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Abstract
This vision paper presents a new framework for developing a digital twin for the dairy industry. Unforeseen quality and processchallenges that are often specific to each dairy company may arise during processing and must be resolved. Various approaches can beused to solve the different problems, such as food technology experiments or modeling. The framework addresses specific challenges,such as the inconsistency in raw materials and the intricate biochemical dynamics of dairy products. It enables predictive detectionand management of critical process states in the products. We use a hybrid modeling approach that integrates white-box models thatexplain the physical, chemical, and biological mechanisms of dairy processes with black-box machine learning models to improvepredictive accuracy and process optimization. The framework centers around implementing explainable artificial intelligence (XAI)to connect empirical food science with advanced data-driven models. XAI is integrated to ensure transparency and interpretabilityof predictions and decisions made by the digital twin, supporting better decision-making processes within the dairy industry. Ourproposed model anticipates quality changes, identifies potential deviations in real time, and elucidates the underlying causes.
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1. Introduction

Dairy processing, and food processing in general, is com-plex and typically involves numerous processing stepsthat can vary from company to company. During pro-cessing, unforeseen challenges and anomalies can arisethat may compromise product quality and the process it-self and, therefore, must be resolved. These anomaliesare specific to each product and even to each processingplant. For example, in the case of a fermented milk prod-uct/dessert/preparation, not only is the composition of theraw milk subject to seasonal fluctuations, but the compo-sition of the starter culture and ingredients such as fruitpreparations, spices, and stabilizers are also important

during processing. Furthermore, the sequence of processsteps and the selected process parameters determine thetechno-functional properties such as flow behavior, parti-cle size, voluminosity of the fermented matrix (e.g., Hecket al., 2021; Küçükçetin et al., 2009; Mokoonlall et al., 2016)and these, in turn, correlate with sensory properties suchas creaminess (e.g., Cayot et al., 2008; Dickinson, 2018;Frøst and Janhøj, 2007; Sonne et al., 2014).
An increasing amount of structured and semi-structured data is being collected during food processing.This is driven by increasing customer demands, regu-latory requirements (e.g., traceability), and advancesin process and information technology. Data miningthrough machine learning (ML) — for computer-aided
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identification of relationships in data — and intelligentsensors, which are already being used successfully in otherindustries, have potential in food and dairy processing,e.g., for detection of critical conditions, prediction ofquality parameters, or process optimization (Freire et al.,2024; Krupitzer and Stein, 2023).In the data mining process, different models can beused: black-box, white-box, and grey-box models. Black-box models refer to models in which the relationshipsbetween input parameters and outcomes are complex,making it challenging to understand the exact processesthrough which the final results are derived (e.g., ML mod-els). White-box models provide an explanation of the(physical and chemical) relationships of the model param-eters and are the basis for simulations. Grey-box modelscombine a partial theoretical structure with data to com-plete the model.In this context, digital twins are becoming more at-tractive for companies. One advantage of digital twins istheir ability to include real-time and real-world data toidentify and manage unexpected states within the foodsupply chain (Melesse et al., 2023). One challenge of dig-ital twins for food production is that they must considerthe processing steps and the chemical, physical, and/or(micro)biological properties as raw materials and process-ing vary (Henrichs et al., 2022). Therefore, it is impor-tant to consider the biochemical and physical properties ofthe products in an integrated manner to enhance the ana-lytical potential and to analyze the production processesholistically. The implementation of digital twins is majorlycomplicated due to the absence of a standard methodologythat describes transferring information from the physicalto the virtual object (Henrichs et al., 2022).This vision paper specifies a general approach for cre-ating specific digital food twins in the dairy industry toanalyze critical process conditions, i.e., critical process pa-rameters or product properties that represent anomalies.We review the challenges to be tackled to implement inher-ent explainable ML models and a combination of physical(white-box) modeling and ML (black-box) for specificdairy products.This paper proposes a framework for developing a digi-tal twin for the dairy industry and is organized as follows:Section 2 discusses the state of the art of food and data pro-cessing, and digital food twins. In Section 3, we describeour vision of a hybrid digital twin combining white-boxand black-box modeling. Sections 4 discusses the researchchallenges that may arise especially for integrating theXAI (eXplainable Artificial Intelligence) component intothe framework. Finally, conclusions, limitations, and fu-ture research are briefly discussed in Section 5.
2. State of the art

