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Abstract 
Multi-objective and Artificial Intelligence-enhanced optimization methods support the decision makers in finding solutions 
within trade-offs and conflicting goals, giving rise to a Cognitive Digital Twin framework, capable of simulating, predicting, 
and prescribing physical behaviors. The research activities on optimization methods in production systems have mainly 
focused on optimization of individual, single and convergent optimization goals, leaving disruptive external uncertainties to be 
investigated, such unpredictable climate or social events influencing food supply chains. 

This conceptual paper reports the early outcomes of the “Decision Support System for the Life Cycle Optimization (DSS4LCO)” 
initiative, which aims at implementing a CDT architecture in food supply chains, able to handle multiple data-sources and 
conflicting goals under uncertainties, combining a DT framework, a lean, agile, resilient, and green (LARG) index and value 
stream mapping. Adopting the Design Science Research approach, the essay discusses the first 3 steps of the approach, aiming 
at identifying the research problem, contextualizing this issue within the existing knowledge base, and proposing a solution for 
the problem. Results discuss the definition of a CDT architecture, introducing the challenges to be faced in the future 
developments of the research initiative. 
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1. Introduction

Starting from the digitization of information since the 
1990s, and through the universal adoption of digital 
communication networks (such as internet), 
industries are migrating their production systems 
towards smart and interconnected systems, relying on 
a combination of information, computing, 
communication, and connectivity technologies. This 
transformation has been defined as the 4th industrial 
revolution, or Industry 4.0 (Jopp, 2013). Smart and 
interconnected systems apply Industrial Internet of 
Things (IIoT) devices to enable capabilities of coupling 
physical entities with digital artifacts, shaping the 

Cyber-Physical Production Systems (CPPSs) as the 
standard systems within the Industry 4.0 model 
(Piardi et al., 2020; Tekaat et al., 2021). 

Since CCPSs allow the interaction between digital 
and physical realms, the Digital Twin (DT) framework 
has been introduced as a comprehensive method to 
provide a decision support system through a digital 
counterpart of a physical entity. Thanks to multi-
objective and Artificial Intelligence (AI)-enhanced 
optimization methods, a DT may increase its 
capabilities of simulating, predicting, and prescribing 
physical behaviors, towards a Cognitive Digital Twin 
(CDT) framework (Fernández et al., 2019). 

Applications of optimization methods in production 
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systems showed a great potential for improving 
reliability of decision support systems, especially for 
individual - avoiding conflicting, single and 
convergent optimization goals like cost-efficiency 
(Lean) or sustainability (Green). The potential of these 
methods remains unclear under external uncertainties 
or disruptive events, such as unpredictable climate or 
social events that may lead to overproduction or 
supply shortages. These events require a fast reaction 
and adaptation of supply chains to avoid wastes of 
resources or interruptions (Guidani et al., 2024), 
especially in supply chains that rely on unpredictable 
natural resources like in food production or 
renewable-energy production. 

The “Decision Support System for the Life Cycle 
Optimization (DSS4LCO)” initiative aims at 
implementing a CDT architecture in food supply 
chains, to investigate potentials of multi-objective 
optimization methods, under external uncertainties or 
disruptive events. Combining a DT framework, a lean, 
agile, resilient, and green (LARG) index, and the value 
stream mapping technique, the research initiative will 
develop a prototype of a CDT and generalize the 
outcomes through an applied approach, adopting the 
Design Science Research (DSR) approach. 

This conceptual paper discusses the first three steps 
of the adopted DSR approach: (step 1) identifying the 
research problem, (step 2) contextualizing it, and 
(step 3) proposing a solution, outlining the challenges 
to be addressed in the following steps. Section 2 
introduces a comprehensive literature review about 
DT frameworks, CDT frameworks and decision-
making support systems. Section 3 shows the adopted 
methods: (1) introducing the DSR approach, (2) 
defining the scope of the initiative and the general 
research questions, (3) identifying the gaps in the 
literature and (4) defining a CDT architecture. Section 
4 provides an insight of early results, discussing the 
challenges to be addressed in the future developments 
of the research initiative. 

2. State of the art 

2.1. Digital Twins in industrial applications 

According to Grieves (2014), the concept of DT was 
introduced at University of Michigan in 2003 to 
identify a digital representation of a physical product 
based on three main parts: (i) the physical product in 
the real space, (ii) the virtual product in the digital (or 
virtual) space, and (iii) the connection of data and 
information that connects the real and the virtual 
products. 

Over the last two decades, the first concept of DT 
has evolved towards a comprehensive framework to 
represent not only products, but also entire systems 
(Hsu et al., 2019). Since CPPSs apply cyber-physical 
systems to enhance smart interaction capabilities 
through IIoT devices (Piardi et al., 2020; Tekaat et al., 
2021), the connection of data and information is 

demanded to each single device, and the DT becomes 
the digital model of the physical system in a one-to-
many relationship (Hsu et al., 2019). Within this 
framework, the combination of IIoT devices and a DT 
model can be considered as a cyber-physical system 
itself, and it can be described through the 5C 
taxonomy proposed by Bagheri et al. (2015). 

