facili-

ties or storage yards. New slabs are continuously producedin the casters according to a casting program and are fi-nally transported from the handover locations to their nextprocessing step by two types of vehicles. One challengeis that while there is a plan for what the next processingsteps should be for each slab, there is no guarantee thatthe slab will meet all of the criteria for that plan to holdonce it is cast. So there is considerable uncertainty aboutwhere each slab needs to go next and when. Transporta-tion and storage capacity is limited inside and outside thehot storage area and can be traded against each other tosome extent. So even if the next processing step is cer-tain it may make sense to transport slabs to a storage yardif we run out of space in the hot storage area but have atransporter available. However, transport vehicles, are notused exclusively for transport from the hot storage area,so their availability is also uncertain. For a discussion ofthe various kinds of uncertainties in this environment,see Beham et al. (2019). Roljic et al. (2021) optimized an

1

https://creativecommons.org/licenses/by-nc-nd/4.0/.


2 | 36th EuropeanModeling& Simulation Symposium, EMSS 2024

integrated routing and stacking problem for slabs in thestorage yard, which must also satisfy the same safety con-straints. Priorities and bottlenecks can change quickly,and there is a need to respond to human feedback aboutwhere problems are occurring and which slabs are neededmost urgently. One source of problems is the continuouscasters themselves, which can break down and requirerescheduling, as discussed by Long et al. (2016).The slabs are around 700°C hot and weigh tens of tonswhen they come out of the caster, which means they mustbe handled carefully to avoid damaging equipment, otherslabs, or workers. To achieve this, there are numerousrestrictions on how slabs can be stacked and transportedbased on all of their physical properties. Even when allrestrictions are followed, equipment failure can and doesoccur and must be handled gracefully. Temperature notonly dictates where and how slabs can be transported, butalso when. This is because most processing steps requirea certain temperature, and slabs cool slowly. Complexityis further increased because the cooling rate depends pri-marily on the temperature of all the surrounding slabs inthe stack. Avoiding the need to reheat the slabs before eachprocessing step is essential to the energy efficiency of theoverall steel plant.The goal is to create a plan for the human crane op-erators to follow that takes all safety and performanceconsiderations into account. This is challenging becauseof the complex interactions within the systems, the un-certainty, the dependence on human operators, and thelarge number of safety constraints that must be met. Therest of this paper describes the two-tiered solution ap-proach in Section 2 and then focuses on the Hot-StorageLot-Assignment Problem. Section 3 tests a variety of treesearch variants on a set of 100 real-world problem in-stances, and Section 4 discusses the results.
2. Problem

All slabs currently in the hot storage are given, includingtheir positions, physical properties, and next processingsteps. We also include the next slabs to be cast accord-ing to the current casting schedule. We have informationon every relevant location vehicle and crane, includingstacking restrictions and availability. We have two basicgoals which are to ensure that the hot storage area runssmoothly and that all downstream processing can operateefficiently. The first goal boils down to these four points:
1. Never block casters, as this can result in costly manualrepairs.2. Adhere to constraints, so as not to endanger workers,equipment, or the quality of the slabs.3. Use cranes efficiently, by minimizing their travel timeand avoiding relocations as much as possible.4. Do not overfill the hot storage, as this makes it muchmore difficult to achieve all of the previous objectives.

To ensure good downstream performance, we need to

perform the following steps:
1. Select the right slabs to deliver based on both down-stream processing requirements and the fill level of thehot storage area.2. Prioritize deliveries well to avoid downstream waitingtimes.3. Use vehicles efficiently by maximizing capacity uti-lization and minimizing travel time.4. Group intelligently for later use to minimize handlingcosts at the destination. Some destinations require slabsin a specific order, while others simply want to maximizethroughput.