Currently, white-box approaches that model physical orexperimental relationships are widely used. They effec-tively describe relationships between product characteris-

tics and process steps. However, they are limited by theirproduct-specific nature and can suffer from a lack of trans-ferability to the specific processing of food formulationsdue to the necessary abstraction of the models. Black-boxmethods, based on data-driven model identification likeML, face challenges due to a lack of explainability, causal-ity, and IT skills among company employees (Rohleder andMinhoff, 2019). Moreover, companies using these meth-ods often prioritize data over domain expertise, leading tounclear interpretations of correlations found. Currently,there is no integration of both — white-box and black-box— approaches for real-time analysis in the processing offermented and shelf-stable foods. The following sectionsfocus on the state of the art regarding food processing (Sec-tion 2.1), data processing (Section 2.2), and digital foodtwins (Section 2.3).
2.1. Food processing

In order to monitor food processes, several sensors are im-plemented in the processing plants. These sensors servetwo purposes: I) To keep the process parameters withindefined boundaries and II) to directly monitor the prod-uct properties in-line. As in-line sensors are a cost factorand their application for real-time monitoring requiresa certain level of digitalization, they are not used yet to asufficient extent.
Dairy processing includes many semi-continuous pro-cesses. Therefore, the individual operations can be dividedinto batch processes, such as fermentation, and continu-ous processes, such as heating and homogenization. Fur-ther, most processes involve intermediate storage of theproducts to ensure product availability for posterior pro-cessing steps to minimize plant downtimes. Batch andcontinuous processes demand different sensor properties.During batch processes, product deposition on the sensorscan lead to inaccurate measurement results, as in contraryno or very slow product movement is required for exactpH-measurement. For the accurate implementation of adigital twin, the reliability of the sensors and the accuracyof the measurement serving as data sources are essential.Most limits in applicability of sensors are set by their CIP(Cleaning In Place) and SIP (Sterilization In Place) capa-bility as well as the necessity and frequency of calibration.
Table 1 gives an overview of various in-line sensors,their application, and relevant performance aspects suchas calibration intervals and SIP/CIP capability. However,the calibration interval depends on the demanded accu-racy. This, in turn, is defined by the purpose of measure-ment and decreases in descending order as safety and plantefficiency, regulatory guidelines, supervisory control, ormonitoring and optimization.
The following describes the processing of stirred yogurtas an example of a sensor application. To make full-fat yo-gurt, the fat content of the milk has to be standardized.Therefore, the milk is separated into skimmed milk andcream. Using NIR, the fat content of cream and milk can be
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Table 1. Sensor type and application in dairy processing evaluated according to CIP/SIP capability, calibration frequency, and costs for implementation.
Sensor Application CIP/SIP Calibration Costs Established

capability frequencyTemperature fermentation, heating, cooling + + + YesPressure phase transition, fouling, level control, + + 0 Yesmechanical processingTurbidity cleaning, liquid phase composition + + 0 YesConductivity1) cleaning, liquid phases properties + + 0 YesUltrasound density, composition, fouling + + 0/- YesVolume-/mass-flow- volume-, mass-flow + + 0 YespH1) fermentation, cleaning 0/- - 0/- YesViscosity1) flow behavior, texture + 0 0/- YesNIR1) chemical composition + - - In partsFBRM* particle size, particle concentration + None - NoRaman1) chemical composition + - - No
1)Has to be implemented with an additional temperature sensor for accurate measurement.*FBRM - Focused Beam Reflectance Measurement+ - high CIP/SIP capability, low calibration frequency, low costs0 - medium CIP/SIP capability, medium calibration frequency, medium costs- - low CIP/SIP capability, high calibration frequency, high costs