The definitions of cyber-physical systems outlined 
by the scientific community (Piardi et al., 2020; Tekaat 
et al., 2021), are converging towards a definition of 
systems for industrial applications with cognitive and 
self-configuration capabilities. These capabilities can 
be delivered through a deep understanding of the 
physical systems where the device is deployed. In 
industrial applications, the deep understanding 
implies that the IIoT device should collect information 
about his own tasks and relate theses information to 
the physical system. In other words, the device should 
be able not only to apply Connection and Conversion 
layers of the 5C taxonomy but also to interact with a 
digital model of the physical system to effectively 
apply Cognition and Configuration layers. 

The 5C taxonomy aims at describing the a priori 
capabilities of a system but neglects the potentials 
that may arise in real applications. As discussed by 
several authors, a DT may enhance the performance 
and the efficiency of CPPSs by enabling different 
capabilities: multi-physics simulations (West & 
Blackburn, 2017), visualization of a physical entity 
(Douthwaite et al., 2021) and the ability of proactive 
state predictions for understanding the remaining life 
of a system (Eyre & Scott, 2020). Thus, focusing on the 
creation and the structure of a DT, Bonney et al. (2022) 
introduce a description through three different layers: 

• Internet-of-things layer - This layer leads the 
interaction between the physical domain and the 
digital realm, applying IIoT devices such as 
sensors, control hardware, and actuators. 

• Interface layer - It manages the execution of tasks 
and workflows, applying the information collected 
by the previous layer. It also facilitates the 
communication between different network 
services. 

• Cloud computing layer - It hosts network services 
like cloud data storage, high-performance 
computing, and other remote components 
connected to the DT. These services improve both 
physical and digital systems by offering additional 
network-based capabilities. 

A DT, as, a digital copy of its physical counterpart 
not only offers a real-time access to the data coming 
from the physical domain, but it also allows to 
analyze, simulate changes, and improve the physical 
counterpart itself. 

2.2. Digital Twins applications in food production 

In food production industry, the peculiarities of DT 
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frameworks offer the opportunity of overcoming the 
fundamental challenges in food supply chains, such 
as: quality assurance, waste reduction, safety, and 
security management (Casino et al., 2021; Pylianidis et 
al., 2021). Huang et al. (2024), through a systematic 
literature review, define a DT implementation process 
of five steps divided into three different stages. They 
aim at addressing not only the fundamental 
challenges, but also arising challenges, such as 
preventing supply shortages or managing short 
product-shelf-life (La Scalia et al., 2016). Besides 
expecting several benefits from the implementation of 
DT frameworks, their outcomes define five 
recommendations for future research activities: 

1. Defining evaluation metrics and performance 
indicators. 

2. Providing standards and improving scalability of 
IIoT devices for facilitate implementation at 
Internet-of-things layer. 

3. Extending the application of DT frameworks 
across the whole food supply chain instead on 
single stages. 

4. Providing consistent analysis of user acceptance 
of the technologies involved. 

5. Evaluating how DT frameworks can support a 
wider digital transformation of the food 
production industry. 

Singh et al. (2023) investigate the factors behind the 
adoption of DT in food supply chains for enchaining 
resilience and sustainability, and they try to analyze 
the causal relationship among the factors through a 
grey causal modelling approach. They identify 15 
factors through an extensive literature review: Risk 
Assessment, Quality, Bullwhip Effect, Flexibility, 
Coordination, Efficiency, precision farming, Safety, 
Visibility, Traceability, Logistics capabilities, cold 
chain facilities, food security, Governance, and 
weather forecasting. The results of their casual 
magnitude analysis highlight that DT frameworks 
improve stakeholder coordination, boosts visibility in 
the food supply chain, thereby mitigating risks and 
enhancing efficiency. Resilience hinges on flexibility 
and robustness, ensuring the smooth flow of high-
quality goods and fostering societal benefits while 
upholding sustainability. Consequently, adaptability 
and flexibility positively impact both sustainability 
and resilience. 

Valero et al. (2023) propose a new DT framework 
applying dynamically optimized distribution to 
improve the resilience of interconnected and 
interdependent food supply chains against unforeseen 
changes. Through a case study in the UK, they 
estimate savings of more than £25,000 and 150 tons of 
CO2 per shipment in a standard refrigeration unit. 

Tan et al. (2023) apply DT frameworks to control 
ventilation in indoor food court for assessing and 
managing resilience in real-time, against indoor 
transmission of airborne infectious disease. They 

show that such solution result in enhancements in the 
duration of disruptions, resilience loss, and the 
average recovery rate for patrons in a food court. 

DT frameworks can be successfully applied for 
reducing the energy demand without impacting the 
productivity or the quality of deliveries in food supply 
chains. Li et al. (2024) introduces DT frameworks to 
evaluate and optimize the performances of cascade 
refrigeration systems. Relying on simulations based 
on AI-enhanced analysis of real-time data, their DT 
framework increases the overall performance of 
refrigerators by 9.1% and reduces the total energy 
demand of compressors up to 13.1%. Similarly, 
Büchele et al. (2024) apply DT frameworks to apple 
storage facilities, saving energy demand through a 
real-time control of storage temperatures. They 
highlight that, beyond energy savings, DT frameworks 
increase the economic efficiency by reducing food 
losses and wastes. 

Ding et al. (2023), by developing a review of the 
actual stage of Industry 4.0 technologies applied to the 
food industry, identify the integration of multiple data 
sources in intelligent digital models as possible 
direction for innovation and improvements. Such 
intelligent data models may provide a more 
comprehensive information management and a more 
reliable analysis of results, enhancing the awareness 
of the decision makers. 