While it would be theoretically possible to define onelarge optimization problem, we found that we had to splitthe optimization into two parts to make it tractable. Thefirst part is the transport lot assignment problem, wherewe decide which slabs will be transported together by agiven vehicle, and when and where to hand them off tothe vehicle. The output of the lot assignment is part tothe input for the stacking problem. There, we optimizethe crane moves required to serve both the incoming slabsfrom the caster and the outgoing slabs according to thelot assignment. Both algorithms are used together in aframework that maintains an up-to-date model of the hot-storage area as well as the current plans generated by ourtwo solvers. It receives real-world events via a message-passing system and reacts to them by updating its modelschecking whether any plans are invalidated by what justhappened, and re-optimizes if they are.
2.1. Hot-Storage Lot-Assignment Problem

The central entity in this problem is the transport lot. Eachtransport lot consists of a possibly ordered set of slabs, atransport vehicle, a handover location, a target location,and two time intervals. The first interval defines whenwe can use the crane to move the slabs to the handoverlocation, and the second interval defines when we can usethe vehicle to bring the slabs to their destination. Whenwe create transport lots, we make sure that these intervalsdo not overlap between transport lots for any vehicle orsection of the crane runway, otherwise, the solution wouldbe infeasible.The goal is to deliver all the slabs that need to be de-livered as quickly as possible. We call this goal the totalcompletion time, and it is calculated as
T = ∑

x∈lots
deliveryx – min

s∈x
handovers. (1)

The earliest possible handover time of a lot depends onwhen the first slab can be put on the handover. This can benow, when the slab is at the top of a stack, the crane hasnothing else to do, and the handover is ready; or it can bein the future, after the slab has been cast, the slabs abovehave been relocated and the handover became available.



Leitner et al. | 3

The delivery date depends on when the last slab can behanded over and when the vehicle is available. So both thechoice of slabs and vehicles and the order of delivery areimportant to the quality of the solution.
There are, of course, several restrictions on which slabscan be transported together and which transporter canbe used. In the case of hot slabs, these restrictions evendepend on the time when the transport should take place.A solution that violates safety constraints is consideredinfeasible. For all other constraints, we allow a config-urable number of allowed violations before the solution isconsidered infeasible.

2.1.1. ProblemTree-Encoding
To facilitate the search for the best lot assignments, we em-ploy various tree search heuristics, which are described inmore detail later in Sec. 3. For the tree search, the problemis defined in a tree structure, where each non-terminalnode is a partial solution, and the terminal nodes are so-lutions to the lot assignment problem. Starting with theroot node, which has a list of “unassigned slabs” and no
lots assignments, each node lists potential choices of lot-
assignments. Each lot assignment then defines the list ofslabs for a lot, the target handover location, and the vehicle.Because lots are limited by various constraints, such as ve-hicle capacity, lot-assignments contain only a finite num-ber of slabs. Therefore, for a given list of slabs, there aremany possible lot-assignments in which different slabsare grouped together, or the same slabs are grouped atdifferent handover locations.

When a lot assignment is applied to the current partialsolution (i.e. a tree search node), a new (partial) solution(i.e., a new node) is created, adding the selected lot as-signment to the list of lot assignments and removing theassociated slabs from the list of unassigned slabs. Thiscontinues until all slabs are assigned to a lot and a nodeforms a terminal node.
The tree search itself is responsible for selecting one ofthe possible lot assignments for a given partial solution,and thus traversing through the search space. Efficientguidance relies on the order of choices, as the tree searchassumes earlier choices are optimal. Therefore, when wecreate the list of potential lot assignments, we order themaccording to domain experts rules, which should favorgood lot assignments that contribute to an overall efficientgrouping of lots. Invalid or undesirable lot assignmentsare not even returned and are therefore not considered bythe tree search algorithm.
In the following, we will discuss in more detail the stepsto create the (ordered) list of choices for the lot assign-ments, since this process defines the search space and isthus the heart of the optimization, defining all the rulesand heuristics to guide the algorithms to proper solutions.An overview of the steps is shown in Fig. 1.

Select
(Priority) Slabs

Get Choices (potential Lot-Assignments)

for each extensible lot (slabs & handover)Handle previous
Choices

for each SlabCreate
Initial Slabs

for each pair of
Slab & HandoverDetermine

Handovers
Fill up Lot
until full

Final Ordering
of Lots

Figure 1. An overview of how to create potential lot assignments for a givenpartial solution.