determined, and both are mixed according to the mass ra-tio. Further, to obtain the desired gel firmness, the proteincontent of the milk can be increased by either evaporation,membrane filtration, or the addition of milk powder.
For food safety issues the milk has to be at least pas-teurized to inactivate pathogenic microorganisms (Lewisand Deeth, 2009). Temperature control and documenta-tion are critical to fulfill the legal requirements. In ad-dition, whey proteins are heat-denatured in order to in-crease the gel stability of the fermented product. The ex-tent of denaturation hereby can be controlled by the ap-plied temperature-holding-time (Anema, 2007; Dannen-berg and Kessler, 1988). The milk is then homogenizedto obtain an even fat distribution in the bulk product andto prevent phase separation. The particle size of the fatglobules can be adjusted by the applied homogenizationpressure (Kessler, 2002). Subsequently, the milk is cooledto a fermentation temperature of about 40 °C dependingon the starter culture and desired cultivation time (Luceyand Singh, 1997). During fermentation pH-value is moni-tored and the yogurt is then cooled to about 20 °C in orderto prevent further acidification (Küçükçetin, 2008; Wei-dendorfer, 2009). Stirred-type yogurt is then filled. Pre-vious to filling, e.g., the particle size of the yogurt can becontrolled using focused beam reflectance measurement(FBRM) (Heck et al., 2023) or its viscosity using in-linedifferential pressure measurement, volume flow, and thedimensions of the plant (Mönch-Tegeder et al., 2015).
After processing, the plant has to be cleaned. At first,it is rinsed with water to remove residual product. In or-der to save water, the electrical conductivity of the rinsingwater can be measured. Subsequently, the plant is cleanedwith alkaline and acidic detergent solution. Especially inthe heating section a layer of primarily minerals and pro-teins can build up (so called fouling), this layer causes apressure drop over a defined pipe section, that decreasesduring cleaning (de Jong, 1997; Huppertz and Nieuwen-huijse, 2022). To make sure no detergent residues remain

inside the plant, conductivity is measured. In addition,NIR can be used (Vasafi et al., 2021).
2.2. Challenges of data-driven process analysis

Industry 4.0 approaches aim to collect data throughsensors and analyze them intelligently using ML algo-rithms (Usuga Cadavid et al., 2020; Züfle et al., 2022). Thisinvolves various data sources, such as raw materials, ma-chinery, or customer data, which can optimize productionplanning with ML (Cioffi et al., 2020). Another applica-tion is the predictive maintenance of machines (Krupitzeret al., 2020). However, both cases mainly focus on the pro-cess and machines’ perspective. Dogan and Birant (2021)give an overview over machine learning and data miningin manufacturing and their advantages and challenges.Numerical simulations are commonly used in the foodindustry to simulate products and processes (e.g., AbdulGhani et al., 1999; Hartmann, 2002; Montanari et al., 2022).However, these approaches involve abstractions that cre-ate uncertainties about the validity of the models. Theseuncertainties can significantly affect the transferability ofthe models to larger machines (Rauh and Delgado, 2011).
2.3. Digital (food) twins

Generated data can be represented as a digital twin. Digitaltwins are used to simplify planning by providing a data-driven representation of the product, processes, and ma-chinery. Solutions are offered by providers of productionmachines. And a concept exists to make digital twins in-teroperable between (industry) standards (Da Rocha et al.,2022). Tao et al. (2019) provide an overview of digital twinsin industrial manufacturing. However, the focus is typ-ically on process optimization in the manufacturing ofgoods, such as textiles or machinery. In these cases, theproducts do not change on their own but only throughprocess steps. However, for food products, changes due to
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physico-chemical and microbiological processes (withoutobvious representation of the induced changes by the ma-chine operating parameters) are also important and needto be reflected in the digital twin (Krupitzer et al., 2022).Concepts for digital twins already exist in food process-ing (Udugama et al., 2023; Krupitzer et al., 2022) and alsoin the field of dairy (Konstantinidis et al., 2023; Werneret al., 2020). However, they differ in their conceptual ideas.Also, their applicability has yet to be proven, as only one ofthem has been implemented and focuses only on a man-agement system, not including functionalities like fore-casting (Werner et al., 2020).A promising approach uses a mechanistic model basedon multi-physics modeling and simulation (Henrichs et al.,2022). This technique can fully represent the real-worldobject and, therefore, should be used for prediction (Hen-richs et al., 2022). Various projects integrate physical mod-els and numerical simulations to predict changes in foodmore accurately. For a comprehensive overview, see (De-fraeye et al., 2021).The application of physics-informed ML is especiallyrelevant for creating predictive models for food. This ap-proach integrates ML tools with knowledge-based guidedlearning to find physically consistent solutions. These hy-brid models integrate both physics-based and data-drivenmodels, utilizing different structures or configurationsdepending on the task/problem (Purlis, 2024). Hybridmodeling aims to create models that explicitly incorpo-rate physical knowledge while using a limited amount ofdata (Gutschi et al., 2019). This approach can increaseaccuracy and interpretability with less data than purelydata-driven models and uses fewer resources than a purelyphysics-based approach (Bradley et al., 2022). In the foodindustry, physics-informed ML is a relatively new topic,but one that is promising (Purlis, 2024).For digital food twins, when combined with ML,there are two approaches, including explainability to thedecision-making of the models: inherent explainabilityof models and non-explainable models (deep neural net-works) extended by an XAI component (Krupitzer et al.,2022). XAI focuses on techniques and algorithms that pro-vide humans with an explanation of how the algorithmidentified the result, hence, with insight into the reason-ing behind a decision. An XAI component can be integratedfor this purpose, e.g., based on food science models and/orsimulations (Krupitzer and Stein, 2023). In Krupitzer et al.(2022), we suggest mechanistic modeling and ML for adigital food twin combined with production data, e.g., sen-sor data, raw material data, and expert knowledge. Such adigital twin could predict and forecast future changes andevents in the food and the process (Henrichs et al., 2022).
2.4. Research questions