Guidani et al. (2024) introduce a novel Agri-Food 
Supply Chain DT, relying on an integrated, flexible, 
and holistic framework from field to customer. The 
proposed framework aims at filling a gap of a multi-
dimensional performance assessment in DT 
frameworks applied to food supply chains, as 
highlighted by Yadav et al. (2022). Their results 
overcome the limits of heterogeneous traceability 
architectures, offering an architecture able to process 
and assess overall impacts and externalities of food 
supply chains. Such architecture improves the 
transparency and the shared visibility of operation and 
processes along food supply chains, enhancing the 
awareness of both decision makers and customers. 

2.3. Towards a Cognitive Digital Twin 

AS showed by applications in the previous section, 
since DT frameworks are real-time representations of 
physical entities, they improve situational awareness 
for observability, controllability and decision-making. 
Situational awareness implies a continuous and 
mutual interaction between humans and DT 
frameworks. Fernández et al. (2019) leverage on this 
aspect comparing the DT frameworks with symbiotic 
autonomous systems. These systems foster the 
convergence of human and machine augmentation, 
towards hybrid human-machine systems. Thus, they 
highlight a lack of high-level consciousness 
capabilities in DT frameworks which limits the 
symbiotic relationship between humans and these 
frameworks. To provide consciousness capabilities, 
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they define a Cognitive Digital Twin (CDT) as: 

a digital expert or copilot, which can learn and evolve, and that 
integrates different sources of information for the considered 
purpose (Fernández et al., 2019). 

Relying on exiting definitions, Zheng et al. (2022) 
derive a comprehensive definition of a CDT through 
five common elements and features: 

1. DT-based – A CDT is an augmented version of DT, 
including all the capabilities of the 5C taxonomy 
(Bagheri et al., 2015) and relying on a three-layer 
structure (Bonney et al., 2022). 

2. Cognition capability - A CDT implements 
semantic technologies, AI-enhanced methods, 
and IIoT devices to recognize complex and 
unpredictable events, applying optimization 
strategies in real-time. 

3. Full lifecycle management - A CTD includes all the 
different digital models across the entire lifecycle 
of a system, likewise a DT framework in food 
production should cover the whole food supply 
chain (Huang et al., 2024). 

4. Autonomy capability - A CDT operates without 
human assistance or limiting human intervention. 

5. Continuous evolving - A CDT embodies learning 
and evolving capabilities by autonomous or 
human-assisted features. 

Their comprehensive definition of a CDT has not to 
be intended as a replacement of the DT frameworks, 
but it acts as an extension, envisaging the CDT as a 
federated version of a DT framework. Such federated 
version requires a more complex architecture than a 
DT. Thus, they outline a reference architecture based 
on RAMI 4.0 (Schweichhart, 2016) identifying several 
enabling technologies in different areas: 

• Semantic technologies 
• Ontology engineering 
• Knowledge graph 

• Model-based system engineering 
• Product lifecycle management 
• Industrial data management technologies 

• Cloud/Fog/Edge computing 
• Natural language processing 
• Distributed ledger technology 

Ali et al. (2024) offer a systematic literature review 
in the realm of Industry 4.0/5,0 about cognitive 
systems and cognitive interoperability. Beyond the 
potentials of cognitive systems towards a resilient, 
sustainable and inclusive industry, they highlight 
several challenges to be addressed. Combining static 
and dynamic features, cognitive systems may lead to 
complexities for coordinating different components in 
real-time environments, since an interoperability 
standard is still missing. Furthermore, much effort is 
required to provide a deep understanding of hybrid 
human-machine systems, especially through 

applications in real case studies aiming at analyzing 
the symbiosis of humans and machines. 

Since the CDT is an emerging concept, it requires 
new strategies and policymakers’ support for 
facilitating the transformation of industries towards 
more resilient, sustainable, and inclusive industry 
models, especially implementing the United Nations’ 
Sustainable Development Goal 9 (Sharma & Gupta, 
2024). The lack of transformation strategies and 
policymakers support inhibits applications in real 
case-studies, which are limited to ongoing research 
projects or explorations of DT frameworks just 
integrating AI components, according to Zheng et al. 
(2022) and Ali et al. (2024). As of May 2024, SCOPUS 
database is not returning any record about CDT in food 
production - query formula: TITLE-ABS-KEY 
("cognitive digital twin" AND "food"). 

2.4. Handling conflicting goals in decision-making 
support systems 

Concerning the recommendations 1 and 3 identified by 
Huang et al. (2024) in Section 2.2, the definition of 
metrics and performance indicators for food supply 
chains is a complex task, especially aiming at a 
comprehensive and holistic representation of a whole 
supply chain (Guidani et al., 2024). 

A metric index for production systems should adopt 
performance indicators aligned with production goals, 
implementing parameters adaptable to strategic 
market goals. Intrinsically, every production system 
must deal with four main goals (variability, quality, 
economy, and speed) which are structured in a conflict 
relationships model of goals compatibility, goals 
subordination, and goals antagonism (Erlach, 2013). 
These conflicts imply that it's not possible to fulfill all 
goals simultaneously, and optimization strategies 
must deal with trade-offs. 