2.1.2. (Priority-)Slab SelectionIn the first step, we evaluate which slabs should be put ona handover, i.e., which slabs should be transported out ofthe storage location, by defining the initial list of unas-signed slabs for the root node of the tree search problem.In other words, this filter defines which slabs remain inthe hot storage, and which slabs should be transportedand therefore assigned to a lot, a vehicle, and a handover.This filter already reduces the search space by limiting thenumber of slabs for which an algorithm must build lots.The filters are defined by an ordered list of selection
rules. When evaluating a single selection rule for a slab,it can choose to exclude a slab, include a slab, or remainundecided and pass on the decision to the next rule. For ex-ample, an early exclusion rule checks if a slab is already ona handover, and therefore does not need to be put in a newlot. If the slab is already on a handover, it is excluded andthe selection of that slab is determined. Another early rulespecifies that if a slab is marked by a human operator forremoval from the hot storage, it is included and no furtherrules need to be evaluated. In this way, rules are evaluatedsequentially, with the first rule that is not undecided eitherincluding or excluding the slab. If all rules are undecided,the slab is not included.The list of rules and their order is mainly given by do-main experts and can be changed depending on the currentoptimization goals. The following is an example of a ruleset:
1. Excl. slabs where transport is already issued.2. Excl. slabs that are already on handovers.3. Excl. slabs with no feasible handover.4. Incl. slabs marked for transport by the operator.5. Excl. slabs marked for keeping by the operator.6. Excl. slabs cooling before transportation.7. Incl. slabs with known destinations (e.g. slab yard).8. Incl. slabs marked as “urgent”.9. Incl. slabs to be moved to a warm-keeping box.



4 | 36th EuropeanModeling& Simulation Symposium, EMSS 2024

10. Incl. slabs that are about to be milled.
2.1.3. Handle Previous ResultsSince the hot-storage area is a dynamic environment andsolutions can become obsolete due to unplanned events,parts from previous solutions may already be in motionand need to be considered when updating a solution. Forexample, when a lot assignment is created, and the re-sulting crane movement requests are sent to the craneoperator, we do not want to update or delete these move-ment requests to give the crane operator a stable previewof the next movements he or she has to perform There-fore, in the data that describes the current state of the hotstorage area, which includes all the positions of the slabsand vehicles, we also include a list of frozen lots, which arelot assignments where this lot has already been sent to thecrane operator system and the corresponding movementrequests have already been issued. Similarly, if we havelot assignments from previous optimization runs that arestill valid and no movement requests have been issued, wetry to reuse those extensible lots for efficiency and also toprovide a robust preview for the operators.First, if we encounter frozen lots in the data, we createunmodified lot assignments only for the existing frozenlots and do not consider any of the unassigned slabs. Sec-ond, if no frozen lots exist but extensible lots are avail-able, we use the extensible lots as starting points andtry to fill them up if possible, using the same procedureas in the later step described in Section 2.1.7. If a lot as-signment based on a frozen or extensible lot is appliedduring the search, this lot is removed from the list offrozen/extensible lots. Only if there are no frozen or ex-tensible lots left, we will consider creating new lots in thenext step.
2.1.4. Choices of Lot-AssignmentsIn the remaining steps, we build choices of lot assignmentsfrom which the tree search algorithm can choose. Sincethe potential combinations of lots that can be formed fromthe unassigned slabs grow exponentially, we use a morestructured approach to creating the lot assignments.First, we want to limit the number of lot assignmentsfor a current partial solution. This allows us to force im-portant decisions early in the search process via custompriority rules. This does not mean that we only considerslabs that meet one of the priority rules, but rather that weforce the tree search to deal with some slabs earlier, andpostpone decisions for lower-priority slabs later, whenthe decision may not be relevant because the low-priorityslabs have already been added to higher-priority lots. Ad-ditionally, it limits the number of lot assignments createdfor a partial solution, which can improve performance incases where the tree search only considers the first fewchoices (which is a reasonable assumption), since we donot need to create any lot assignments that the tree searchwill not consider anyway.When building lot assignments, we start with a list of