Our approach combines both white-box and black-boxmodels in a digital food twin using a gray-box method:We focus on data-driven methods (representing black-box

approaches) that can be integrated into an XAI approachsince such approaches also provide an explanation of howthe result was determined. Existing models as well as ob-servations from experiments in the pilot plant (represent-ing white-box approaches) are integrated for the purposeof explanation. The feedback via experiments in the pilotplant integrated into an XAI approach for data analysisrepresents a new approach. Our methodology should con-tribute to answer the following questions:
• What ML models are best suited to make process pre-dictions while achieving explainability?• How can internal data of the production process andexternal data such as expert knowledge be integratedinto a digital food twin?
3. Methodology
Our vision is a hybrid digital twin that combines traditionalmodeling and simulation of biochemical and physical foodproperties (white-box approach) with ML analysis for inte-grating specific information (black-box approach). Unlikecommon Industry 4.0 approaches for digital twins thatmainly analyze machine data (i.e., processes), our con-cept also includes the simulation of internal product statesand validation in the pilot plant. Figure 1 shows a sum-mary of the proposed framework which is described in thefollowing two subsections.
3.1. Integration of simulation andmachine learning

To demonstrate the importance of a product perspective,we consider the example of yogurt fermentation. The tradi-tional digital twin concept, as commonly used in Industry4.0, would not be sufficient because it relies on processdata (primarily from machines) to control the productionprocess. Without machine actions, the state of the productin the digital twin will not change. However, yogurt pro-duction is based on fermentation, which alters the productand is difficult to monitor in detail. Therefore, data fromthe process alone cannot adequately describe the processas it occurs within the product. To obtain a more accurateunderstanding, we supplement the sparse process infor-mation with established scientific models that describe thebehavior of the bacteria. However, the model alone wouldnot be complete because it is abstract, and, for example,each batch of starter culture has its variations, similar tomilk, whose properties vary throughout the year due tovarious factors such as different feeding.The digital food twin should contain data from the pro-duction site, including process data, physical measure-ments of intermediate and final products, as well as chem-ical and microbiological data. This includes sensor, ma-chine, and processing data such as temperature, pressure,or pH value. Raw material data and expert knowledge onhandling production problems are also integrated. Thesedata can be used to create a unique product code, or “fin-gerprint,” of quality characteristics that can be analyzed
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Figure 1. Conceptual summary of the vision of the proposed digital dairy twin framework. The data cover processing, machines, and physical, chemical,and microbiological measurements of raw materials and (intermediate) products. They are the input for the deep neural network. (Food) scientific models,consisting of modeling and (numerical) simulation of biochemical and physical food properties, including internal product states, enrich and explain theneural network. Experiments in the dairy pilot plant validate the resulting model, whose data can also be input into this hybrid model. The digital twin iscreated using the model and post-hoc explainability and assessment.

in real-time. This can then be used to compare the currentproduction with the “normal state” (historical data) todetect critical process conditions and/or make predictionsabout quality anomalies that could lead to quality devia-tions, such as reduced shelf life. Using various simulationmethods based on chemical-physical models and numeri-cal simulations from food science, the digital twin providesinformation about the actual food processing and supportsfood processing operations with real-time feedback.
3.2. Using an XAI component

To create the digital twin, we intend to use explainableartificial intelligence. Four axes can contribute to the ex-plainability of all levels of the AI process (Ali et al., 2023):
1. Data explainability: Feature engineering and othersummarizing and analyzing techniques can be used todecide which data to use for training models.2. Model explainability: Model explainability targets theunderstanding of the internal structures of the model.Some ML methods are inherently explainable, such asdecision trees or random forests. However, these methodsmay have limitations when dealing with large datasetsand do not support automatic feature extraction, as is thecase with deep learning methods.3. Post-hoc explainability: Determination of which fea-tures were significant and used to make decisions.4. Assessment: Assessment approaches evaluate andcompare explanatory approaches by using various desiredproperties, such as explanatory power.