Since the conflict relationships model proposed by 
Erlach (2013) is mainly focusing on the goals domain 
of Lean manufacturing, it is mostly correlated to the 
production and transformation stages within a supply 
chain. Extending the goals domain to all the stages of a 
supply chain means including other domains, in the 
attempt of providing an efficient and effective flow of 
materials and information among the whole supply 
chain (Carvalho et al., 2011). For this purpose, Azevedo 
et al. (2011) propose the LARG index as a combination 
of four goals domains: Lean, Agile, Resilient, and 
Green. The proposed index exponentially increases the 
conflict relationship of goals, since some domains are 
contradictory at strategic and tactical level, such as 
Lean and Resilient in managing warehouse stocks. 

Several authors are investigating the possible 
implementation of the LARG index in different 
industrial sectors, highlighting the potential to 
generate great advantages for companies, and 
recommending the use of digital technologies to: (i) 
facilitate the data collection through IIoT devices and 
(ii) provide assisted decision-making systems 
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(Khanzadi et al., 2024). 

Bottani et al. (2022) introduce LARG index for 
evaluating food supply chain performances, proposing 
a framework of 13 performance indicators. They 
remark that more effort is required to validate the 
proposed framework through real case studies, 
supporting decision makers in figuring out the best 
combination of performance indicators. 

Sahu et al. (2023) outline a decision-making 
framework for selecting suppliers of an automotive 
supply chain in India. Identifying more than 60 
performance indicators within the LARG index, they 
implemented a multi-objective optimization method 
to select the optimal supplier, providing a real case 
study with tangible feedback using experts’ and 
stakeholders’ contributions. 

Optimization tasks of contradictory goals, such as 
in the LARG index, demand multi-objective 
optimization methods supporting a multi-criteria 
decision-making system. Contradictory goals lead 
towards a set of alternative solutions, called Pareto 
optimal solutions. In multi-objective optimization, 
finding the optimal solution among Pareto optimal 
ones should not be intended as finding a unique 
solution, but as offering a plethora of trade-off 
solutions. Thus, multi-objective optimization 
methods should provide: (i) a set of solutions from the 
Pareto-optimal front and (ii) a set of solutions 
representing the entire range of the Pareto-optimal 
front. Since multiple optimal solutions and trade-offs 
are provided, selecting the best solution becomes a 
very complex task, requiring high-level information 
and experience-driven consciousness (Branke et al., 
2008). 

In the last 20 years, several authors have discussed 
the implementation of AI methods (such as Machine 
Learning) to multi-objective optimization, aiming at 
providing autonomous decision-making support 
systems. A brief search in SCOPUS database returns 
more than 2oo records - query formula: TITLE-ABS-
KEY ("multiobjective optimization" AND "decision 
making" AND "machine learning"). 

Focusing on the most recent records, Wang et al. 
(2022) propose a multicriteria decision making 
framework of 7 steps, applying a machine learning 
aided multi-objective optimization method. Through 
two applications in chemical engineering, they aim at 
increasing the energy content and reduce the 
greenhouse emission of supercritical water 
gasification process without relying on decision 
makers’ feedback. 

To better distribute a set of solutions on the Pareto-
optimal front, Deb et al. (2023) train machine learning 
algorithms to improve outputs from evolutionary 
multi-objective optimization algorithms without 
additional optimizations, providing a proof-of- 
concept of machine learning methods in aided multi-
objective optimization. Similarly, Nabavi et al. (2023) 
reduce from two days to one minute the multi-

objective optimization of thermal cracking process, 
relying on deep learning techniques in olefines 
production industry. As well, Hoang et al. (2022) apply 
a hypernetwork within a Pareto-front learning 
framework, to improve the generation of trade-offs 
among the pareto front. Through different 
experiments, they measure that a multi-objective 
optimization machine-learning algorithm provide 
better performances in comparison to baseline 
Pareto-front learning frameworks. 

Mousavi et al. (2023) develop an algorithm in 
business analytics to improve sustainability and 
resiliency of companies, combining multi-objective 
optimization and machine learning. Through three 
industrial case studies which directly involve decision 
makers, they algorithm outperforms non-interactive 
ones by providing more reliable solutions. 

Hu and You (2024) propose a CDT framework 
(under the definition of cyber-physical-biological 
system) for smart energy management in hydroponic 
plant harvesting. Implementing physics-informed 
deep learning techniques upon multi-objective 
optimization algorithms, they measure a reduction of 
energy expenditure of 8.75%, and a considerable 
reduction in computational time, lending towards a 
real-time capability in decision-making support 
systems. 

3. Materials and Method 

The authors report the early outcomes of the 
“Decision Support System for the Life Cycle 
Optimization (DSS4LCO)” initiative, which aims at 
implementing a CDT architecture in food supply 
chains through the development of a case study, 
involving practitioners and decision makers. The 
research initiative adopts the Design Science Research 
(DSR) approach which aims at developing new 
artifacts through: 

a knowledge-based design process for solving problems relevant 
to practice (Hevner et al., 2004). 

In their definition, the artifact is an outcome of 
research activities to outline and evaluate a new 
methodology, a new technology or even a new 
product. 

The DSR approach is structured among 7 main steps 
which apply reproducible methods: 

• Step 1 - Identifying a problem relevant for 
practical tasks, with potentials for scientific 
contributions. 

• Step 2 - Contextualizing the problem within the 
existing knowledge base (e.g. scientific literature). 