initial slabs. For each of these initial slabs, we also deter-mine suitable handover locations.With the initial slab and handover location fixed, weconsider all combinations of a second slab from the re-maining unassigned slabs to have all potential, valid two-element lots of the initial slab and any other slab from theunassigned list. Next, we try to greedily add more slabsuntil the lot is full. In this way, building lots scale roughlyquadratic with the number of unassigned slabs.The following is a more detailed description of the stepsinvolved in creating lots.
2.1.5. Create Initial Slabs for LotsIn this step, we create a list of initial slabs for lots. Givenan initial slab, we will later try to find other slabs that aregood matches for that initial slab.As a first step, we order all remaining unassigned slabsaccording to a list of slab priorities. Similar to the selectionrules in (priority-) slab selection, a slab priority definesan order by comparing two slabs and either ranks one slabhigher or is undecided. In the case of an undecided slabpriority, the next priority rule is evaluated until an ordercan be determined, or two slabs simply have the samepriority.Again, the list of priorities is provided by experts andcan be tweaked according to the current optimizationgoals:
1. Prioritize slabs manually marked by the operator toleave the hot storage and deprioritize the ones marked toremain in the hot storage.2. Prioritize slabs marked as urgent.3. Prioritize slabs scheduled for hot milling later (i.e., notstored in slab yard prior to milling).4. Prioritize slabs that come next in the milling plan.5. Prioritize slabs that are currently in a caster and canbe picked up.6. Prioritize slabs that are currently cast but not ready tobe picked up.7. Prioritize slabs with earlier arrival dates.8. Prioritize slabs that are currently on a buffer stack.9. Prioritize slabs that are higher up in a stack.

The next step is to select the initial slabs for the lotsbased on the ordered slab list. To limit the number of ini-tial slabs and thus keep the number of lot assignmentsmanageable, we select only one initial slab per caster con-text, i.e. the region around a caster. First, if any slabs aremarked as going out of the hot storage by the operator, wetake the highest priority slab (as per the previous order-ing) per caster context that is marked as going out, anddo not consider any other slabs as initial slabs. If no slabsare marked as going out, we select an initial slab for eachcaster context by selecting the highest priority slab cur-rently stocked at a caster or, if no slab is stocked at thecaster, the highest priority slab for that context.The slabs selected in this step are now the initial slabsfor the next steps.



Leitner et al. | 5

2.1.6. DetermineHandoversFor each initial slab that will later form a lot assignment,we determine potential handover locations where the lotcan be placed. Again, we want to limit the number of po-tential handovers to avoid generating a large number ofcombinations to avoid performance issues when increas-ing the number of slabs and handovers.For each initial slab, we first obtain all potential han-dovers that must satisfy the following constraints:
• The handover is within the same or adjacent caster con-text as the initial slab.• There is no manual blocking of the handover definedby an operator.• Various size, weight, and temperature constraints ofthe transport vehicles are met (e.g. maximum and min-imum lengths for certain vehicles).

Currently, we have two types of handovers: a pallet(which is pulled by another vehicle) and a stack (wherethe lot is picked up directly by a vehicle), with differentrestrictions. To propose handovers, we take up to threedifferent handovers per handover-type according to thefollowing scheme:
1. Take the earliest available handover (e.g. because itbecomes available after transporting a different lot).2. Take the handover with the least amount of timeit would take to move the initial slab to that handover(e.g. zero if it is already there, otherwise the estimatedrelocation time).3. Take the handover that is available earliest if no lot isassigned to that handover yet.
2.1.7. Add Slab to LotsFor a given initial slab of a lot and a given handover, in thisstep,we generate different combinations of slabs that canform the lot. Before forming the lot, the available slabs(i.e., the unassigned slabs that are not yet part of the lot)are sorted. The order used in this step is different from theorder used to select the initial slabs because we also takeinto account how well the other slabs match the propertiesof the initial slab. For example, if we are sorting two poten-tial slabs with different destinations, and one of the slabs’destinations matches the destination of the initial slab, weprefer the slab with the matching destination. Again, wehave a list of rules, and if a criterion (like the slab destina-tion) is indecisive (e.g. all slabs have the same destination),the next rule is checked. To sort slabs based on the initialslab (and the handover), we currently use the followingrules:
1. Prioritize the slab with the matching (to the initial slab)disposition, i.e. the decision whether a slab stays in hotstorage or will be moved out.2. Prioritize slabs that both have the hot-rolling mill astheir destination.3. Prioritize slabs with matching rolling mill types.4. Prioritize slabs with smaller differences in milling due