Our approach focuses on a combination of the secondto fourth axes. However, it is also important to consider

data explainability, for example, during data selection andpre-processing. For complex approaches such as deep neu-ral networks, the idea is to use a second component, theXAI component, which tries to explain the results usingdomain knowledge in the form of white-box models. Wefocus on more complex models, as higher accuracy is ex-pected with more complex models. The challenge is thatthe degree of accuracy and the degree of interpretabilityof a model are often contradictory (Ali et al., 2023).

Figure 2 illustrates our XAI approach. We want to trans-form the partially existing “black box” of production datainto a flexible “grey box” by means of a software methodbased on XAI models, and integrating simulations and thelatest scientific models (white box). The results obtainedthrough model explainability and post-hoc explainabilitymethods can be used to conduct specific experiments inthe laboratory/ pilot plant that are relevant to the dairyproduct. The data derived from these experiments cansubsequently be integrated into the current XAI model.Therefore, our approach enables the (iterative) incorpora-tion of external information such as raw material and finalproduct properties (chemical, microbiological, physical,and sensory) obtained from laboratory tests, storage tests,and market feedback (e.g., complaints). These hybrid ap-proaches can enhance the explanatory power of black-boxapproaches and reduce the ambiguity of white-box modelsby integrating the collected data. The assessment can im-prove learning and systematically analyze models, whichhelps to understand and validate them.
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Figure 2. Prediction process using machine learning with an additional XAI component to explain the results to the users (based on Krupitzer et al., 2022).

4. Challenges and discussion
Multiple research challenges may arise for using XAI forprocess predictions. In Krupitzer et al. (2022), we dis-cussed use cases and challenges for hybrid digital twins,but did not address the XAI component in detail. Therefore,it is important to consider the best-suited XAI approachfor data analysis using ML algorithms, which includesidentifying physical-chemical models for the XAI compo-nent and developing methodologies that integrate domainknowledge into ML models. Validating data and integrat-ing data from laboratory or pilot plant experiments intoa digital twin requires rigorous data quality checks andthe use of sophisticated data integration techniques. Ad-ditionally, it is necessary to investigate how models thatinclude an XAI component can be generalized and adaptedto various datasets and scenarios in the pursuit of creatinga general dairy twin.Hence, we discuss those challenges in the followingand sketch possible solutions focusing on white-box (Sec-tion 4.1), black-box (Section 4.2), and grey-box (Sec-tion 4.3) challenges. Subsequently, we will further discussthe general importance and relevance of our approach (Sec-tion 4.4).
4.1. White-box challenges

Creating digital dairy twins using white-box models is dif-ficult due to the complexity of food and its processing (e.g.,Heck et al., 2021; Küçükçetin et al., 2009; Mokoonlall et al.,2016; Olivares et al., 2013). However, inherently explain-able ML models have an advantage as their explanatorypower is built-in. The challenge lies in data selection andcreating features that form properties for the ML (Freireet al., 2024). Expert and ML knowledge can improve theexplainability of results through feature selection and pre-processing.