• Step 3 - Formulating a possible solution with 
potential of filling the gaps within the scientific 
literature. 

• Step 4 - Implementing the solution in a case-
study prototype. 

• Step 5 - Demonstrating the utility of the proposed 
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solution through a validation step involving 
relevant stakeholders. 

• Step 6 - Generalizing the outcomes of the previous 
steps. 

• Step 7 - Assessing possible extensions and further 
applications of the proposed solution. 

At the actual stage, the DSS4LCO initiative 
completed the first three DSR steps, towards the 
definition of a CDT architecture implementing a 
multi-criteria decision-making support system. The 
following sections discuss the scope of the DSS4LCO 
initiative (DRS - Step 1), the identified gaps (DSR - 
Step 2) and the definition of a CDT architecture that 
will be implemented in the next DRS steps (DSR - Step 
3). 

3.1. Scope of the DSS4LCO initiative 

Food supply chains are facing several fundamentals 
challenges, dealing with UN Sustainable Development 
Goals (SDGs), to: achieve food security (SDG 2), ensure 
healthy life (SDG 3), ensure availability of water (SDG 
6), promote economic growth (SDG 8), build resilient 
industrial infrastructure (SDG 9), ensure sustainable 
consumption and production patterns (SDG 12), 
combat climate change (SDG 13), promote sustainable 
use of terrestrial ecosystems (SDG 15). Such a wide 
framework of goals requires transdisciplinary high-
level decision-making capabilities. 

As discussed in Section 2.2, DT frameworks can 
effectively support decision makers in handling 
complex managing tasks towards more efficient and 
more effective management of food supply chains. 
Since the DT frameworks improve the situational 
awareness of decision makers, they aim at acting as a 
symbiotic system, relying on a continuous and mutual 
interaction with humans. However, as discussed in 
Section 2.3, a lack of high-level consciousness is 
limiting the autonomous capabilities of the DT 
frameworks in decision-making tasks, and an 
evolution towards more conscious systems is required. 

Considering the novelty of the CDT topic (Section 
2.3), the DSS4LCO initiative explores the application of 
CDT frameworks in food supply chains by defining a 
CDT architecture to provide a comprehensive and 
autonomous decision-making support system. 
Through the validation of such defined architecture, 
the research initiative tries to provide an answer to the 
following research questions: 

• RQ 1 - How should a CDT architecture be 
structured for food supply chains? 

• RQ 2 - Which metric indexes could provide a 
comprehensive and reliable framework for 
evaluating the performances of food supply 
chains? 

• RQ 3 - How to include multiple data sources, even 
external, to increase the conscious capability of a 
CDT framework within food supply chains? 

• RQ 4 - Can CDT frameworks autonomously handle 
uncertainties and disruptive events without 
human assistance or limiting human 
intervention? 

3.2. Identified gaps 

The research questions introduced in the previous 
section aim at filling some of the gaps identified in the 
scientific literature among Sections 2.2, 2.3, and 2.4. 

The RQ1 would provide a definition of a 
comprehensive CDT framework for food supply 
chains. According to the recommendations of Huang 
et al. (2024), future research activities should extend 
the application of DT frameworks (and then of CDT 
frameworks) across the whole food supply chain. This 
extension should lead towards a more comprehensive 
framework able to handle multiple data sources, even 
external, enhancing the awareness of the decision 
makers. Several authors (Section 2.2) investigate DT 
applications in food supply chains, but only Guidani et 
al. (2024) try to extend the framework towards a 
holistic framework from field to customer, dealing 
even with externalities. However, their study is still 
focusing on DT frameworks without arguing on high-
level cognitive capabilities for autonomous decision-
making tasks. Nowadays, applications of CDT 
frameworks and the definition of a comprehensive 
CDT framework in food supply chains seems an 
unexplored topic (Section 2.3). 

The RQ2 deals with the definition of comprehensive 
metric indexes in DT/CDT frameworks for evaluating 
the performances of food supply chains. Since 
research activities on metrics are recommended 
(Huang et al., 2024), several authors are offering 
specific metrics in their application of DT frameworks 
(Section 2.2). However, these metrics are limited to 
convergent goals (without conflicts), limiting the 
optimization of performance indicators to specific 
goals domains, such as: resilience in logistics (Valero 
et al., 2023), resilience in production (Tan et al., 2023), 
or energy efficiency in storage facilities (Büchele et al., 
2024; Wang et al., 2022). Even if comprehensive 
metric indexes are available, such as the LARG index 
(Section 2.4), there is a lack of applications in real case 
study within food supply chains (Bottani et al., 2022) 
and the combination of these indexes with DT/CDT 
frameworks must be investigated. 

Comprehensive metric indexes imply handling 
multiple optimal solutions and trade-offs since goals 
domains are structured in a conflict relationships 
model of goals compatibility. As highlighted by Branke 
et al. (2008), multi-objective optimization tasks 
require a reliable model of the problem to be 
optimized, and the selection of the solution require 
high-level information and experience-driven 
consciousness. In the realm of DT/CDT frameworks 
this consciousness must be transferred to autonomous 
decision-making systems to improve the symbiotic 
situational awareness of humans and DT frameworks 
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(Fernández et al., 2019). The RQ3 faces the challenge 
of transferring the conscious capabilities of humans to 
a CDT framework, applying the enabling technologies 
identified by Zheng et al. (2022). The application of 
cognitive capabilities showed by Hu and You (2024) is 
limited to a convergent goal, such energy efficiency. 
Thus, comprehensive system models and holistic 
semantic descriptions, relying even on external data, 
need to be enhanced in food supply chain applications. 