date.5. Prioritize slabs with matching target location (e.g. stor-age yard, processing facility, etc.)6. Prioritize slabs at the same location (e.g. caster orbuffer) as the initial slab.7. Prioritize slabs from the same caster as the initial slab.8. Prioritize slabs from the same stack as the initial slab.9. Prioritize slabs that are closer to the initial slab (byestimated movement and excavation times).
Starting with the initial slab at a given handover, weuse this ordered list to create different combinations ofslabs that form lots. Each time we try to add an additionalslab to the lot, we check the following lot restrictions, allof which must be met in order for the slab to be added tothe lot:

• If handover is a stack, check if putting an additional loton the stack violates the maximum height or weight fora vehicle transporting from stacks.• Check if general with, depth, and weight restrictions ofthe handover locations are not violated.• Check if the milling type is homogeneous.• Check if the temperature is low enough for transporta-tion.• Check if the slab is accessible (i.e. not burrowed in abuffer stack of slabs that will not be moved).• Slabs are sorted correctly if the destination requiresa specific order (ascending or descending by millingnumber).• All slabs are in the same or adjacent caster contexts.• No manual blocks by the operator at the current slablocation.• We do not cross a caster other than in which the one theslab was cast.
In the first step, we exhaustively create all possible pairsof the given initial slabs plus a second slab from the previ-ously defined list (the order does not matter in this case),where the lot restrictions defined above are satisfied. Thisresults in all possible two-slab lots with the given initialslab. All of these two-slab lots are immediately used aspotential choices.
In the second step, for each of the two-slab lots, we starta greedy process that adds as many slabs as possible to thetwo-slab lot. In this process, we go through all orderedslabs (ordered by slab priority using the initial slab as ref-erence) after the second slab that forms the two-slab lot.For example, if the second slab is at position 10 out of 20,we go through slabs 11 to 20. During the iteration, if a slabcan be used to expand the lot by checking the lot restric-tions above, we immediately add it to the lot and continuewith the next of the remaining slabs. After the two-slablots are filled with all the greedily added slabs, such a lotis also returned as a potential choice for the tree-search.If no other slab could be found to extend an initial lot, asingle-slab lot is created as a fallback, since as we mustdeliver all the slabs we identified at the beginning.



6 | 36th EuropeanModeling& Simulation Symposium, EMSS 2024

2.1.8. Final Ordering of Lot-AssignmentsFrom the previous stage, we obtained several potentiallot assignments, starting with creating the initial slabs,determining handover, and adding additional slabs to thelot. In this last step, we perform additional ordering to pri-oritize some lots over others by considering the followinglot properties:
1. Consider all lots that have the earliest handover timewithin a margin of 30 minutes. This usually means all lotsthat are available now will be available at about the sametime later.2. Prefer lots with three or more slabs.3. Prefer lots where deliveries can start earlier.4. Prefer lots with less active crane time.

After this final sorting, these lot assignments can betraversed by the tree-search algorithm, allowing it to grad-ually form lots according to the various prioritization rulesand constraints that exist for the hot storage lot assign-ment problem.
2.2. Stacking

The stacking problem is modeled as a dynamic variantof the block relocation problem with continuous pickupand delivery. Its goal is to fulfill all the transportation re-quests defined in our lot assignments while minimizingthe distance the cranes have to travel. An earlier limitedversion of this is described in detail by Raggl et al. (2018).Unlike the previous work, the stacking now supports mul-tiple cranes and takes transport lots as input instead ofgenerating them on the fly using heuristics. All stackingrestrictions including temperature are handled. This evenincludes the simulation of the slow cooling of slabs. Sincecasters are operating continuously, we have to limit thehorizon we consider for optimization. We typically choosea horizon of two hours and consider the stacking problemsolved when we have stored all the slabs cast within thattime and delivered all the transport lots due before thattime. We search for the best solution using a variant of treesearch called iterated rake search.
3. Experiments
For testing, we use 100 real-world problem instancescollected every 10 hours over 42 days, capturing a widerange of operational conditions. We used our open-sourceTreesearchLib 1, which enabled us to test a variety of algo-rithms, namely Depth-First Search (DFS), Beam Search(BS), Limited Discrepancy Search (LDS), Rake Search (RS),Iterated Rake Search (IRS), and Pilot Method (PM) andcompare them to the greedy baseline. Greedy, DFS, andLDS rely on the choices to be sorted so that the mostpromising candidates appear first. BS uses a heuristic to