Data collection and selection are important to create adigital twin for a specific dairy product (Henrichs et al.,2022). It is necessary to define the process line(s) and asso-ciated raw materials, intermediates, and finished products.When selecting those data, the focus should be on identi-fying all quality-related parameters and, hence, choosing(and, if necessary, installing) appropriate analysis meth-ods for the physical and chemical characterization of theproducts. One exemplary product property, varying fre-quently, is the texture, which can be analyzed with rhe-ological measurements. This also includes regularly oc-curring textural anomalies (which may require counter-measures during production or can be seen in complaints)and should be done in collaboration with the companyand based on relevant literature (e.g., Heck et al., 2021).After the features are generated from the raw data, theML algorithms are used to explore the properties and re-lationships of these features in order to learn ML modelsthat represent the relationships, such as the relationshipbetween the raw data and the quality characteristics ofthe final product. The processes of many dairy productsare already described in detail, and many relationshipsare known. Hence, they can be used to validate the foundrelationships.
To determine the most suitable model, it is necessary tofirst select potentially suitable ML algorithms and config-ure their parameters (hyperparameter tuning, e.g., withoptimization approaches (Brownlee, 2011)). These algo-rithms should then be validated using standardized testprocedures, particularly k-fold cross-validation. Ensem-ble tree approaches, such as Random Forest (RF) and Gra-dient Boosting (e.g. XGBoost), can be utilized for this pur-pose. These algorithms offer high performance in multi-dimensional scenarios with comparatively short trainingtimes. For instance, RF has produced robust results invarious domains (Züfle et al., 2019, 2022; Krupitzer et al.,
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2018). Our recommendation service for selecting an algo-rithm for time series prediction (Züfle et al., 2019) couldserve as a foundation for creating an ML pipeline that au-tomatically selects the algorithm and its parameters basedon the data patterns. Therefore, the ML pipeline producesappropriate ML algorithms and parameter configurationsto train the ML models for the data patterns. Afterwards,the optimal model is selected.
4.2. Black-box challenges

Deep learning methods are very popular due to their highperformance and ability to build features autonomously.Artificial neural networks in the form of recurrent neuralnetworks can account for even sequential dependenciesbetween data points. Hence, they can be used even in theabsence of physico-chemical models. However, they re-quire large amounts of data, lack transparency, and iden-tifying which features are most relevant for the model canbe challenging, especially when dealing with complex andhigh-dimensional data from food processes.
To achieve a sufficient amount of data, data can becreated artificially or must be collected. For example,the SMOTE approach (Chawla et al., 2002) artificially in-creases the amount of data (data augmentation). For thispurpose, we suggest using our previous work on data pro-cessing automation (Züfle et al., 2019, 2022).
For permanent data collection, in-line sensors couldmonitor dairy product properties. The production goaldiffers from the research. It aims to produce a matrix orfinal product with minimal variance despite variations inraw materials and process conditions. Texture propertiesof fermented dairy products are seldom used in qualitycontrol or in-line processing (e.g., Mönch-Tegeder et al.,2015; Weidendorfer and Hinrichs, 2011) due to laboratorycosts, leading to reliance on legally required chemical andmicrobiological analyses and qualitative sensory evalua-tions by staff. In general, physical product data (e.g., vis-cosity or particle size) are rarely collected systematicallyin companies, although they would be suitable in addi-tion to chemical markers to analytically differentiate theend products (e.g., Janhøj et al., 2006; Hartmann et al.,2015a,b,c; Schenkel et al., 2014) and to predict possiblequality deviations (e.g., Vasafi et al., 2021). Hence, accessto texture information during processing could allow foradjustments to compensate for matrix variances.
Post-hoc explainability approaches the challenge oftransparency and feature identification. For example,layer-wise relevance propagation (LRP) (Wu et al., 2022)and model-agnostic methods like shapley additive expla-nations (SHAP) (Lundberg and Lee, 2017) and local inter-pretable model-agnostic explanations (LIME) (Peng et al.,2022), both of which can interpret the results, can be usedto explain the models. Those post-hoc approaches, espe-cially the LIME method, are primarily optimized for im-age data. Hence, significant challenges are present whenadapting to other data types or integrating with white-box

models. The adaptation of those post-hoc approaches isnot straightforward and requires careful consideration ofcompatibility and interoperability.
4.3. Grey-box challenges