Since applications of CDT frameworks in food 
supply chains seems an unexplored topic, the RQ4 
aims at understanding if and under which conditions a 
CDT framework can provide a multi-criteria 
autonomous decision-making system. As discussed in 
sections 2.2, 2.3, and 2.4 the literature referred to food 
supply chains is showing great potentials and benefits, 
but it is not contributing to a clear understanding 
since it is lacking a holistic combination of all the 
topics involved. Applications of DT frameworks are 
lacking handling multiple optimal solutions and 
trade-offs, without applying comprehensive metric 
indexes, or they are lacking autonomous capabilities, 
without exploring the symbiotic situational awareness 
of humans and DT frameworks, under uncertainties or 
disruptive events. Similarly, early applications of CDT 
frameworks are exploring real-time capability in 
decision-making support systems, but they a limiting 
their studies to convergent goals. Other authors are 
investigating comprehensive metric indexes, such as 
the LARG index, but they are providing theoretical 
frameworks which need to be validated and enriched 
through real case studies. 

3.3. Defining a CDT architecture 

The DSS4LCO initiative started defining a CDT 
architecture to answer the research questions 
introduced in Section 3.1. 

Since a reliable model of the system is required to 
enable cognitive capabilities (Zheng et al., 2022), and 
to perform multi-objective optimization (Branke et 
al., 2008), the authors identified the Value Stream 
Mapping (VSM) as comprehensive model for food 
supply chains, able to provide a clear description of the 
relationships and the information among the physical 
entities. 

Formalized by Rother and Shook in 1998 (2003), the 
VSM produces a blueprint of an entire flow of 
processes within a supply chain, providing a common 
language for talking about processes. It shows the 
linkage between the information flow (in the digital 
realm) and the material flow (in the physical realm) 
providing a comprehensive model of a system in a 
highly effective manner (Erlach, 2013). The flow of 
processes within a supply chain is represented by the 
mean of logical connections (the information or 
material flows) among single-step processes (Figure 
1), described adopting a specific legend of symbols, to 
provide a comprehensive description of the single-
step process (Figure 2). 

The VSM model can provide several details at 
single-step level, collecting data gathered by IIoT 
devices or by users, such as: resources applied, 
working rates (triggered by actuators or measured by 
sensors), quality-check data (from sensors), 
calculated performance indicators (from data 
measured by sensors), description of managing and 
control strategies. At overall level, the model delivers a 
relationship model of the single-step processes, 
through the representation of the information and the 
material flows, providing a clear understanding of the 
interdependencies of the single-step process. 

 
Figure 1. An example of a VSM model - adapted from (Schweizer, 
2013). 

 
Figure 2. An example of single-step process symbols within a VSM - 
adapted from (Schweizer, 2013). 

Starting from a first iteration between a decision 
maker and a DT framework, a first model can be 
established through a snap-mapping method by way 
of interviews, measuring and counting by human 
auditors (Erlach, 2013). In a second iteration, the 
model can be connected to IIoT devices at single-step 
processes level and it can be connected to a multi-
objective optimization engine which aims at finding 
optimal solutions within a comprehensive metric 
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index, such as the LARG one. This implementation 
strategy, combined with the VSM peculiarities, 
establishes a base-line DT framework able to offer: (i) 
enough flexibility in representation capabilities, (ii) a 
comprehensive set of performance indicators, and (iii) 
a detailed semantic description of the real entities. 
Such defined VSM model provides a reliable model for 
a symbiotic situational awareness of humans and DT 
frameworks (Fernández et al., 2019) towards the 
implementation of cognitive capabilities. 

Referring to Zheng et al. (2022), the CDT 
architecture becomes a federated version of the 
defined base-line DT framework, distributing the 
components among two different domains: a DT 
domain and a CDT domain (Figure 3). The DT domain 
deals with establishing the connection between the 
IIoT devices and the multi-objective optimization 
engine, through a virtual model that relies on the VSM 
model and on the LARG index. 

 
Figure 3. The CDT architecture of the DSS4LCO initiative. 

The CDT domain adds cognitive capabilities on top 
of the DT domain through a top-level ontology and a 
machine learning engine. Interacting with all the 
components within the DT domain, the top-level 
ontology aims at organizing and modelling food data, 
as well as identifying connections among different 
components of a food supply chain. Relying on the 
metadata or schema by the top-level ontology, and on 
the instances from knowledge graphs, the machine 
learning engine aims at providing a real-time 
autonomous decision-making system without human 
assistance or limiting human intervention. 

Within such defined architecture the decision 
maker interacts at DT domain level defining the VSM 
model and selecting the optimal solution among the 
ones delivered by the multi-objective optimization 
engine. Doing so he provides a semantic description to 
the top-level ontology within the CDT domain and 
trains the machine learning engine towards a 
sufficient level of confidentiality to perform 
autonomously decision actions.   

4. Insights of early results 

In the following sections the authors discuss some 
early results of the research activities within the CDT 
domain, introducing the main challenges to be 
addressed during the development of the further steps 
of the DSR method. 