1 https://github.com/heal-research/TreesearchLib

Figure 2. Performance profile of selected algorithms.

evaluate how good a given child is and filters only thosechildren that are not in the top n. Finding a good heuristicand picking the right beam width can be tricky. The pilotmethod introduced in Voß et al. (2005) gets around thisproblem by evaluating the quality of a branch in the searchtree using a look-ahead, and then greedily picking thebranch with the best look-ahead result. As a look-aheadwe can just greedily pick the first choice until we have asolution. Rake search does a breath first search until alimit is reached and then uses a look-ahead to find solu-tions, while iterated rake search does this repeatedly andis, therefore, a generalization of PM.
All of our runs have a time limit of one minute, as thiswas found to be the upper limit of what is acceptable inthe real-world use case due to the uncertainty and ever-changing environment described above. Where there areparameters in the algorithms that can be selected, we havechosen them so that the search takes approximately oneminute of time. All benchmarks are performed on a Win-dows 10 desktop machine with an Intel(R) Xeon(R) W-2145CPU @ 3.70GHz 8 cores and 32 GB of RAM. Everything isimplemented in C# and uses multithreading where appro-priate.
Figure 2 shows a performance profile comparing thealgorithms. The x-axis shows the performance targetsin terms of multiples of the best-known solution, whilethe y-axis shows the proportion of runs that achieved agiven performance target, as described by Dolan and Moré(2002). So the further an algorithm is to the top left, thebetter.
Naturally, greedy performs the worst, followed by rakesearch, which is just the best greedy result for the first1024 nodes in breadth-first order. Beam search does a lit-tle better because it can look at choices other than the firstone, but it is still pretty bad because we do not have a high-quality heuristic due to the complexity of the problem.Another challenge with beam search is the choice of beam



Leitner et al. | 7

width, because counter-intuitively a larger beam widthdoes not necessarily lead to better results, as discussedby Lemons et al. (2022). Empirically we found a beam ofjust 5 to work best. Depth-first search is the next best, butit focuses too much on decisions deep in the search tree.All of the top three methods aim to spread the effort spentmore evenly throughout the whole depth of the search tree.In third place is the limited discrepancy search introducedby Harvey and Ginsberg (1995), which limits the num-ber of times the algorithm can deviate from the orderingheuristic. We use a maximum discrepancy of 3 to keep theruntime under control.
It is unclear why the pilot method outperforms the iter-ated rake search to such an extend, since it is essentially aspecial case of the latter, with the rake width always set tothe number of choices.

Figure 3. A comparison of the qualities achieved relative to the best.

The figures 3 and 4 show the ratio of the found solutionto the best-known solution and the runtime required to getthere, respectively. Interestingly, the best-performing pi-

Figure 4. A runtime comparison of the algorithms.

Figure 5. Comparison of different look-ahead strategies.

lot method has the third shortest average runtime, beatenonly by greedy and beam search, both of which producemuch worse solutions. Since the pilot method did not needthe full minute we set as the time limit, we also experi-mented with allowing a limited amount of backtrackingin the look-ahead by switching to using a DFS. Figure 5shows that allowing 256 backtracking steps in the look-ahead outperforms 0 backtracking, but allowing 512 back-tracking steps underperforms. While this seems counter-intuitive at first, it is explained by the fact that with morebacktracking steps we run into the one-minute time limitmore often and the PM cannot run to completion.
4. Discussion