For the grey-box model, the aim is to integrate the exist-ing knowledge from companies (e.g., expert knowledgeof employees) and research (e.g., scientific models) intothe XAI component to explain the results of machine/deeplearning algorithms. This can be done in two phases.The first phase focuses on modeling the required do-main knowledge using white-box models. The goal is tointegrate existing food science knowledge with physicalsimulation models, results from newly implemented tex-ture analysis methods, and dedicated laboratory experi-ments.In the second phase, we focus on the ML perspective andcompare two methods for XAI. On the one hand, artificialneural networks are used for deep learning combined withpost-hoc explainability approaches. On the other hand,they are compared to hybrid systems that combine rule-based selection methods with ML. The rules are derivedfrom the white-box models. The XAI component usesthese rules to control the learning process and to keepthe decision traceable. Since the generation of rules isvery individual, this approach is the least automatable butprobably delivers the best results, as the results of deeplearning methods can be explained.A validation in the laboratory is conducted to explainthe uncertainties of the data-driven ML methods from theblack-box models and to generate knowledge to increasethe explainability of the ML algorithms through exper-iments. First, products are manufactured with processconditions, raw materials, company ingredients, etc., andtested for reproducibility (3 to 5 repetitions). This providesreference data from the pilot plant. Then, anomalies in thedata can be explained, or ML analyses can be verified, e.g.,by varying process conditions below and above the refer-ence. The main purpose of the experiments is to validatethe analysis results of the white- and black-box ML mod-els. Of course, a difference in scale (factory vs. pilot plant)has to be considered. We plan to apply the explanations ofthe XAI approach to find out how to generalize from pilotplant to factory for handling the differences in scale.Since the validation of the results in the laboratory canchange the ML methods, especially regarding the XAI com-ponents, the results have to be verified with productiondata in cooperation with the company. On the one hand,we focus on evaluating the quality of the ML algorithms(sensitivity, specificity, mean square error, etc.) and theirresource consumption (time, CPU, RAM, etc.). For this pur-pose, new data collected but not used in the training phasecan be analyzed. Furthermore, an empirical evaluation ofthe comprehensibility of the ML algorithms’ explanationsfor the employees should be implemented.



8 | 10th International Food Operations & Processing Simulation Workshop, FOODOPS 2024

4.4. General importance and relevance

There is still no general concept of a digital dairy twinthat includes predictive capabilities through combiningmachine learning with domain knowledge and explicitlyaddresses explainability. Our approach fills this gap. It is arelevant new concept because it includes and improves thetraceability of the digital dairy twin’s decisions throughiterative data and knowledge integration. For example,learning the white-box ML model requires the creation offeatures. If the performance of the model is insufficient,the features are revised. Similarly, data from experimentsin the pilot plant influence the grey-box models for theXAI components.It is possible to transfer the model of one digital dairytwin representing a specific product to another that repre-sents a dairy product with similar processes using transferlearning (Lisa Torrey and Jude Shavlik, 2010). The scien-tific models of the digital dairy twin must be changed fordifferent dairy products or processes. However, the gen-eral structure and procedure for establishing the digitaldairy twin can be adapted.
5. Conclusions
Our framework provides the practical basis for compre-hensive analysis of existing data with XAI incorporatingexpert knowledge. It can be used to extract raw materialdata and process parameters for the optimization of pro-duction processes in real-time. In addition, it can supportroot cause analysis and accelerate the scaling up of newproduct variants/ideas on existing process lines. Hence,the implementation of our approach results in two con-cepts:
• a concept for recommendation services that decidewhich ML algorithm is best suited for a given set ofcharacteristics, and• a framework for automated analysis using XAI.

This enables the use of ML methods and the interpretationof their results even without knowledge of data mining ordata science. Therefore, our framework allows answeringthe research questions for the most appropriate ML modelsto make process predictions while achieving explainabilityusing an XAI component and integrating additional datainto the digital food twin. Hence, our approach constitutesthe implementation in the industry, which can utilize ourmethodology as a foundation for automating the steps ofML analysis on their own. The automated data analysisoffers further advantages for dairy companies:
1. Variations in product characteristics can be quicklyidentified using the digital dairy twin, which also reducesthe effort required for root cause analysis.2. The time-to-market of products can be reducedthrough sensitivity-oriented adjustments in the process,using knowledge from historical data, laboratory experi-ments, or pilot plant results.

3. Proactive detection of critical system states enablescontinuous verification, as conclusions about critical sys-tem parameters can be drawn from collected data, but alsofrom complaints.
Certain prerequisites must be met within the industryto use our approach: Many companies are already collect-ing data. However, data is often merely archived, and itmust be evaluated whether the IT infrastructure alreadyenables real-time data provision. Our approach can beimplemented using open-source software, allowing foradaptation by individual companies. This enables the cost-effective implementation of a decision-support tool forselecting parameters in food processing operations. Inaddition to the need for extensive relevant data, other lim-itations may include unsuccessful pilot plant verification,inability to deploy the XAI component, or overall unsuc-cessful modeling.Based on our approach, optimized control (during oper-ation) and, in the future, targeted control (in the event ofa raw material/formulation change or when a new productis introduced to the line) of process parameters based onintelligent data analysis can be facilitated. Therefore, ourframework can be viewed as the initial phase of a strategictransformation towards adaptive food production.
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