4.1. Defining a top-level ontology 

The volume of transdisciplinary and heterogeneous 
data generated from the food supply chain process 
exist as information silos, making efficient data 
exploitation impossible. Therefore, there is a need to 
organize and integrate food data in the food supply 
chain. Ontologies and knowledge graphs can provide a 
standardized conceptual terminology in a structured 
form and, thus, can effectively organize these food 
data to benefit various applications (Min et al., 2022). 
While an ontology is metadata or schema, which 
represents more complex structures with 
relationships between a set of concepts, the focus of 
knowledge graphs is instances. The authors develop 
an ontology for organizing and modeling food data, as 
well as identifying connections among different 
components of a food supply chain. 

Food ontologies with an emphasis on health and 
nutrition can aid in recommending healthy eating 
habits in various food applications. For example, the 
HeLiS ontology (Dragoni et al., 2018) intends to give a 
comprehensive representation of foods, physical 
activities, good practices, user preferences, and habits 
to help promote healthy living. HeLiS covers concepts 
ranging from activities to nutrients in foods, as well as 
the user concept. This enables the association of 
certain health-related events with individuals for 
purposes such as health monitoring or nutritional 
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applications. FoodKG (Haussmann et al., 2019) is a 
large-scale and integrated knowledge graph that 
covers recipes, ingredients, nutrients, and food 
substitutions. This is a valuable resource for assisting 
users in personalizing their dietary goals and 
recommending healthier food. 

Some food knowledge graphs, such as Foodbar 
(Zulaika et al., 2018) and RcpKG (Lei et al., 2021), have 
been mainly developed on recipe entities extracted 
from recipe-sharing sources (websites, social 
networks, etc.) to support recipe-related applications. 

There are also ontologies that focus on the food 
safety domain, especially to support food traceability. 
For example, Food Track & Trace Ontology - FTTO 
(Pizzuti et al., 2014) was created to aid with food 
traceability. It incorporates representative food 
concepts from the supply chain and can integrate and 
connecting the essential characteristics of the food 
traceability domain. 

Some ontologies are built for specific food 
categories. For example, the Meat Supply Chain 
Ontology - MESCO (Pizzuti et al., 2017) extends the 
FTTO to adapt the meat supply chain area. It supports 
the management of meat traceability from the farmer 
to the consumer. 

Finally, A global and comprehensive farm-to-fork 
ontology about food is FoodON (Dooley et al., 2018), 
which contains raw food source ingredients, food 
categories and products, as well as process terms for 
packaging, cooking, and preservation. 

There exist not only theoretical studies about food 
ontologies and knowledge graphs. Several companies, 
such as Uber, Edamam, BBC, and Yummly, adopted 
these research results to develop their own 
customized food ontologies and knowledge graphs to 
power various products and make them more 
intelligent from different specific domains. For 
example, Uber Eats (Hamad et al., 2018) builds on a 
food knowledge graph to facilitate food-related 
retrieval and suggestion. Edamam (edamam.com) 
created a comprehensive knowledge graph on food 
and cooking, which included recipes, ingredients, 
nutrition information, measures, and allergies. The 
goal of this food knowledge graph is to provide 
consumers with numerous ways of searching, 
enabling better food choices. Yummly (yummly.com) 
developed a knowledge graph to offer a semantic web 
search engine for food, cooking and recipes. 

A food supply chain includes all the steps involved 
in the journey of food items from production to 
consumption. Globalization has led to longer and 
more fragmented food supply chains. This poses two 
main challenges: difficulty in food traceability and 
increased food waste. Therefore, mapping and 
connecting different components of a supply chain is 
critical to achieve reliable food traceability and control 
food waste. The food ontology and knowledge graph 
provide an effective approach for modelling, 
integrating, and aligning food data in food supply 

chain management. To this end, the DSS4LCO 
initiative develop an ontology to organize and 
integrate data related to products, actors and 
processes involved in the food supply chain with the 
goal of reducing food waste.  

The construction process of the proposed ontology 
is defined using the Methontology presented by 
Fernández-López et al. (1997). It is a methodology for 
ontology development that includes the following 
activities: 

• specification phase: This phase involves 
identifying the purpose of the ontology, defining 
the scope and objectives of the ontology, and 
understanding the domain requirements. In 
particular, the main goal of our ontology is to 
support information management and identify 
connections in different components of the supply 
chain with the goal of reducing food waste. 

• knowledge acquisition phase: This activity 
employs Different knowledge acquisition 
approaches to generate an early version of the 
ontology definition document. for this, an in-
depth analysis of the food supply chain is required 
to identify the relationship between actors and 
processes. 

• conceptualization phase: During the 
Conceptualization phase, the acquired knowledge 
is structured into a conceptual model. The 
identified concepts have been translated into 
classes, and their attributes have been represented 
using data properties. The relationships between 
concepts have been modelled through several 
object properties. 

• implementation phase: The ontology is typically 
represented using ontology languages such as the 
Web Ontology Language (OWL), which can be 
implemented using ontology development tools. 
During the implementation phase, classes and 
properties have been organized in taxonomies. 
Additionally, constraints and restrictions have 
been defined. We use the Protégé tool, a popular 
tool for creating and modifying ontologies with 
graphical representations, to build and implement 
the proposed ontology. 

• validation phase: In this phase, knowledge 
representation techniques are employed to 
evaluate incompleteness, inconsistencies, and 
redundancies of the developed ontology. 