By framing the hot-storage lot-assignment Problem as atree search, we were able to quickly test a variety of algo-rithms and heuristics. More importantly, by constructinga solution one lot at a time, were were able to guaranteethat every solution found was feasible. This is more diffi-cult to achieve when using any of the population-basedmetaheuristics that typically operate on full solutions. Ad-ditionally, it has the advantage that it is easy to accountfor the fact that the transport lots have different levels ofimportance and urgency by sorting them as described inSection 2.1.5. We also tried exact solvers based on a mixed-integer programming formulation of the problem, but im-plementing the full complexity of the problem proved dif-ficult, and even a variant with key constraints missingwas too slow to be useful for real-world use. We foundthat the pilot method, a tree search heuristic, is very wellsuited to this problem because it can find good solutionsrelatively quickly by spreading the search effort evenlyover the depth of the search tree. The exact goals and con-straints of the lot assignment problem changed severaltimes during development in response to feedback fromthe operators of the production system. For this reason,



8 | 36th EuropeanModeling& Simulation Symposium, EMSS 2024

the implementation is written to prioritize extensibilityand ease of experimentation over raw performance. How-ever, when we do optimize for execution speed, our ex-periments show that we have a way to translate this intobetter optimization results by using a more accurate butcostly look-ahead in the pilot method.
5. Conclusions

We presented a complex lot-building problem that is partof a larger system to optimize the hot storage area at asteel plant. We have deployed and tested the entire systemin the real world. These tests provide invaluable insightsinto the dynamics of the system, because while both thelot assignments problem and the stacking problem arecomplex enough on their own, using them together is evenmore challenging to incorporate the constantly changingconditions of the real world. We are now at a point wherethe system works very well in general unless there is anew special case we have not yet encountered. The nextsteps are to make the system robust enough to declare itfully operational. Of course, running such a system 24/7brings a whole new set of challenges in terms of operatoracceptance and maintenance.
6. Funding

The financial support by the Austrian Federal Ministryfor Digital and Economic Affairs and the National Foun-dation for Research, Technology and Development andthe Christian Doppler Research Association is gratefullyacknowledged.
References

Beham, A., Raggl, S., Wagner, S., and Affenzeller, M.(2019). Uncertainty in real-world steel stacking prob-lems. In GECCO2019Companion-Proceedings of the 2019
Genetic and Evolutionary Computation Conference Com-
panion, pages 1438–1440.Dolan, E. D. and Moré, J. J. (2002). Benchmarking optimiza-tion software with performance profiles. Mathematical
Programming, 91(2):201–213.Harvey, W. D. and Ginsberg, M. L. (1995). Limited discrep-ancy search. In IJCAI (1), pages 607–615.Lemons, S., López, C. L., Holte, R. C., and Ruml, W. (2022).Beam search: Faster and monotonic. In Proceedings of
the International Conference on Automated Planning and
Scheduling, volume 32, pages 222–230.Long, J., Zheng, Z., and Gao, X. (2016). Dynamic schedul-ing in steelmaking-continuous casting production forcontinuous caster breakdown. International Journal of
Production Research, 55:1–20.Raggl, S., Beham, A., Tricoire, F., and Affenzeller, M.(2018). Solving a real world steel stacking problem.
International Journal of Service and Computing Oriented
Manufacturing, 3(2-3):94–108.

Roljic, B., Leitner, S., and Doerner, K. F. (2021). Stackingand transporting steel slabs using high-capacity vehi-cles. Procedia Computer Science, 180:843–851. Proceed-ings of the 2nd International Conference on Industry4.0 and Smart Manufacturing (ISM 2020).Tang, L., Liu, J., Rong, A., and Yang, Z. (2001). A review ofplanning and scheduling systems and methods for inte-grated steel production. European Journal of Operational
Research, 133(1):1–20.Voß, S., Fink, A., and Duin, C. (2005). Looking aheadwith the pilot method. Annals of Operations Research,136(1):285–302.Özgür, A., Uygun, Y., and Hütt, M.-T. (2021). A review ofplanning and scheduling methods for hot rolling millsin steel production. Computers Industrial Engineering,151:106606.


	Introduction
	Problem
	Hot-Storage Lot-Assignment Problem
	Problem Tree-Encoding
	(Priority-)Slab Selection
	Handle Previous Results
	Choices of Lot-Assignments
	Create Initial Slabs for Lots
	Determine Handovers
	Add Slab to Lots
	Final Ordering of Lot-Assignments

	Stacking

	Experiments
	Discussion
	Conclusions
	Funding