4.2. Outlining a machine-learning aided decision-
making system 

As highlighted in Section 2.3, CDT frameworks are 
meant to learn and evolve through interaction with the 
user to sustain the decision-making process.  

Given the quantity of data that a DT model could 
potentially gather (through, for instance, IIoT devices) 
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the usage of machine learning techniques to power its 
decision-making capabilities seems a reasonable 
choice. 

On the other hand, the continuous interaction of a 
virtual model with its physical entities, the user, and 
possibly unpredictable external factors pose some 
serious threats to the use of data-driven learning 
technologies in this context. Indeed, changes in 
distribution of the data or in the business needs could 
seriously degrade the performance of the underlying 
automated learning systems making the DT useless at 
best, dangerous at worst. Therefore, the authors 
identified two techniques that would help deal with 
the above-mentioned issues. 

First, any automated decision systems should be 
equipped with appropriate safeguards. For instance, 
they could have the right to abstain, meaning that the 
models could get back to the user when they are not 
confident enough about their prediction. This should 
reduce the risk of inappropriate decisions from a CDT 
and allow human-machine co-piloting of a food 
supply chain. 

The task of learning to classify data with the 
possibility to abstain is called Selective Classification. 
This set of techniques has been around for quite some 
time now and recently gain new momentum (Chow, 
1970; Hendrickx et al., 2021). The general idea is quite 
simple: the model abstains from the decision when the 
probability of taking the wrong decision is too high 
and  

[escaletes] the decision to a human agent who could possibly 
take into account additional (qualitative) information (Ruggieri 
et al., 2023).  

Applying a Selective Classification implies an 
obvious trade-off between accuracy and the 
percentage of abstentions which, in the DSS4LCO 
initiative, translates into the amount of decisional 
independence of the CDT framework. The authors 
believe that implementing this kind of safeguards 
would be a valuable to make the CDT architecture as 
trustworthy as possible. 

Second, modern machine learning systems are 
extremely data hungry. Hence, their training (or re-
training in the case of stream-based scenarios) is an 
extremely expensive task. To lower this expense and 
ease the burden of data (re-)labelling as much as 
possible, the CDT architecture should suggest 
proactively to the user the data to review. This can be 
done through a technique called Active Learning (AL). 

AL is a human-in-the-loop machine learning 
framework that  

attempts to maximize a model’s performance gain while 
annotating the fewest samples possible (Ren et al., 2022).  

In an AL framework, the practitioner has at disposal In 
an AL framework, the practitioner has at disposal 
many unlabeled data points and a small pool of 
annotated data. The model is trained on the annotated 
data, then the unlabeled data is queried according to 

some criteria (e.g., how informative the samples are 
for the model). The retrieved samples are labelled by a 
user, the labelled pool is enlarged, and the training 
continues through an increasing amount of data until 
the model reaches good performances or other 
stopping criteria are met. Other authors (Chabanet et 
al., 2022; Gardner et al., 2020) recently recognized AL 
as a useful tool for the creation of CDT frameworks. 

5. Conclusions 

From the literature review discussed in sections 2.2, 
2.3, and 2.4 several research initiatives are 
investigating the potentials and the benefit of 
transferring CPPSs technologies and methods, such as 
DT frameworks, in food supply chains to overcome 
fundamental challenges, such as: quality assurance, 
waste reduction, safety, and security management. 
However, a holistic combination of all the topics for 
applications of CDT frameworks is missing and the 
literature is lacking applied case studies to: (i) extend 
the applications towards whole food supply chains, (ii) 
implement comprehensive metric indexes, and (iii) 
develop symbiotic cognitive capabilities towards a 
real-time autonomous decision-making system 
without human assistance or limiting human 
intervention. 

This conceptual paper presents the early outcomes 
of DSS4LCO initiative which aims at implementing a 
CDT architecture in food supply chains, to investigate 
potentials of multi-objective optimization methods, 
under external uncertainties or disruptive events, 
towards the implementation of an autonomous 
decision-making system. The paper defines a CDT 
architecture for food supply chains which distributes 
the CPPS components among two different domains: a 
DT domain and a CDT domain. Finally, it introduces 
some insights of the CDT domain, discussing the 
challenges to be faced. 

Future developments of the DSS4LCO initiative will 
face a prototype implementation of the defined 
architecture, relying on a real use-case with the 
contribution of local stakeholders. This prototype, as a 
proof-of-concept demonstrator to be validated with 
experts and local stakeholders, will focus on: (i) the 
implementation of a virtual model relying on VSM 
model and the definition of LARG metrics at DT 
domain level, (ii) the definition of a comprehensive 
top-level ontology and (iii) the implementation of 
machine-learning aided decision-making system at 
CDT domain level. Other components of the defined 
architecture will be implemented according to 
available solutions and methods from the exiting 
literature (such as data exchange with IIoT devices 
and external databases and the multi-objective 
optimization engine). 

Since the initiative has only accomplished the early 
first steps of the planned research activities, a lot has 
to be done to implement the defined architecture, to 
validate and generalize it. However, these early 
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outcomes must be intended as a first explorative step 
to provide a reference for future developments, not 
only of the DSS4LCO initiative, but also of other 
research initiatives aiming at investigating 
applications of CDT frameworks in food supply chains. 
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